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Abstract

Phosphorus deficiency limits plant growth and development. To better understand the mechanisms behind how maize
responds to phosphate stress, we compared the proteome analysis results of two groups of maize leaves that were treated
separately with 1,000 uM (control, +P) and 5 pM of KH,PO, (intervention group, —P) for 25 days. In total, 1,342 protein spots
were detected on 2-DE maps and 15.43% had changed (P<<0.05; =1.5-fold) significantly in quantity between the +P and —P
groups. These proteins are involved in several major metabolic pathways, including photosynthesis, carbohydrate
metabolism, energy metabolism, secondary metabolism, signal transduction, protein synthesis, cell rescue and cell defense
and virulence. The results showed that the reduction in photosynthesis under low phosphorus treatment was due to the
down-regulation of the proteins involved in CO, enrichment, the Calvin cycle and the electron transport system. Electron
transport and photosynthesis restrictions resulted in a large accumulation of peroxides. Maize has developed many different
reactive oxygen species (ROS) scavenging mechanisms to cope with low phosphorus stress, including up-regulating its
antioxidant content and antioxidase activity. After being subjected to phosphorus stress over a long period, maize may
increase its internal phosphorus utilization efficiency by altering photorespiration, starch synthesis and lipid composition.
These results provide important information about how maize responds to low phosphorus stress.
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Introduction tems I (PSI) and II (PSII), ribulose-1,5-bisphosphate carboxylase/
oxygenase (RuBisCO) and chlorophyll a/b-binding proteins, is
repressed following phosphorus starvation [15-17]. The abun-
dance of transcripts that encode products involved in sulfolipid
biosynthesis, phospholipid degradation and starch biosynthesis
increases to promote inorganic phosphate (Pi) utilization [6,7].
Well over 100 genes that encode transcription factors and cell-
signaling proteins are regulated during phosphorus starvation [11].

Maize likely has the widest range of growing environments of all
major crops. Maize has many uses, such as serving as a staple food
and in biological and industrial applications [1]. Phosphorus is an
indispensable macronutrient that plays a central role in plants,
especially in photosynthesis [2]. Carbohydrates make up 95% of
the dry weight of plants, and carbohydrate production relies on the
rate of photosynthesis in leaves. Therefore, increasing the
efficiency of photosynthesis would improve overall crop yields [3].

Physiological studies have demonstrated that plants respond to
phosphorus deficiency in different ways, including improving
phosphorus acquisition and internal phosphorus recycling. The
mechanisms underlying these responses include intensified secre-
tion of acid phosphatase [4], increased production of transcription
factors [5] and phosphorus transporters [6] and altered root
morphology [7]. In particular, some plant physiologists have
suggested that phosphorus stress has several impacts on photo-
synthesis: (1) it affects energy transfer across the thylakoid
membrane [8]; (2) it inactivates several pivotal enzymes involved
in the Calvin cycle [9] and (3) there is feedback inhibition of
photosynthesis across the thylakoid membrane through a reduc-
tion in electron transfer [10].

Proteome analysis by two-dimensional gel electrophoresis (2-
DE) is a well-established technique that has been used to study a
variety of plant responses to environmental stress [18]. Proteomic
studies of winter rape roots, maize roots, Arabidopsis thaliana
suspension cells, rice roots and leaves and soybean nodules have
revealed biochemical changes in plants exposed to phosphorus
starvation. Some of these changes are shared among tissues in
different species, while some are unique [19-23]. Many proteins
involved in hormone and organic acid synthesis are regulated to
promote inorganic Pi absorption and mobilization [19,23,24]. Lan
et al. found that Arabidopsis thaliana remodels the composition of
lipid membranes and the activity of the glycolysis alternative
pathway to increase internal phosphorus utilization efficiency
during phosphorus deficiency [25]. Phosphorus starvation causes
the accumulation of several defense- or stress-related proteins,
such as superoxide dismutase (SOD), heat shock proteins (HSP)
and proteins involved in the ubiquitin/26S proteasome pathway

[20,22].

Gene expression profiles of maize, Arabidopsis, rice and
soybean have revealed how phosphorus starvation affects plant
growth and development [11-15]. The expression of certain genes
encoding proteins involved in photosynthesis, including photosys-
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Recently, proteomic analyses have begun to address the
biochemical and molecular mechanisms behind the plant response
to phosphorus deficiency. In this study, we analyzed the
differential protein expression profiles of leaves using the inbred
lines Q1319 to identify proteins that are differentially expressed
under various phosphorus concentrations. This study provides
valuable information that will lay the foundation for further studies
of the functions of genes that respond to phosphorus deficiency.

Materials and Methods

Low phosphorus treatment and plant seedling growth

The seeds of the inbred maize line Qi319 were disinfected using
70% ethanol and HgCly. They were then germinated in the dark
at 28°C for 3 days, after which the seedlings (4 days old) were
transferred to basic nutrient solution (1000 uM KHyPOy, +P) and
grown until the 2-3 leaf stage. Then, half of the seedlings
were transferred to low phosphorus nutrient solution (5 uM
KHyPOy, -P) and the rest were allowed to continue growing in the
+P nutrient solution for 25 days approximately to the 6-7 leaf
stage [20,26]. The composition of the basal nutrient solution
(pH 6.0%0.1) was described previously [27]. Under low phospho-
rus conditions, the 1000 uM KH,POy, in the +P nutrient solution was
substituted with 1000 pM KCI. The nutrient solution was replaced
every 3 days. The maize plants were grown at 25-30°C/18-20°C
(day/night) with a 13.5 h light cycle (600-1200 pmol m™> s™'). The
relative humidity in the greenhouse was approximately 55-65%. The
seedlings were positioned randomly in the greenhouse and three
batches of seedlings were cultured separately, giving five experimental
replicates in total.

Physiochemical and proteome characteristics

Measurement of biomass, total plant phosphorus content
and inorganic phosphorus concentration in leaves. The
maize plants were harvested at the 6-7 leaf stage and washed twice
with pure water. The shoots and roots were dried at 80°C to a
constant weight and their weights were recorded respectively. The
phosphorus concentration in the roots and shoots were determined
according to Murphy et al.[28]. The inorganic phosphorus
concentration in the shoots was determined according to Foyer
et al.[8].

Measurement of chlorophyll (Chl), sucrose and starch
concentrations in leaves. 'The Chl in the leaves was extracted
using 95% ethanol and analyzed according to Arnon et al. [29].
Leaf samples were treated with resorcinol to measure the sucrose
and starch concentrations [30].

