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Abstract

The target-mediated drug disposition (TMDD) model has been adopted to describe

pharmacokinetics for two drugs competing for the same receptor. A rapid binding assumption

introduces total receptor and total drug concentrations while free drug concentrations CA and CB

are calculated from the equilibrium (Gaddum) equations. The Gaddum equations are polynomials

in CA and CB of second degree that have explicit solutions involving complex numbers. The aim

of this study was to develop numerical methods to solve the rapid binding TMDD model for two

drugs competing for the same receptor that can be implemented in pharmacokinetic software.

Algebra, calculus, and computer simulations were used to develop algorithms and investigate

properties of solutions to the TMDD model with two drugs competitively binding to the same

receptor. A general rapid binding approximation of the TMDD model for two drugs competing for

the same receptor has been proposed. The explicit solutions to the equilibrium equations employ

complex numbers, which cannot be easily solved by pharmacokinetic software. Numerical

bisection algorithm and differential representation were developed to solve the system instead of

obtaining an explicit solution. The numerical solutions were validated by MATLAB 7.2 solver for

polynomial roots. The applicability of these algorithms was demonstrated by simulating

concentration-time profiles resulting from exogenous and endogenous IgG competing for the

neonatal Fc receptor (FcRn), and darbepoetin competing with endogenous erythropoietin for the

erythropoietin receptor. These models were implemented in Phoenix WinNonlin 6.0 and ADAPT

5, respectively.
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Introduction

The term “target-mediated drug disposition (TMDD)” has been utilized to describe the

phenomenon that the disposition and elimination of a certain drug are significantly affected

by binding to its target [1]. Classic examples of drugs exhibiting TMDD pharmacokinetics

include therapeutic antibodies and protein hormones [2]. Many of these drugs usually exert

their effect through competing for the same receptor (or target) with endogenous substances.

Interactions of exogenous drugs with endogenous species are frequently ignored in analyses

of pharmacokinetics of the former. Advances in biotechnology made it possible to modify

the receptor binding affinity of such drugs to the point that their therapeutic concentration

levels are comparable with endogenous competitors, which substantially affects

pharmacokinetics or efficacy of both species. Important examples include hematopoietic

growth factors and therapeutic antibodies.

Hematopoietic growth factors are endogenously produced glycoprotein hormones that

stimulate the proliferation and differentiation of hematopoietic progenitor cells [3]. Some

well-known lineage-specific growth factors are erythropoietin (EPO), thrombopoietin (TPO)

and granulocyte colony-stimulating factor (G-CSF). Examples of their therapeutic

counterparts are epoetin (recombinant human EPO), filgrastim (recombinant human G-CSF)

and romiplostim (analogue of TPO) [4]. These therapeutic agents compete with endogenous

substances for hematopoietic growth factor receptors expressed on the precursor cells and

stimulate their proliferation and differentiation [3].

Exogenous therapeutic antibodies compete for the neonatal Fc receptor (FcRn) with

endogenous immunoglobulins G (IgG). FcRn is known to play an important role in

extending the half-life of IgG compared to other antibody isotypes as well as in maintaining

IgG homeostasis in the system circulation [5]. The well accepted mechanism for IgG

protection by FcRn involves the IgG uptake into the endosomes by fluid phase endocytosis

and binding to FcRn. At acidic endosomal pH condition (pH 6), the IgG/FcRn complex is

returned to the plasma membrane where the bound IgG is released back into the circulation

at physiological pH whereas the unbound IgG undergoes degradation in lysosomes. Based

on this mechanism, a lot of effort has been made to engineer IgG with enhanced binding

affinity for FcRn at pH 6 as a strategy to improve IgG systemic persistence which may lead

to potential improvement in IgG-based therapy [6, 7].

A general TMDD pharmacokinetic model has been proposed by Mager and Jusko [8]. In this

framework, it is assumed that a single species of drug molecule binds to its target through a

second-order rate constant (kon) and a first-order dissociation constant (koff), forming a drug-

target complex. When an exogenous drug competes for the same target with an endogenous

substance, a TMDD model with two species of molecules competitively binding to the same

target has been used [9, 10]. In this situation, different PK properties and binding processes

for two molecular species have been introduced into the model.
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Since the binding and dissociation rate constants (kon and koff) are usually not estimable with

the available pharmacokinetic data, rapid binding (RB) and quasi-steady-state (QSS) TMDD

models have been developed for a single drug situation, in which these rate constants were

replaced with the equilibrium dissociation constant KD (RB) or KSS (QSS) [11, 12].

