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Impaired natural killer cell responses are associated
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Objective: Of the predominant HIV-1 subtypes in Uganda, subtype D infection
confers a worse prognosis. HIV-1 infection causes perturbations to natural killer
(NK) cells, and yet these cells can exert immune pressure on the virus and influence
clinical outcome. Here, we studied NK cell activation and function in Ugandans with
chronic untreated HIV-1 subtype D infection in comparison to uninfected community
matched controls.

Methods: Cryopreserved peripheral blood mononuclear cells (PBMCs) from 42 HIV-
infected individuals and 28 HIV-negative controls were analysed using eight-colour
flow cytometry. NK cell surface expression of CD16, CD56, CD57, HLA-DR and
NKG2A were used to investigate activation, maturation and differentiation status. NK
cell function was evaluated by measuring interferon-gamma (IFNg) production in
response to K562 cells, or interleukin (IL)-12 and IL-18.

Results: CD56dim NK cells from HIV-infected individuals produced less IFNg in
response to IL-12 and IL-18 than did CD56dim NK cells from uninfected controls.
Infected individuals had lower levels of CD56dim NK cells coexpressing the differen-
tiation markers NKG2A and CD57 than controls. In addition, their NKG2AþCD57þ

CD56dim NK cells displayed elevated activation levels as assessed by HLA-DR expres-
sion. Cytokine-induced IFNg production correlated directly with coexpression of CD57
and NKG2A on CD56dim NK cells.

Conclusion: HIV-1 subtype D infection is associated with impaired NK cell respon-
siveness to cytokines, decline of the NKG2AþCD57þCD56dim NK cell subset, as well as
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Table 1. Descriptive

Characteristic

Age, median (years,
Sex, no (percentage)
Female
Male
CD4þ T-cell absolut
Viral load, median (

NA, not applicable.
elevated activation in this subset. These alterations within the NK cell compartment may
contribute to immunopathogenesis of HIV-1 subtype D infection in Ugandans.
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Introduction

The Ugandan HIV-1 epidemic, with a prevalence of 7.3%
[1], is predominantly composed of subtype A, D and
recombinant viruses [2,3]. HIV-1 subtype affects the rate
of disease progression [4], yet it is not clear why. Subtype
D is associated with faster progression to AIDS ([5],
reviewed in [6,7]), more profound loss of CD4þ T cells
[5,8] and decreased frequency of invariant natural killer
T cells [9], as compared with subtype A. Further studies of
subtype D infection are warranted to understand subtype-
dependent differences in HIV-1 immunopathogenesis.

Natural killer (NK) cells are an integral part of the innate
immune response to viruses [10]. HIV-1 infection,
however, contributes to a range of changes in NK cell
phenotype and function as early as primary infection
[11–15]. In addition, HIV-1 can acquire escape muta-
tions under NK cell immune pressure [16], although
certain killer immunoglobulin-like receptor (KIR)
alleles, primarily expressed by NK cells, are associated
with slower progression to AIDS [17]. Furthermore, the
KIR repertoire of the NK cell compartment adapts and
changes during the response to HIV-1 infection [18,19].

NK cells interact with dendritic cells and T cells to shape
the immune response to infection. This cross-talk
involves the activation of NK cells via interleukin (IL)-
12 and IL-18 to release type II interferon, which in turn
matures dendritic cells to adequately prime T-cell
responses [20,21]. Disruption of the NK–dendritic cell
communication may adversely impact immune control of
HIV [22,23]. Cytokine-activated NK cells can migrate
to lymph nodes [24], and directly activate T cells [25].
Cell-surface receptors such as NKG2A and CD57 can be
used to describe CD56dim NK cell differentiation [26]. In
the present study, we investigated NK cell activation,
pincott Williams & Wilkins. Unautho

statistics for study population.

range)

e count, median (cells/ml, range)
copies/ml, range)a

aViral load measured by Roche Amplicor Monitor v1.
differentiation and function in Ugandans with chronic
untreated HIV-1 subtype D-infection.
Materials and methods