Photosynthesis and chlorophyll fluorescence analysis. A
portable photosynthesis system (LI-6400, LI-COR Inc., Lincoln,
Nebraska, USA) was used to detect net photosynthesis (£n),
ambient carbon dioxide (Co), stomatal conductance (Gn), intercel-
lular COg concentration (C7) and transpiration rate (77) in the third
expanded leaf. The stomatal limitation value (Ls) was then
calculated using the formulaLs=1—Ci/Co. The photon flux
density was kept at 800 umol m % s™' by an internal LED source;
the temperature in the leaf chamber was maintained at 25°C and
the relative air humidity was 55-60%. The COy concentration
was approximately 400 umol CO, mol ™', All measurements were
carried out between 09:30 h and 11:30 h.

After being exposed in the dark for 30 min, the maximum
quantum efficiency of PSII photochemistry (Fv/Fm), photochem-
ical efficiency of PSII in the light (F2°/Fm’) photochemical
quenching (Qp) and non-photochemical quenching (NPQ) were
determined in the forth fully expanded leaves of the seedlings at
room temperature using a pulse modulation chlorophyll fluorom-
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eter (FMS-2, Hansatech, UK). The allocation of photons absorbed
by PSII was calculated by the formula according to Baker [31] as
follows: the fraction of absorbed light in PSII antennae (P) utilized
in PSII photochemistry from P= (FV'/Fm') x Qp; the fraction of
absorbed light that dissipated thermally (D) was estimated from
D=1—FY/Fn'; the fraction of light absorbed that dissipated
other pathways (Ey) was estimated from Ex=(FV/Fm')x
(1—-0p) [32].

Enzyme Activity Assay. Iresh samples (1 g) were collected
from the third leaves and ground rapidly in 4 ml of ice-pre-cooled
buffer (0.1 mM Hepes-NaOH [pH 7.5]; 50 mM MgCly; 2 mM
EDTA; 2% PVP and 1% B-mercaptoethanol). The homogenates
were centrifuged at 15,000xg for 20 min at 4°C and the
supernatants were used for the enzyme assays [33]. For the
fructose-1,6-bisphosphase (FBPase) assay, 30 mM Hepes-KOH
(pH 8.2), 0.5 mm NADP*, 5 mM dithiothreitol (DTT), 5 mM
MgCl, and 2 to 4 units per mL of phosphoglucose isomerase and
glucose-6-phosphorus dehydrogenase were used. The reaction was
initiated by the addition of 5 mM fructose-1,6-bisphosphate (FBP)
[33]. RuBisCO activity was assayed by monitoring the absorbance
change at 340 nm due to the oxidation of NADH (£=6.22 mM '
cm™ ') according to the method of Sawada et al[34]. For the
ascorbate peroxidase (APX) activity assay, the leaf tissue samples
were ground in 5 ml buffer (0.05 mM phosphate buffer [pH 7.8],
0.1 mM EDTA) and centrifuged at 12,000 xg for 15 min at 4°C.
The supernatants were kept on ice for the enzyme assay. The APX
activity was assayed by detecting the shift in ascorbate oxidation at
290 nm (e=2.8 mM ™" em™") [35].

Measurement of leaf ascorbic acid (ASA), H,0,,
malondialdehyde (MDA), ATP contents, ion leakage and
the rate of O, ~ production. For the Oy~ production rate
assay, 1.0 g of leaf tissue was ground in 4 ml of buffer (0.1 mM
phosphate buffer [pH 7.8], 0.1 mM EDTA, 4% w/v PVPP and
0.3% Triton X-100) and after that centrifuged at 12,000 xg at 4°C
for 20 min. The supernatants were kept on ice for assaying. The
Oy production rate was determined according to Wang
et al.[36].

The ASA content was assayed by monitoring the rate of osazone
production. Fresh leaf samples (0.5 g) were ground in 10 ml 6%
trichloroacetic acid (T'CA) and centrifuged at 12,000 xg for 20 min
at 4°C. Then, 4.0 ml of the supernatant was added to 2 ml of
dinitrophenylhydrazine (in sulfuric acid) containing one drop of
thiourea (in 70% ethanol). The mixture was boiled for 15 min in a
water bath. After cooling, 5 ml of 80% (v/v) HoSO,4 was added to
the supernatant. The absorbance at 530 nm was measured [37].

The HyOy concentration was measured by determining the
amount of titanium hydro-peroxide complex produced according
to the method of Mukherjee et al. [38]. Fresh leaf samples (1 g)
were ground with a mortar and pestle in 5 ml of ice-cold acetone
and centrifuged at 3,000xg for 10 min at 4°C, followed by
5,000 xg for 20 min at 4°C. Then, titanous sulfate and aqueous
ammonia were added. The precipitate that came from the
reaction with titanium sulfate and ammonia was dissolved in
5 ml HySO4 (2M) and the absorption was measured at 415 nm.

The ATP concentration in maize leaves was assayed by the
method described by Fan et al. [39]. ATP content was determined
by fluorescence intensity, which was measured with a F4500
Fluorescence Spectrophotometer. Luciferase catalyzes the fluores-
cence of the substrate at an intensity related to the ATP
concentration. Specifically, 1.0 g fresh samples were boiled with
5ml 0.5 mol/L. MgSO, for 15 min, and the solution was
centrifuged at 5,000xg for 15 min at 4°C. The supernatant was
incubated on ice. Then, 0.2 ml supernatant was added to 0.8 ml
relevant buffer and the fluorescence intensity of the mixture was
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recorded to calculate the ATP concentration based on an ATP
standard curve.

The MDA levels of leaves were assayed according to Quan et al.
as follows [40]. Fresh leaf samples (200 mg) were homogenized in
5 ml of 10% TCA and centrifuged at 12,000 xg for 10 min at 4°C.
Two milliliters of the supernatant was added to 4 ml of 0.6%
thiobarbituric acid and the reaction mixture was incubated in
boiling water for 15 min. The reaction was terminated by cooling
in an ice bath. The absorbance of the supernatant at 450, 532 and
600 nm was detected with a spectrometer. The MDA concentra-
tion was calculated by the following formula:

C(,umolLfl) =6.45 x (0D532 — 0D600) — ODys

The ion leakage from the maize leaf cellular membranes under
phosphorus deficiency was determined by conductivity measure-
ment of electrolyte leakage from the leaves. Detached leaves of
approximately 100 mg were washed three times with redistilled
water and blotted onto filter paper. After that the leaves were cut
into several pieces and placed into 25 ml of redistilled water. The
samples were vacuumized to 0.05 MPa for 20 min and incubated
at 25°C for 2 h, and the ion leakage of the samples was measured
with a conductivity meter. The ion leakage was expressed as a
percentage and was calculated as described by Lv et al.[41].