Consequently, the concentration of the drug-target complex can be explicitly expressed as a

function of free drug concentration [12]. When two molecular species competitively bind to

the same target, the concentration of drug-target complexes from two species can be

expressed in terms of free drug concentrations by means of the Gaddum equations [13].

The calculation of free drug concentration for the RB or QSS TMDD model for two

molecular species competing for the same target is mathematically challenging. When a

single drug binds to its target, the free drug concentration can be calculated by solving a

quadratic equation and explicitly expressed under RB or QSS assumption [12]. However,

when two species of molecules compete for the same target, the free concentrations of these

two species are solutions to a system of two quadratic equations with two variables. This

provokes a difficulty in implementing such a model, especially in PK software. In the

following sections we introduced the rapid binding TMDD model describing two drug

species competing for the same target. Our major objective was to propose different

methods solving the system equations that can be emulated in PK software. The utilization

of these methods was demonstrated through two case studies involving erythropoiesis-

stimulating agent competing with the endogenous EPO for erythropoietin receptor and a

monoclonal antibody competing with the endogenous IgG for FcRn.

Theoretical

The TMDD model for two drugs competing for the same receptor is shown in Fig. 1. The

symbols and notations of this model are similar to the general TMDD model with one drug

[8]. As shown in Fig. 1, the key feature of this model is that two molecular species (CA and

CB) competitively bind to the same receptor (R). Free drugs in the central compartment (CA

and CB) bind to the free receptor (R) at the second-order rate (konA and konB) to form drug-

receptor complexes (RCA and RCB). The drug-receptor complexes (RCA and RCB) can either

be dissociated at the first-order rate (koffA and koffB) or be internalized and degraded at the

first-order rate (kintA and kintB). Free drugs (CA and CB) can also be removed from the

central compartment by the first-order elimination process (kelA and kelB) or be distributed to

the tissue compartment at the first-order rate (ktpA, ktpB, kptA, kptB). Free receptors (R) are

synthesized at the zero-order rate (ksyn) and degraded at the first-order rate (kdeg). The input

rates [(InA(t) and InB(t)] can account for any process (zero-order infusion, first-order

absorption, etc.) except for intravenous (IV) bolus that may require additional model

components. The differential equations are as follows:

(1)
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(2)

(3)

(4)

(5)

(6)

(7)

The initial conditions for the above system are defined by the steady-state (baseline) values

and additional IV bolus doses of free drugs DoseA and DoseB:

(8)

(9)

(10)

(11)

(12)

(13)

(14)

where the receptor synthesis rate can be calculated from Eq. 7:
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(15)

Similarly, the baseline values for InA(t) and InB(t) are defined by the steady states for Eqs. 1

and 4:

(16)

(17)

The rapid binding assumption implies:

(18)

where KDA and KDB are dissociation equilibrium constants for drugs A and B, respectively.

Upon introducing the total drug plasma concentrations:

(19)

and total receptor plasma concentration:

(20)

the drug-receptor complex concentrations RCA and RCB can be calculated from Eq. 19 by

means of total and free drug concentrations, or equivalently, from Eq. 18 as functions of free

drug concentrations and Rtot:

(21)

Eq. 21 are known in pharmacology as the Gaddum equations [13]. The rapid binding TMDD

model for competitive interaction between two drugs is described by the following

differential equations:

(22)
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(23)

(24)

(25)

(26)

where CA and CB are the only solutions of the equilibrium equations Eq. 18 rewritten as

follows:

(27)

(28)

such that:

(29)

The initial conditions for Eqs. 22-26 are defined by their steady states and IV bolus doses:

(30)

(31)

(32)

(33)

(34)

where CAtot0, CBtot0, and Rtot0 are the baseline plasma concentrations for total drug A, total

drug B, and total receptors, respectively. As for the full model, the receptor synthesis rate

can be calculated from Eq. 26:

Yan et al. Page 6

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2014 May 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(35)

Similarly, the baseline values for InA(t) and InB(t) are defined by the steady states for Eqs.

22 and 24:

(36)

(37)

Here RCA0 and RCB0 denote the baseline values of the drug-receptor complex

concentrations that can be calculated from the Gaddum equations:

(38)

The baseline values for total drug concentrations are determined by the baseline values of

free drug concentrations:

(39)

In the case where preferred primary parameters are CAtot0 and CBtot0 one needs to solve the

equilibrium conditions Eqs. 27 and 28 at baseline values for CA0 and CB0.