Study cohort and samples
Study participants were randomly selected from a
prospective community-based cohort to characterize
HIV-1 infection in Rakai, Uganda, from 1998 until 2004
[5] prior to the availability of antiretroviral therapy in this
setting. Cryopreserved peripheral blood mononuclear
cells (PBMCs) from 42 treatment-naive individuals
infected with HIV-1 subtype D and 28 community-
matched HIV-uninfected controls were selected for study
(Table 1). Walter Reed Army Institute of Research,
Human Subjects Protection Branch (WRAIR#1428), as
well as the Uganda National Council of Science and
Technology (HS413) approved this study, and all
participants provided written consent for participation
and for use of stored samples. Plasma viral load was
measured using Amplicor HIV-1 Monitor test version 1.5
(Roche Diagnostics, Indianapolis, Indiana, USA). HIV-1
subtypes were determined using the previously described
multiregion hybridization assay (MHAacd, [27]). The
FACS MultiTEST IMK Kit (BD Biosciences, San Jose,
California, USA) was used to enumerate lymphocyte
subsets on a dual-laser FACSCalibur (BD Biosciences).

Flow cytometry
Whole blood collected in acid citrate dextrose anti-
coagulant was processed within 8 h and PBMC cryo-
preserved at –130oC in liquid nitrogen, as previously
described [28]. PBMCs were thawed and washed in
RPMI medium containing 10% foetal bovine serum, 5%
L-glutamine, 1% penicillin/streptomycin and 5% HEPES,
and cell concentration and viability determined using
rized reproduction of this article is prohibited.

HIV-negative (n¼28) HIV-1 subtype D (n¼42)

36 (22–48) 31 (19–54)

14 (50%) 28 (67%)
14 (50%) 14 (33%)

1013 (527–1659) 475 (85–1336)
NA 54 157 (562–1 484 450)

5, limit of detection 400 copies/ml.
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Guava Viacount reagent and the Guava Personal Cell
Analysis System (EMD Millipore, Billerica, Massachu-
setts, USA) [28]. Samples were stained in 96-well
U-bottom plates at 4oC for 30 min in the dark [12].
Aqua Live-Dead stain (Life Technologies Corporation,
Carlsbad, California, USA) was used to discriminate
viable cells. Commercially available mAbs included anti-
CD3, anti-CD14 and anti-CD19 (all on APC-H7), anti-
CD56 PE-Cy7, anti-Ki67 PE and anti-HLA-DR V450
(BD Biosciences). Additional mAbs included anti-
NKG2A APC (Beckman Coulter, Inc., Brea, California,
USA), anti-CD57 FITC (BioLegend, San Diego,
California, USA) and anti-perforin PE (eBioscience,
San Diego, California, USA). Ki67 and perforin were
stained intracellularly after permeabilization using BD
Perm/Wash (BD Biosciences). To assess NK cell function,
thawed PBMCs were cultured overnight, in the presence
of brefeldin A (BD Biosciences), with 10 ng/ml rIL-12
(R&D systems) as well as 10 ng/ml rIL-18 (MBL), or the
MHCnull K562 cell line (at an E:Tof 5:1), or media alone
[12]. Samples were fixed, washed, permeabilized and
stained with anti-IFNg PE (BD Biosciences). All samples
were acquired on an eight-colour BD FACSCanto II (BD
Biosciences) and analysed using FlowJo version 9.5.3
(Tree Star, Ashland, Oregon, USA).

Statistical analysis
Graph Pad Prism version 6.0a for Mac OSX was used for
statistical analysis (GraphPad Software, La Jolla, California,
USA). Differences between groups were analysed using
the Mann–Whitney test and associations were deter-
mined using Spearman’s rank correlation. P values less
than 0.05 were considered statistically significant.
Results