Measurement of photorespiration rate. The photorespira-
tion rate was measured using an LI-6400/XT System according to the
LI-COR News Line (http://www.licor.com/env/newsline/2011/02/
measuring-photorespiration-with-the-li-6400xt-system/). A tank of air
with 2% oxygen and a tank of normal air with 21% oxygen with were
supplied to the LI-6400/XT System for the photosynthesis light source
respectively, and the net photosynthesis (Pr) was detected. In addition,
the photosynthetically active radiation (PAR) was set to 1200 pumol m™?
s~! and 380 umol CO, mol ™!, The D-value between the two results
represents the photorespiration rate.

All physiological data were presented as the mean * SD.
Variance analysis between +P and -P maize plants was performed
using SPSS 16.0 software.

Protein sample preparation. For each sample, tissue from
the middle of the third leaf (2 g) was ground to a powder in liquid
nitrogen and resuspended in Mg?*/CHAPS buffer (0.5 M Tris-
HCL, 2% CHAPS, 20 mM MgCl,, 10 mM DTT, 1 mM PMSF).
The sample was centrifuged at 19,000 xg for 20 min at 4°C. The
supernatant was then subjected to further fractionation with
12.5% PEG [42-44]. The pellet and supernatant were suspended
once more in TCA/acetone solution (contain 10 mM DTT,
1 mM PMSF) and precipitated at —20°C. The mixture was then
centrifuged at 19,000xg at 4°C for 20 min. The pellet was
carefully washed twice in acetone (contain 10 mM DTT, 1 mM
PMSF) to remove any pigment [45] and vacuumized with a
Speed-Vac. The samples were then dissolved separately in protein
solubilization buffer (7 M urea, 2 M thiourea, 4% CHAPS, 0.5%
v/v carrier ampholyte, pH 3-10, 10 mM DTT, 1 mM PMSF) for
2 h. The insoluble material was removed by centrifugation at
40,000xg for 25 min. The protein concentration in the
supernatant was then measured using the Bradford assay and
sub-packaged for 2-DE analysis [46].

2-DE mapping and image analysis. 2-DE was performed
using pH 5-8 immobilized pH gradient (IPG) strips (Bio-Rad). A
liquid rehydration buffer containing 1.5 mg protein (7 M urea,
2 M thiourea, 4% CHAPS, 1.5% v/v carrier ampholyte, 65 mM
DTT) was used to hydrate the strips for 13 h using a GE
Healthcare III spectrophotometer. The voltage procedure was as
follows: (1) Grade voltage increased to 250 V for 1 h; (2) Grade
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voltage increased to 1,000 V for 1 h; (3) Step voltage to 5,000 V
for 3 h; (4) Grade voltage increased to 10,000 V for 6 h and (5)
Step voltage increased to 10,000 V and the focus increased to
100 kVh. After isoelectric focusing, the strips were equilibrated
prior to SDS-PAGE according to the methods of Zhao e al.[47].
The strips were loaded onto 12% denaturing acrylamide gels and
sealed with 0.5% agarose solution. The electrophoresis was carried
out using a PROTEANII Ready Gel System (20 cm x20 c¢cm, Bio-
Rad) at 10 mA/gel for 1 h and 25 mA/gel for 6 h. The gels were
stained with coomassie brilliant blue (CBB) according to Katam
et al. [48] and scanned using a GS-800 Calibrated Densitometer
(Bio-Rad). The images were analyzed using PDQuest software
(version 7.2.0; Bio-Rad). After background subtraction and spot
detection, the spots were matched and normalized using the
method of total density in the gel images. The statistical
significance of the quantitative data was determined by Student’s
ttest n=3, P<0.05) at a 95% confidence level. Where the
identified proteins showed a 1.5-fold or more change in
concentration between the two phosphorus concentration treat-
ments, they were considered to have differentially accumulated
between the —P and +P treatments.

In-gel digestion and MALDI-TOF/MS and MALDI-TOF-
TOF analysis. Several protein spots were excised from the gels
and washed twice with distilled water to remove the redundant
sodium dodecyl sulfonate (SDS). The excised gel pieces were then
destained using 25 mM NH,HCOg3 and dehydrated with 100%
acetonitrile (ACN). The protein spots were reduced, alkylated and
washed thoroughly, according to Yan et al.[49], followed by
digestion with 5-8 pl trypsin (proteome grade, Sigma) for 30 min
at 4°C. Next, the redundant enzyme was removed and the spots
were covered with 15 ul 25 mM NH,HCOj solution (pH 8.0) and
incubated overnight. The supernatant was then transferred to a
new centrifuge tube and 25 pl of 67% ACN, 3.3% trifluoroacetic
acid (TFA) solution was added. The two supernatant liquids were
combined and dried in a Speed-Vac, dissolved in 4-5 ul 0.1%
TFA and stored in 0.5 ul aliquots at —80°C. In preparation for
analysis, the samples were mixed with 0.6 pul 10 mg ml™" w/v
alpha reached-4-hydroxylcinnamic acid (CHCA, Sigma) in 0.1%
TFA/50% ACN in the metal plate. After being air-dried, the
samples were subjected to MALDI-TOF/MS and MALDI-TOF-
TOF, which were controlled by the Flexcontrol 2.4 package using
default parameters (Bruker Daltonics, Karlsruhe, Germany).

Protein identification and database searching. After the
data were calibrated and picked, monoisotopic peak analysis was
conducted using GPS Explorer (Applied Biosystems 2006) and the
monoisotopic peak lists were used for analysis with the Mascot
program (http://www. matrixscience.com) against NCBInr (non
redundant national center for biotechnology information data-
base), allowing one mistake trypsin miscleavage. Carbamido-
methylation of Cys and oxidation of the Met were recognized as
the fixed modifications, with pyro-Glu formation of N-terminal
Gln as the variable modification. To obtain high confidence
identification results, the protein had to fulfill the following
criteria: (1) the MOWSE score was not below 72 (P<<0.05); (2)
more than six peptides matched the theoretical results; (3) the
protein must be selected from the first or second database reports;
(4) the Sequence Coverage must be more than 15% and (5) 0.3 Da
peptide mass tolerance. The search criteria for the MALDI-TOF-
TOF results were similar to peptide mass fingerprinting (PMF): (1)
the individual ions scores >43 (P<<0.05); (2) the Peptide Mass
Tolerance was 100 ppm and (3) Fragment Mass Tolerance was
0.3 Da. The proteins identified using MALDI-TOF/MS were
categorized wusing the MIPS Arabidopsis thaliana Database
(MATDB) database (http://mips.gst.de/proj/thal/db/) and their
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function (in terms of metabolic and regulatory pathways) was
further analyzed.