Methods and results

Algebraic solution of equilibrium equations

In Appendix A we show that the free drug concentrations can be expressed by the following:

(40)

where z is the only solution of a polynomial equation satisfying:

(41)

Here

(42)

If KDA KDB, then the polynomial is cubic:
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(43)

where

(44)

(45)

(46)

The Existence Theorem in Appendix A implies that for kA kB, there are three distinct roots

of Eq. 43. Consequently, the determinant of Eq. 43:

(47)

where

(48)

must be negative [14]. All roots of the cubic equation Eq. 43 can be represented by means of

complex numbers [14]:

(49)

(50)

(51)

where

(52)

Note since < 0, the square root √Δis an imaginary number. Although each of solutions in

Eqs. 49-51 contains complex numbers, their left hand sides are real numbers. Unfortunately,

in this form it is difficult to determine which solution satisfies Eq. 41. Since < 0, one can

also utilize a trigonometric representation of the solution of Eq. 41 [15]:
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(53)

(54)

(55)

where

(56)

Note that Eq. 47 implies that Q < 0, and all solutions in Eqs. 53-56 do not contain complex

numbers. Similarly to the representation in Eqs. 49-51, it is difficult to determine which of

solutions in Eqs. 53-56 satisfies Eq. 41.

In case KDA = KDB solving the equilibrium equations Eqs. 27 and 28 can be reduced to

finding a root of a quadratic equation:

(57)

where

(58)

(59)

The Existence Theorem implies that for kA = kB, there are two distinct positive roots of Eq.

57. Consequently, the determinant of Eq. 57:

(60)

must be positive. Then the only root of the quadratic equation Eq. 57 satisfying Eq. 41 is:

(61)

A MATLAB m-function equilibrium solving the rapid binding TMDD model using the

explicit solution is provided in the supplementary material.
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Computer simulations of TMDD model with two drugs competing for same receptor were

performed using the MATLAB m-function equilibrium. To make a comparison of TMDD

models between one drug and two drugs situation, free drug concentrations were simulated

with KDA = KDB and KDA = 10KDB. From Fig. 2, it can be seen that for KDA = KDB = 1, the

pharmacokinetic profiles for CA and CB are identical, resembling the TMDD model with one

drug. When KDA = 1 and KDB = 0.1, compared with the simulation using KDA = KDB = 1, the

CB0 (free drug concentration for drug B at t = 0) decreased instantaneously, whereas the

CA(0) (free drug concentration for drug A at t = 0) increased instantaneously. This is due to

the stronger receptor binding affinity of CB, which results in a decrease of free drug

concentration CB(0) after the equilibrium. Since less receptor are available for drug A, CA(0)

increases. The difference between CA(0) and CB(0) is more marked with lower IV bolus

dose, when bigger portion of drug binds to receptors. Due to the stronger receptor binding

affinity, drug B is eliminated faster than drug A (Fig. 2).

Numerical solution of equilibrium equations

If KDAKDB, then the solutions of the cubic equation Eq. 43 are expressed by means of

complex numbers or trigonometric functions. None of these representations is conclusive of

which of three roots satisfies Eq. 41. A numerical approach of solving Eq. 43 based on the

bisection method [16] can be applied where the solution is guaranteed to satisfy Eq. 41. A

flow diagram for the bisection method is shown in Fig. 3. One needs to evaluate the cubic

polynomial:

(62)

at lower zlow and upper zhigh bounds of the root zlow < z < zhigh in an iterative manner until

the required accuracy (accu) is reached. Each iteration decreases the interval [zlow, zhigh] by

half starting from an interval [0, min{1,aA+aB}] which is contained in the interval [0, 1].

Consequently, the accuracy of the solution after n iterations is less than 2-n For p digit

accuracy (accu = 10−p), the maximal number of iterations Nmaxp log(10)/log(2), which

yields for p = 8 Nmax =27, and for p =16 Nmax = 54.