Impaired CD56dim natural killer cell response to
interleukin-12/18 stimulation in HIV-1 subtype
D infection
NK cell phenotype and function were studied from the
PBMCs of 42 untreated HIV-1 subtype D-infected
individuals and 28 community-matched uninfected
controls (Table 1). Individuals had a median viral load
of 54 147 copies/ml and median CD4þ absolute cell
count of 475 cells/ml. NK cells were distinguished on the
basis of live, CD3�CD14�CD19� and CD56þ gating
(Fig. 1a). After stimulation with IL-12 and IL-18,
CD56dim NK cells in HIV-infected individuals produced
less IFNg than those from uninfected controls (P¼ 0.026,
Fig. 1b). The overall trend towards lower absolute counts
of CD56dim NK cells (P¼ 0.07, data not shown) in HIV
infection enhanced this pattern in absolute count terms
with diminished counts of IFNgþ CD56dim NK cells in
infected individuals (P< 0.001, Fig. 1c). In contrast,
IFNg production in CD56dim NK cells in HIV-infected
individuals was unimpaired after K562 stimulation
(P¼ 0.5, Fig. 1d), although the overall trend towards
Copyright © Lippincott Williams & Wilkins. Unaut
lower absolute counts of CD56dim NK cells led to a lower
representation of cells responding to K562 measured as an
absolute count (P¼ 0.036, Fig. 1e). Expression of Ki67
and the cytolytic protein perforin were similar regardless
of infection status (data not shown).

The NKG2ARCD57RCD56dim natural killer cell
subset is activated and declines in subtype D
infection
To characterize defects in NK cells in more detail, we
studied the phenotype of the CD56dim NK cells using the
activation marker HLA-DR, inhibitory receptor NKG2A
and the terminal differentiation marker CD57. Individuals
had a lower representation of NKG2AþCD57þ CD56dim

NK cells than the healthy controls measured both as a
percentage of CD56dim NK cells (P¼ 0.002, Fig. 1f) and as
an absolute count of this subset of CD56dim NK cells
(P< 0.001, Fig. 1g). The proportions of cells defined by
other combinations of these markers (NKG2AþCD57�,
NKG2A�CD57þ and NKG2A�CD57�) did not change
significantly between HIV-1-infected and uninfected
individuals, suggesting that the relative decrease in
NKG2AþCD57þ cells was not directly related to an
increase in one of the other subsets (data not shown).
Furthermore, the NKG2AþCD57þCD56dim NK cell
subset was more activated, as determined by HLA-DR
expression, in a subset of 18 of the individuals when
compared with 19 controls (P¼ 0.011; Fig. 1h).

NKG2ARCD57RCD56dim natural killer cell
frequency correlates with CD56dim interferon-
gamma production
We next investigated whether the decline in NKG2Aþ

CD57þ NK cells was associated with the functional
impairment of CD56dim NK cells in HIV-1 subtype
D-infected individuals. The frequency of NKG2Aþ

CD57þCD56dim NK cells correlated directly with
CD56dim IFNg production in response to IL-12 as well
as IL-18 stimulation (rho¼ 0.568, P< 0.001; Fig. 1i), but
not K562 stimulation (rho¼ 0.030, P¼ 0.85; Fig. 1j). This
association was not observed in controls (rho¼ –0.080,
P¼ 0.68; data not shown). Surprisingly, cytokine-induced
IFNg production in NKG2AþCD57þ CD56dim NK cells
did not differ between cases and controls (Fig. 1k). This
suggests that the functional capacity of NKG2AþCD57þ

CD56dim NK cells may not be directly affected on a per-
cell basis, and that their decline may be associated with the
functional capacity of the global CD56dim NK cell
compartment. Of note, these phenotypic and functional
parameters did not correlate with CD4þ cell count or viral
load (data not shown).
Discussion