Results

Maize leaf growth and physiological responses to
phosphorus stress

After treatment with 5 umol phosphorus for 25 days, the maize
leaves displayed apparent phosphorus deficiency symptoms,
including restricted growth, a decline in phosphorus concentra-
tion, reduced inorganic phosphorus contents and marked changes
in biomass (Table 1). The leaves of maize under low phosphorus
conditions displayed heliotrope-colored stems, and the leaf tips
were withered and yellow when treated with 5 umol KH,PO,
(Figure 1A). Maize plants under 1000 umol KHyPO, treatment
had dark-green leaves (Figure 1B).

Low phosphorus levels decreased the net photosynthetic rate
(Pn) and stomatal conductance (Gs) but increased the intercellular
COy concentration ((7) (Table 2). The phosphorus content within
cells may affect the proportional distribution of derived carbon
between sucrose and starch. In this study, the sucrose content in
the leaves declined as the starch content increased, and the ratio
between sucrose and starch (sucrose/starch) also decreased under
low phosphorus conditions. In addition, the activity of FBPase,
which is involved in the sucrose synthesis pathway, also declined
under phosphorus deficient conditions (Table 3). Photorespiration
is one of the subsidiary reactions of photosynthesis. The
photorespiration data showed that photorespiration increased
under low phosphorus stress by 57.75% (Table 3). In addition, the
chlorophyll and ATP concentrations in the leaves were noticeably
reduced (Table 1).

Abiotic stress may affect the balance of reactive oxygen species
(ROS) homeostasis in leaves. The physiological data showed that
the Oy production rate, the levels of ion-leakage, HoOy, MDA
and ASA, and APX activity increased significantly under
phosphorus-deficient conditions (Table 4).

Fv/Fm is used to indicate the maximum light absorption
efficiency by PSII. Fv/Fn decreased by 14.86% under low
phosphorus  stress compared with the sufficient phosphorus
treatment. The absorption of photon energy in the maize leaf is
divided into three parts: the fraction of light absorbed in PII that is
used for photochemical reactions in PSII (P); the fraction of light
absorbed in PSII that is lost through heat dissipation by the
antenna complex (D) and the fraction of light absorbed in PSII that
is not dissipated by P and D but is dissipated by other pathways,
such as the xanthophyll cycle and active oxygen scavenging as
excess energy (Ex). Compared to the sufficient phosphorus
treatment, under phosphorus starvation, D) and FEx increased by
10.53% and 20.83%, respectively, wherecas P decreased by
57.89%. These results, combined with the PSII actual quantum
efficiency (@PSII), ¢P and NPQ data, demonstrate that the photon

ATP concentration.
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energy distribution is altered by phosphorus deficiency stress

(Table 5).

The proteome profile of maize leaves

Comparative proteomic studies were carried out using IPG
strips (pH 5-8) on Q1319 maize leaves that had been subjected to
different phosphorus concentrations treatments. The results
showed that 750 spots were detected when the +P treatment solid
pellet was analyzed. Of these, 100 spots (13.3%) had changed
significantly compared to the same spots observed when the low
phosphorus treatment pellet was analyzed (P<<0.05). These
differentially expressed proteins included 46 spots whose size
increased (including newly appearing spots) and 54 spots whose
size decreased (including spots that had disappeared; Figure 2A,
B). In the supernatant liquid, 100 (16.89%) of the 592 spots
detected had changed significantly under +P treatment (P<<0.05),
including 33 spots that showed an increasing size pattern
(including newly appearing spots) and 67 spots whose size had
decreased (including spots that had disappeared) compared to the
low phosphorus treatment gels (Figure 2C, D). In summary,
approximately 1342 spots were stained by CBB and 200 spots
(14.91%) showed an obvious difference between the +P and —P
treatments. These results indicate that phosphorus-deficient
conditions results in major proteomic changes in maize leaves.

Identification and classification of proteins involved in

maize leaf responses to phosphorus deficiency

We identified the differentially expressed proteins by MALDI-
TOF/MS to gain a better understanding of the mechanisms used by
maize to respond to phosphorus deficiency. We identified 116
proteins based on Mascot and NCBInr (Table 6 and Table S1).
These 116 proteins were classified based on MATDB (http://mips.
sf.de/proj/thal/db/, http://mips.gst.de/proj/thal/db/). The clas-
sifications were separated into protein fate, protein synthesis, cell
rescue/defense/virulence, metabolism, energy, transcription/cellu-
lar communication/signal transduction mechanisms and cell cycle/
transport (Table 6). To confirm the results of peptide mass
fingerprinting (PMF), 15 spots were randomly selected from the
proteins identified by PMF and subjected to MALDI-TOF-TOF.
The results from 14 of the spots were consistent with the PMF
results (Table 7 and Text S1). This result confirmed the reliability of
the PMF results.

Several proteins were up-regulated by low phosphorus
stress

Phosphorus deficiency regulates the accumulation of several
groups of proteins (Table 6). This includes an increased
abundance of proteins related to energy metabolism, such as 6-
phosphogluconolactonase (P63), phosphogluconate dehydrogenase
(P60), phosphoglycerate kinase (P44), fructose-1,6-bisphosphate/
aldolase (P27, P48), glyceraldehyde-3-phosphate dehydrogenase

Table 1. Influence of phosphorus starvation on plant biomass, phosphorus content and chlorophyll, inorganic phosphorus and

Plant biomass
(g Dw /plants)

Chlorophyll

Pi treatment concentration (mg*g ' Fw)

Phosphorus content
(mg P/plant)

ATP concentration
(nmol*g ™' Fw)

Inorganic phosphorus
concentration (ug*g~ ' Fw)