If KDA = KDB, then the root of Eq. 57 satisfying Eq. 41 is identified by Eq. 61, and there is

no need for a numerical method for solving the quadratic equation in Eq. 57. Nevertheless,

the bisection method will work as well with f(z) defined by the left hand side of Eq. 57. An

implementation of the numerical algorithm in a program solving the equilibrium equations

Eqs. 27 and 28, requires considering two cases: KDA = KDB, and KDAKDB. In the former case

the root z is given by Eq. 61, and the free drug concentrations CA and CB by Eq. 40. In the

latter case the root z is produced by the bisection method, and CA and CB are expressed by

Eq. 40. A MATLAB m-function equilibrium numer solving the rapid equilibrium TMDD

model using the numerical approach is provided in the supplementary material.

Differential solution of equilibrium equations

The equilibrium equations Eqs. 27 and 28 are algebraic equations in unknowns CA and CB

that are determined by the model variables CAtot, CBtot, and Rtot. As demonstrated in
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previous sections, solving equilibrium equations is mathematically challenging and requires

extra effort. Alternatively, one can differentiate both sides of Eqs. 27 and 28 and obtain a

system of differential equations in unknowns dCA/dt and dCB/dt. This approach might

bypass the need of solving the equilibrium equations using the bisection method (as

demonstrated in Example 1). The system of differential solutions is linear with respect to

these derivatives and can be solved using Cramer's rule [17] (see Appendix B):

(63)

(64)

where

(65)

(66)

(67)

(68)

(69)

The initial conditions for Eqs. 63 and 64 require solving the equilibrium equations Eqs. 27

and 28 evaluated at t = 0 for CA(0) and CB(0):

(70)

(71)

where CAtot(0), CBtot(0), and Rtot(0) are defined by Eqs. 30, 32, and 34, respectively. It

should be noted that the differential equations Eqs. 63-64 are only valid for the time interval

where the time derivatives of CA and CB exist. If an additional bolus dose was administered

at time t0, then in addition to adjusting the values of CAtot and CBtot for this input, the

equilibrium equations Eqs. 63-64 should be solved at t = t0 for CA(t0) and CB(t0), and these

values should be used as initial conditions for the ODE system Eqs. 63-69 for times t > t0.
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The rapid binding model is now fully defined by Eqs. 22-26, 30-39, and 63-71. However,

since the differential equations for CA and CB are part of the model description, one can use

the Gaddum equations Eqs. 38 to eliminate the differential equations for CAtot and CBtot:

(72)

(73)

A MATLAB m-function equilibrium_diff solving the rapid equilibrium TMDD model using

the differential solutions is provided in the supplementary material.

Example 1: Exogenous and endogenous IgG competing for FcRn receptor

Therapeutic monoclonal antibodies (mAbs) have been under rapid development. The vast

majority of the approved mAb therapeutics are of immunoglobulin G (IgG) format. It is

known that the neonatal Fc receptor (FcRn) functions as a “salvage receptor” which

contributes to the extended pharmacokinetics of IgG. One complexity when studying the

IgG/FcRn interaction in vivo is that the high level of endogenous IgGs which compete for

FcRn binding with exogenous IgG.

We adopted a previously published model by Hansen et al. [18] to account for the

competitive interaction between endogenous IgG (A) and exogenous IgG (B) and FcRn

receptor. This model is based on the protection of IgG catabolism by the FcRn receptor. The

model structure is shown in Fig. 4. IgGs in the blood central compartment (CA, CB) are

taken up into endosomal compartment by fluid phase endocytosis, represented by a first-

order process (kup). Once inside the endosome, free IgGs (CEA, CEB) can bind to FcRn

receptor to form IgG/receptor complexes (RCEA, RCEB). Bound IgGs are recycled and

returned to the central compartment by a first-order process kret, while unbound IgGs (CEA,

CEB) proceed to the lysosomes and undergo degradation by a first-order process kdeg. The

differential equations that describe the model are as follows:

(74)

(75)

(76)
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(77)

where CEAtot and CEBtot denote the total IgG concentrations in the endosomal compartment.

We assume that the total FcRn concentration Rtot is constant. The free endosomal IgG

concentrations CEA and CEB satisfy the equilibrium equations:

(78)

(79)

Endogenous production rate InA0 can be represented by:

(80)

(81)

The initial conditions for Eqs. 74-77:

(82)

(83)

(84)

(85)

where CEA0 and CEAtot0 satisfy the equilibrium equation Eq. 78:

(86)

The simulated time courses of CEA and CEB are shown in Fig. 4. The parameter values used

for simulations are listed in Table 1. The simulations were performed using the differential

method of solving the equilibrium equations implemented in ADAPT 5 program [19]. In this

case, using the differential method bypasses the need of solving the equilibrium equations
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using the bisection method. The initial conditions of the differential equations can be solved

explicitly. The ADAPT 5 code is provided in the supplementary material.