To better understand the innate immunology of HIV-1
subtype D infection in Rakai, Uganda, we studied NK
cell responses to IL-12 as well as IL-18 stimulation.
horized reproduction of this article is prohibited.
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Fig. 1. Characteristics of natural killer cells in HIV-1 subtype D infection. Contour plots, with outliers, illustrating the gating
strategy used to identify CD56dim NK cells expressing IFNg, NKG2A, CD57 and HLA-DR (a). The dashed histogram is the FMO and
the continuous line shows HLA-DR expression. Scatter dot plots comparing the median frequencies and interquartile ranges of
CD56dim NK cells expressing IFNg in HIV-infection when stimulated with IL-12 and IL-18, expressed as a percentage (b) or an
absolute count (c). Percentage (d) and absolute count (e) responses after stimulation with K562. Levels of NKG2AþCD57þ cells as a
percentage (f) and absolute count (g). Activation levels in NKG2AþCD57þ CD56dim NK cells (h). Frequency of the
NKG2AþCD57þ CD56dim subset correlated with the frequency of CD56dim NK cells expressing IFNg when stimulated with
IL-12 and IL-18 (i), or K562 (j). IFNg expression in NKG2AþCD57þCD56dim NK cells after IL-12 and IL-18 stimulation (k).
CD56dim NK cells from HIV-positive individuals
produced less IFNg in response to cytokine stimulation,
as compared with uninfected controls. This is in line
with previous findings from a US cohort, despite the
geographic, host and viral disparity between these
populations [29]. Expression of the inhibitory receptor
pyright © Lippincott Williams & Wilkins. Unautho
NKG2A and the terminal differentiation marker CD57
together identified a subset of CD56dim NK cells that
was reduced in HIV-1 subtype D infection. These
NKG2AþCD57þ cells displayed elevated activation levels
in HIV-positive individuals, measured by HLA-DR, and
their frequency correlated directly with the proportion of
rized reproduction of this article is prohibited.
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IFNg expressing CD56dim NK cells in response to
cytokine stimulation.

CD56dim NK cells differentiate from high expression of
NKG2A in the absence of KIRs and CD57 expression,
to a terminally differentiated NKG2A�KIRþCD57þ

CD56dim subset, with those expressing CD57 losing their
ability to respond to cytokine stimulation [26]. Previous
studies have indicated that NKG2A expression correlates
with the IFNg response to IL-12 as well as IL-18 cytokine
stimulation [30], and that CD57 expression reflects the
cytolytic potential of NK cells in the form of perforin and
granzyme expression [31]. NKG2AþCD57þCD56dim

cells may be in an intermediate differentiation phase,
retaining responses to cytokine stimulation and in transi-
tion to a more differentiated phenotype [24]. Our finding
that the decline of the NKG2AþCD57þCD56dim NK cell
subset is associated with impaired NK cell responses to
cytokine stimulation suggests a possible important role for
this subset in NK cell homeostasis and function.

Pathogen-associated maturational skewing of NK cells
has been observed previously. NK cells reconstituting in
patients after umbilical cord blood transplantation mature
more rapidly in patients infected with cytomegalovirus
[32], a pattern also seen in primary HIV infection [33].
Hong et al. [34] observed a decline of less differentiated
NK cells in chronic untreated HIV-1 infection. In
addition, Marras et al. [35] recently showed that
activation, as measured by HLA-DR, of CD56dim NK
cells in HIV-1 viremic controllers is associated with
differentiation to an NKG2A�CD57þ effector pheno-
type. Chronic viral infection has also been associated with
a defect in miR-155, which is important for IFNg
production [36], maturation and expansion of IL-12 and
IL-18 activated NK cells [37]. In this context, the decline
in the activated NKG2AþCD57þCD56dim subset could
be a consequence of HIV-driven rapid maturation [34]
that is not accompanied by expansion of the effector NK
cell subset [32,37]. This may reduce the number of NK
cells available to produce IFNg.

Wright et al. [38] found lower plasma IFNg concen-
tration in ‘late stage’ subtype D-infected patients than in
subtype A-infected Ugandans at a similar disease stage.
Others have also observed that IFNg secretion by NK
cells declines during HIV-1 infection [39] and is not
restored by antiretroviral therapy, despite recovery of
phenotypically mature NK cells [29]. These observations,
together with the lack of association of the IFNg ‘defect’
with CD4þ cell count in the present study, may suggest
that even relatively healthy HIV-infected individuals have
damaged NK cell compartments. In summary, our
findings support the notion that HIV-1 infection drives
changes in NK cell maturation, with an altered
distribution of maturational subsets, elevated expression
of activation markers and lower responsiveness to
cytokine stimulus.
Copyright © Lippincott Williams & Wilkins. Unaut
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