+P 5.94*0.11
-P 3.11£0.13%

1.73+0.05
0.92+0.05*

17.48+1.17
2.94+0.12%

18.10%0.84
8.36+0.44*

565.45+25.34
399.65+6.78*

doi:10.1371/journal.pone.0098215.t001
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The reported values represent the mean of 15 seedlings = SD. * indicates significant difference at p<<0.05 compared with +P plants.
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Figure 1. The fourth leaf of maize plants treated with low
phosphorus solution for 25 d. A, treatment with 5 umol phospho-
rus; B, treatment with 1,000 umol phosphorus.
doi:10.1371/journal.pone.0098215.g001

(S27, S40, S46, S53), enolasel (P50), succinate dehydrogenase of
mitochondria (S11) and succinyl-CoA synthetase (P33). These
proteins are involved in the pentose phosphate pathway (PPP),
glycolysis (EMP) and the tricarboxylic acid cycle (TCA) pathways.
Energy metabolism is well known to produce energy and NADPH,
and the increased accumulation of proteins involved in the PPP,
EMP and TCA pathways is likely to be very important for the
control of energy metabolism in maize by increasing the supply of
ATP, NADH and NADPH.

The second group of proteins affected by phosphorus starvation
is proteins involved in transcription and signal transduction,
including 14-3-3 protein (P56), RNA-binding protein (P65) and
ACI14 (S21, S35). These proteins participate in phosphorus
starvation responses by regulating several metabolic pathways
through the phosphorylation of associated proteins. Phosphorus
starvation regulated the accumulation of stress- and defense-
related proteins, such as the molecular chaperones HSP70 (P41,
S16), Cpn-60a subunit of RuBisCO large subunit-binding protein
(P36), 10 KDa of Cpn-21 (P40) and FKBP-type peptidyl-prolyl cis-
trans isomerase family protein (S52). Molecular chaperones may
play an important role in plant adaption to phosphorus deficiency
by preventing uncontrolled protein aggregation and promoting the
assembly of many polypeptides into their active conformations.
Phosphorus starvation induced the accumulation of L-ascorbate
peroxidase 1 (P13, P49, P53), GDP-mannose-3’, 5'-epimerase
(GME P46, S45) and glutathione-s-transferases (GSTs P6, P35),
which likely protect maize from damage caused by abiotic stresses
through scavenging ROS.

Proteins involved in ethylene biosynthesis, such as 1-aminocy-
clopropane-1-carboxylate oxidase (ACC oxidase P28, S51), S-
adenosylmethionine synthetase (P30) and adenosylhomocysteinase
(P51), also accumulated during phosphorus starvation. S-adeno-
sylmethionine synthetase (P30), arginine decarboxylase (ADC S38)
and spermidine synthase (SPDS P62), which are involved in
polyamine biosynthetic pathways, were up-regulated during
phosphorus starvation. Phosphorus starvation may affect ethylene

A Proteomiic Study with Maize

and polyamine metabolism. The current study showed that
phosphorus starvation increased the level of serine hydroxymethyl-
transferase (S32), which is involved in photorespiration. The
increased expression of UDP-sulfoquinovose synthase (P57, S29)
during phosphorus starvation suggests that sulfoquinovosyl
diacylglycerol (SODG) might replace certain membrane phospho-
lipids. The changes in the abundance of these proteins in response
to phosphorus starvation demonstrate that maize has an increased
capacity for internal Pi recycle under phosphorus deficiency
conditions.

Proteins down-regulated by phosphorus deficiency

The current results suggest that the reduction in photosynthesis
following low phosphorus treatment can be attributed to the
reduced levels of (1) proteins in the light-harvesting complex I
(LHCI), (2) Calvin cycle enzymes, such as ribulosel,5-bispho-
sphate carboxylase/oxygenase (RuBisCO P2, P10, P14, P19, P22,
P23, P24 and P26), RuBisCO activase (RCA P4) and transketolase
(S10), (3) enzymes involved in regulating the concentration of
COg, such as NADP-malate dehydrogenase (NADP-MDH S6),
pyruvate orthophosphate dikinase (PPDK P12) and phosphoenol
pyruvate carboxylase (PEPC P18) and (4) proteins involved in the
transfer of light energy in thylakoids, such as chloroplast light-
harvesting complex I protein precursor (S25), ferredoxin-nitrite
reductase (FNR S1, S13), ferredoxin (S20) and the CF1 beta
subunit (P1) and gamma subunit (P7) of ATP synthase (Table 3).
Reductions in the levels of these proteins suggest that phosphorus
starvation influences the capacity for light absorption and its
conversion to chemical energy, carbon assimilation, ribulose-1,5-
diphosphate (RuBP) regeneration and ATP production to
influence the rate of photosynthesis (Figure 3). The 2-DE analysis
showed that the abundance of FBPase (P8), sucrose phosphatasel
(SPP1 S8) and phosphoglucomutase (PGM S12) decreased under
low phosphorus treatment, leading to increased starch levels in
maize chloroplasts, which is beneficial for Pi utilization. Proteins
involved in protein synthesis, including elongation factor (P16),
asparaginyl-tRNA synthetase (P17) and ribosomal protein (P5)
were also down-regulated following exposure to phosphate
deficiency. The changes in their expression patterns suggest that
this variation is also a response to phosphorus deficiency.

Discussion

Non-stomatal factors that reduce photosynthesis under
phosphorus deficiency conditions include changes in the
levels of proteins involved in the LHC, the Calvin cycle
and CO, fixation in the Kranz anatomy

Given that low-phosphorus stress decreased Pn and Ls but
increased Ci (Table 2), our results are consistent with previous
studies indicating that non-stomatal factors have significant

mmpacts on photosynthesis during phosphorus deprivation
[33,50,51]. LHCI and ATP synthase complexes, as well as

Table 2. Influence of phosphorus starvation on Pn, Ci, Gs, Ls and RuBisCO activity.

RuBisCO (umolCO, *mg

Pi treatment Pn (umol CO, m2s™") Gi(umol CO, m2s7") pr 'min”") Gs (mmol HO m-2s™") s
+P 18.83+0.40 149.51+3.17 0.41%+0.02 147.17+2.80 0.63*0.06
-P 7.40*0.68* 211.68*5.12* 0.27+0.01* 88.96+2.35* 0.52+0.02*

doi:10.1371/journal.pone.0098215.t002

PLOS ONE | www.plosone.org

The reported values represent the mean of 15 seedlings = SD. * represents significant difference at p<<0.05 compared with +P plants.
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Table 3. Influence of phosphorus deficiency on sucrose and starch concentration, photorespiration rate and FBPase activity in

Sucrose (mg*g "

FBPase activity Photorespiration

Pi treatment Dw) Starch (mg*g 'Dw) Sucrose/Starch (umoINADPH*mg " pr*min~')  rate(umolCO,*m 2* s ")
+P 37.91+1.10 183.01+1.85 0.21+0.0078 0.91+0.02 0.71%£0.071
-P 27.30+0.84 * 206.93+1.64* 0.13%+0.0039 * 0.81*+0.03* 1.12*+0.12%

doi:10.1371/journal.pone.0098215.t003

ferredoxin reductase (FNR) and ferredoxin, are located in the
thylakoid membrane and are involved in harvesting light, forming
proton gradients, transferring electrons and producing energy.
The abundance of these phosphorus-responsive proteins was
significantly altered by phosphorus deficiency. FNR (S1, S13) and
ferredoxin (S20), which are involved in the photosynthetic electron
transport chain, were down-regulated, which led to detrimental
effects on NADPH electron transfer. Phosphorus deprivation also
decreased the abundance of the CF1 beta subunit (P1) and the
gamma subunit (P7) of ATP synthase. By employing the trans-
thylakoid membrane proton motive force, ATP synthase can
synthesize ATP to power the dark reaction of photosynthesis.
Physiological analysis showed that ATP levels in the leaves
decreased by 29.32% in plants subjected to phosphorus deficiency
stress (T'able 1). Hammond et al. demonstrated that depressed ATP
synthase activity reduces carbon assimilation [52]. Phosphorus
deprivation is thought to restrict ATP production by altering the
light-reaction component of photosynthesis.

In the current study, proteomic analysis indicated that
phosphorus starvation reduces the levels of certain photosynthetic
enzymes. Three enzymes involved in the Calvin cycle, which were
affected in this manner, including the large subunits of RuBisCO
(P2, P10, P14, P19, P22, P23, P24, P26), RCA (P4) and
transketolase (S10) (Table 6, Figure 3). RuBisCO plays an
important role in carbon fixation in the Calvin cycle [53]. RCA
is a new type of chaperone, which can promote and maintain the
catalytic activity of RuBisCO [54]. The decrease in RCA levels
under phosphorus deficiency might reduce RuBisCO activity,
which would reduce the carboxylation efficiency of RuBisCO.
Physiological analysis showed that phosphorus deficiency reduces
the carboxylase activity of RuBisCO by 65.02%. In higher plants,
transketolase is involved in the regeneration of RuBP in plastids.
Transketolase activity is a rate-limiting factor in the Calvin cycle
[55]. Phosphorus starvation is thought to reduce the rate of RuBP
regeneration and inhibit the Calvin cycle.

The site of 18= S23oribulokinase (ion.g,proton gradient
formtion,CO, fixation in maize is the Kranz anatomy, which
comprises mesophyll cells and bundle sheath cells. The Kranz

ion-leakage and APX activity.

The reported values represent the mean of 15 seedlings = S.D. * represents significant difference at p<0.05 compared with +P plants.

anatomy can increase the concentration of COy in mesophyll cells
[56]. The 2-DE results showed that low availability of phosphorus
decreased the abundance of NADP-MDH (S6), PPDK (P12) and
PEPC (P18), all of which play important roles in CO, fixation in
bundle sheath cells. Reduced levels of these proteins might reduce
COy levels in mesophyll cells. Changes in the levels of most of
these COy assimilation-related enzymes might account for the
decline in photosynthesis during phosphorus deprivation.

The reduced abundance of these proteins correlated well with
the rates of photochemical reactions, GOy assimilation, the Calvin
cycle and RuBP regeneration. The physiological data also
indicated that non-stomatal factors might play a key role in the
reduction in photosynthesis during phosphorus starvation. The
results suggest that the inhibition of plant growth under
phosphorus starvation results primarily from the inhibition of
photosynthesis.

Maize leaf cells increase their internal phosphorus
utilization efficiency by altering photorespiration, starch
synthesis and remodeling lipid membrane composition
under phosphorus starvation

Phosphorus deficiency affects the export of triose phosphates
from chloroplasts to cytoplasm, where they are converted into
starch [16]. Wasaki ez al. suggested that the accumulation of starch
in phosphorus-deficient leaves might help to maintain the balance
between the cytoplasm and chloroplasts [12]. Whereas phosphorus
deprivation decreased the sucrose contents in leaves, it increased
the leaf starch content and decreased the ratio of sucrose to starch
(Table 3). Our physiological data indicate that phosphorus
deficiency changes the proportional distribution of triose-phos-
phate-derived carbon to the cellular pools of sucrose and starch.
Our 2-DE analysis showed that low-phosphorus treatment
decreased the abundance of FBPase (P8), SPP1 (S8) and PGM
(S12), as well as significantly decreasing the activity of FBPase,
which is involved in sucrose synthesis (Table 3). These three
enzymes play important roles in the synthesis of sucrose under
phosphorus deficient conditions and affect the distribution of triose
phosphate [9,57]. Our physiological data also indicated that

Table 4. Influence of phosphorus deficiency on the rate of O, ~ production, the concentration of H,O, MDA and ascorbic acid,

Ascorbic Acid

O, production rate H,O, concentration concentration APX activity
Pi treatment (nmol*min~ 'mg~'Pr) (umol*g~ "Fw) lon leakage (%) MDA (nmol*g~'Fw) (mg*g™ 'Fw) (U*mg~'Pr)
+P 0.115%0.014 0.35*0.05 16.41=1.61 24.16*1.11 0.35*£0.07 35.35+0.78
-P 0.194£0.026* 0.84+0.08* 25.64+1.68* 32.34+1.73* 0.73+0.02* 47.17*£1.21*

doi:10.1371/journal.pone.0098215.t004
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The reported values represent the mean of 15 seedlings = S.D. * represents significant difference at p<<0.05 compared with +P plants.
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Table 5. Influence of phosphorus deficiency on chlorophyll fluorescence parameters.

Pi treatment Fv/Fm qP NPQ D P Ex
+P 0.74+0.01 0.41+0.02 2.07%+0.03 0.57+0.04 0.19+0.03 0.24+0.07
-P 0.63+0.01* 0.26+0.03* 2.42+0.05% 0.63+0.06* 0.08+0.03* 0.29+0.02*

The reported values represent the mean of 15 seedlings = S.D. * represents significant difference at p<<0.05 compared with +P plants.
doi:10.1371/journal.pone.0098215.t005

- /31_0 - ’ .
14.4- - : 14.4- ~.548 S22

Figure 2. Comparison of 2-DE gel maps of proteins from maize leaves. The proteins were extracted using a PEG fractionation technique. The
1.5 mg protein samples were separated by isoelectric focusing (IEF) using 17 cm pH 5-8 IPG strips, then placed on a 12% polyacrylamide gel for the
second dimensional separation and stained with CBB. The gel image analysis was carried out using PDQuest software (version 7.2.0; BioRad). The
spots marked with numbers were identified by MALDI-TOF MS. A: image of +P treatment pellet (P) proteins; B: image of —P treatment pellet (P)
proteins; C: image of +P treatment supernatant (S) proteins; D: image of —P treatment supernatant (S) proteins.
doi:10.1371/journal.pone.0098215.g002
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Figure 3. Schematic model of systematic phosphorus tolerance mechanisms in maize. The proteins identified by MALDI-TOF/MS were
characterized into subcellular metabolic pathways. Protein expression patterns were indicated by marking protein names and arrows in red
(increased expression) or blue (decreased expression). FNR: ferredoxin-NADP reductase; Fd: ferredoxin; ACC: 1-aminocyclopropane-1-carboxylate;
ACCO: 1-aminocyclopropane-1-carboxylate oxidase; ADC: arginine decarboxylase; AdoMetsynthase: S-adenosylmethionine synthetase; ADP:
adenosine diphosphate; ALA: 5-aminolevulinic acid; APX: ascorbate peroxidase; Arg: arginine; ASA: ascorbic acid; ASP: aspartic acid; ATP: adenosine
triphosphate; 1,3-BPGA: 1,3-bisphosphoglycerate; 1,3-BPG: 1,3-bisphosphoglycerate; Cpn21: 10 KD subunit of Chaperonin 21; Cpn60: RuBisCO
subunit binding-protein alpha subunit precursor; DAG: diacyl glycerol; dcSAM: S-adenosylmethionine decarboxylation; D-Glu6P: D-Glucose 6-
phosphate; DHAR: dehydroascorbate reductase; EF: elongation factors; EMP: Embden-Meyerhof-Parnas pathway; FBP: fructose-1,6-bisphosphate;
FBPaldose: fructose-1,6-bisphosphate aldose; FBPase: fructose-1,6-bisphosphatase; FKBP-PPlase: FK506 binding protein peptidyl-prolylisomerases;
F6P: fructose-6-phosphate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GDP-L-Gal: GDP-L-galactose; Glu: glutamic; GME: GDP-D-mannose-
3,5-epimerase; G1P: glucose-1-phosphate; G3P: Glyceraldehyde-3-phosphate; G6P: glucose6-phosphate; G6PD: glucose-6-phosphate dehydrogenase;
GR: glutathione reductase; GSA: glutamate-1-semialdehyde 2,1-aminomutase; GSSG: oxidized glutathione; GSH: reduced glutathione; GST:
glutathione-S-transferase; HMP: hexose-monophophate-pathway; HSP70: heat shock protein 70; L-AsA: L-ascorbic acid; MDHA: monodehydroa-
sorbate; MDHAR: monodehydroasorbate reductase; Met: methionine; NADP-MDH: NADP-Malate dehydrogenase; OAA: oxalacetic acid; PEP:
phosphoenolpyruvate; PEPC: phosphoenolpyruvate carboxylase; 2PG: 2-phosphoglycerate; 3PG: 3-phosphoglycerate; 3-PGA: 3-phosphoglycerate;
PGK: phosphoglycerate kinase; 6-PG-d-lactone: 6-phosphoglucono—3é-lactone; 6PGLS: 6-phosphogluconolactonase; PPDK: pyruvate orthophosphate
dikinase; Q: coenzyme-Q; QH2: Coenzyme-QH2; RCA: ribulose bisphosphate carboxylase/oxygenase activase; R5P: ribose-5-phosphate; RuBP:
Ribulose-1,5-diphosphate; Ru5P: Ribulose-5-phosphate; SAM: s-adenosyl methionine; SBP: sedoheptulose-1,7-diphosphate; SHMT: serine-glycine
hydroxymethyltransferase; SOD: superoxide dismutase; S6P: sucrose-6-phosphate; S7P: 7-Phosphosedoheptose; SPDS: spermidine synthase; SPP:
sucrose-6-phosphate phosphohydrolase; SQD1: UDP-sulfoquinovose synthase; SQD2: SQDG synthase; SQDG: sulfoquinovosyl diacylglycerol; TCA
cycle: Tricarboxylic acid cycle; TK: transketolase; UDPG: uridine diphosphoglucose; UDP-SQ: UDP-sulfoquinovosyl; Xu5P: Xylulose-5-phosphate.
doi:10.1371/journal.pone.0098215.g003

phosphorus deficiency increased the starch levels while decreasing
the sucrose levels (Table 3). These results suggest that the
accumulation of starch in maize chloroplasts and the ability to

correlated with the regulation of other plant glycerolipid
biosynthetic pathways [58]. Genes encoding enzymes involved in
sulfolipid synthesis, such as UDP-SQ synthase and SQDG
synthase, are up-regulated during phosphorus starvation [59].
SODG is associated with several protein complexes in photosyn-
thetic membranes, such as chloroplast CFy-CF, of ATPase,
LHCII-apoproteins and native D1/D2 heterodimers [60]. In the
current study, we observed an increase in the abundance of UDP-
SQ synthase (SQD1 P57, S29) during phosphorus starvation,

restrict sucrose production are adaptations that enable leaves to
maintain Pi levels under low phosphorus stress.

Upon phosphorus starvation, the ubiquitous phospholipids in
the photosynthetic membranes of higher plants are replaced by
specific nonphosphorous lipids, such as SQDG. The function of
SODG under phosphate-limited growth conditions is highly
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which may increase the production of UDP-SQ. UDP-SQ) releases
SQ for the production of SQDG. Consequently, the results suggest
that UDP-sulfoquinovose synthase plays an important role in
increasing the use of cellular phosphorus during phosphorus
starvation.

Photorespiration can ameliorate phosphorus starvation and
reduce photo-inhibition by consuming the surplus energy
produced by the photosynthetic pathway and accelerating the
recycling of phosphorus, which reduces the impact of low
phosphorus stress [61]. Our 2-DE analysis showed that the levels
of serine hydroxymethyltransferase (S32), which is involved in
photorespiration, increased under low phosphorus conditions
[62,63]. The physiological data demonstrate that photorespiration
increased by 57.75% under low phosphorus conditions (Table 3).
These results suggest that maize intensifies photorespiration to
facilitate Pi recycling and to alleviate restrictions on photosynthesis
caused by phosphorus starvation. All of the above results suggest
that maize increases internal phosphorus efficiency by activating
alterative pathways to metabolize carbon and membrane lipids.

Increased accumulation of antioxidant enzymes and
small antioxidants may help plants avoid severe damage
caused by increased ROS production under phosphorus
stress

The results of the fluorescence experiment showed that the
amount of light captured for the photochemical reactions
decreased in PS II (P by phosphorus deprivation, but the excess
energy (£x) in PS II increased (Table 5). The accumulation of Ex
may increase the reactive oxygen species (ROS) content [64]. The
physiological data showed that Oy production, the level of ion-
leakage, and the HyOy and MDA content increased in maize
during phosphorus starvation (Table 4).

Previous studies have shown that the Ascorbate-Glutathione
cycle is the most important anti-oxidation metabolic pathway in
chloroplasts, the cytosol and mitochondria [65]. The 2-DE results
revealed that phosphorus deprivation increased the level of APX
(P13, P49, P53), which is involved in the Ascorbate-Glutathione
cycle, as well as GSTs (P6, P35) with glutathione peroxidase
activity, which can reduce HyOy to HyO to protect plants from
oxidative damage under abiotic stress [66]. GME (P46, S45) plays
a key role in the synthesis of ASA [67], which can scavenge ROS
and protect lipids from oxidation. In addition, peptide methionine
sulfoxide reductase (P31) accumulates under phosphorus depriva-
tion to help protect cells from oxidization (by reducing methionine
sulfoxide to methionine) and to ensure protein activity [68]. The
changes in antioxidative protein levels suggest that phosphorus
deprivation causes maize to intensify its oxygen-scavenging system
to clear ROS rapidly and to maintain the balance of ROS in order
to defend the plant against oxidative damage. The physiological
data showed that ASA levels and APX activity increased
significantly under phosphorus deficiency (Table 4). Therefore,
multiple ROS-scavenging mechanisms enable maize leaves to
cope with moderate phosphorus deficiency. These mechanisms
include increased activity of the Ascorbate-Glutathione cycle and
increased synthesis of the low-molecular-weight antioxidant ASA
and several other peroxiredoxins, such as the peptide methionine
sulfoxide reductase.

Accumulation of several proteins involved in secondary
metabolism may help plants to regulate phosphorus-
induced metabolic reaction

S-adenosylmethionine (SAM) is not only a carrier of the methyl
group required for DNA and RNA modification, but it is also
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more generally involved in the transfer of methyl groups to many
structural components of plants, acting as the precursor for the
synthesis of lignin, pectin and the methylester of polygalacturonic
acid [69,70]. The level of s-adenosylmethionine synthetase, which
1s indispensable for the SAM cycle, increased significantly under
phosphorus-deficient conditions, suggesting that this enzyme is
involved in the responses of maize leaves to phosphorus starvation.

We found that the levels of ACC oxidase (P28, S51) and SAM
synthetase (P30) increased during phosphorus deficiency. Both 1-
aminocyclopropane-1-carboxylate oxidase (P28, S51) and SAM
synthetase (P30, P55) play key roles in ethylene synthesis.
Phosphorus deficiency is thought to trigger the switch from
primary metabolism to secondary metabolism, such as the
accumulation of hormones and lignin [71]. Ethylene is involved
in plant adaptation to low phosphorus stress and the regulation of
plant growth and development [72]. Our results suggest that the
ethylene signaling pathway is involved in the response to
phosphorus starvation.

Polyamines (PAs) are small, aliphatic amines that are ubiquitous
in all living organisms. Previous studies have shown that
polyamines play important roles in morphogenesis, growth,
embryogenesis, organ development, leaf senescence and biotic
and abiotic stress responses [73]. The current study demonstrated
that phosphorus starvation increases the levels of S-adenosylme-
thionine synthetase (P30), ADC (S38) and SPDS (P62), which are
involved in PA biosynthesis. Given the close correlation between
PA homeostasis and the response to phosphorus deprivation, we
postulate that low-phosphorus stress increases the biosynthesis of
spermidine.

Since SAM is the common precursor of both polyamines and
ethylene, it remains to be established how SAM is allocated for the
synthesis of polyamines or ethylene.

Conclusions

Previous proteomic analyses have focused on the responses of
root and suspension cell cultures, rather than leaves, to phosphorus
stress. In this study, through 2-DE and MALDI-TOF/MS
analysis, we showed that some of the proteins that respond to
phosphorus starvation are involved in several major metabolic
pathways, such as photosynthesis, carbohydrate metabolism,
energy metabolism and secondary metabolism. To understand
the functions of proteins involved in the response to phosphorus
deficiency, we developed a model of the metabolic network
induced by low phosphorus levels in the leaves of maize (Figure 3).

The physiological and 2-DE results showed that Pn and several
proteins related to photosynthesis were down-regulated under
phosphorus starvation. As a result of the down-regulation of
carbon assimilation, the biomass of plants subjected to phosphorus
deficiency significantly declined compared with normal growth
conditions.

When leaves are exposed to photons in excess of the level
required to support COy fixation, the excess electrons reduce Oq
to Oy through the Mehler process. The accumulation of ROS
induces the activities of chloroplastic and cytosolic antioxidant
enzymes and increases the levels of non-enzymatic materials used
by plants to avoid the severe damage caused by increased ROS
accumulation under phosphorus stress.

The inorganic phosphorus in the cells is exhausted after the
maize 1s exposed to phosphorus deficiency for a long period of
time. The plant intensifies the synthesis of starch and SQDG to
increase the utilization of cellular phosphorus, which partially
relieves the effects of phosphorus starvation. Moreover, the
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increased photorespiration rate also releases internal phosphorus,
which is also used to alleviate phosphorus starvation.

Several proteins among the 116 identified proteins play
important roles in linking metabolic adaptations to the regulation
of internal phosphorus homeostasis in the plant. These proteins
belong to many functional categories and are involved in multiple
metabolic and signaling pathways. These results lay the foundation
for further studies characterizing maize responses to phosphorus
deficient-conditions.

Supporting Information

Table S1 The identified differentially expressed proteins and the
sequences of the identified peptides.
(XLS)
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