For simulations, most model parameters, including endogenous IgG level, were taken from

the literature [18] (Table 1). The endogenous IgG production rate InA0, which is represented

by a zero-order process, was calculated based on mass balance at steady-state. To study the

effect of FcRn binding affinity of exogenous IgG on concentration level of endogenous IgG

and exogenous IgG itself, equilibrium dissociation constant of exogenous IgG KDB = KDA,

0.1KDA, and 0.01KDA, were used for simulations. Simulated plasma pharmacokinetic

profiles of endogenous IgG and exogenous IgG following administration of a single IV

bolus dose of 10 mg/kg (6.67 nmole/kg) are shown in Fig. 5. As shown in the upper panel,

the exogenous IgG exhibits typical biphasic profile, composed of a rapid distribution phase

and a slow elimination phase. Slower decline of the terminal phase of the concentration-time

profile of IgG with higher binding affinity is observed. Such an observation is consistent

with the FcRn protection theory: IgG with higher FcRn binding affinity has the competitive

advantage and is expected to outcompete the high concentration of endogenous IgG for

FcRn binding. Therefore, more exogenous IgG is protected by FcRn from lysosomal

degradation, which results in longer systemic circulation. Shown in the lower panel are the

simulated profiles for endogenous IgG. With the competition from the administered

exogenous IgG for FcRn binding, less endogenous IgG is protected by FcRn, the elimination

of endogenous IgG is accelerated, and the “steady-state” of endogenous IgG is broken,

which lead to the descending in the endogenous IgG concentration-time profile. With the

exogenous IgG eliminated from the circulation with time, the competition for FcRn

protection from the exogenous IgG is also diminishing and the endogenous IgG is going

back to the “steady-state”, showing in the endogenous IgG profile as it is returning back to

the baseline. With administration of IgG with higher FcRn binding affinity, which means

stronger competition for FcRn protection, the endogenous IgG profile reflects a deeper

decline from the baseline and a delayed returning to the baseline. Such simulation results are

consistent with the literature observations [20]. Vaccaro et al. found that antibodies with the

enhanced FcRn binding affinity at both acidic and neutral pH conditions were more potent

in lowering endogenous IgG concentration compared to IVIG treatment (which has similar

FcRn binding affinity to endogenous IgG) [20].

Example 2: Recombinant human EPO analogue and endogenous EPO competing for
EPOR

In addition to the recombinant human erythropoietin, various erythropoiesis-stimulating

agents (ESAs) have been developed such as darbepoetin [21], continuous erythropoietin

receptor activator [22], peptidic erythropoiesis receptor agonist [23], etc. These ESAs all

compete with endogenous erythropoietin for erythropoietin receptor (EPOR) binding and

stimulate the proliferation and differentiation of erythroid progenitor cells. Compared with

endogenous erythropoietin, they had lower receptor binding affinity and longer half-life. A

TMDD model with competitive interaction between endogenous erythropoietin and

exogenous ESA provides a more mechanistic description for the pharmacokinetics and may

offer further insights in the pharmacodynamics of the latter [10].
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We adopted a previously published TMDD model for EPO by Woo et al. [24] and further

introduced competitive interaction between endogenous EPO and exogenous ESA. The

model structure is presented in Fig. 6. This model is similar to the model proposed in Fig. 1.

kEPO represents the zero-order production rate for the endogenous EPO. Darbepoetin (DA)

was employed as exogenous ESA in the model. The endogenous EPO (CA) and exogenous

DA (CB) competitively bind to the EPOR (R), forming drug-receptor complexes (RCA and

RCB). The drug-receptor complexes are internalized through the same first-order process

[25]. The differential equations that describe the model are as follows:

(87)

(88)

(89)

(90)

(91)

where CA and CB are the only solutions of the equilibrium equations Eq. 18 rewritten as

follows:

(92)

(93)

such that:

(94)

The initial conditions for Eqs. 87-91 are defined by their steady-states and IV bolus doses:

(95)

(96)
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(97)

(98)

(99)

Here, RCA0 represents the EPO-receptor complex concentration that can be calculated from:

(100)

The receptor synthesis rate can be calculated from Eq. 91:

(101)

The zero-order production rate for endogenous EPO can be defined by the steady state for

Eq. 87:

(102)

The simulated time courses of CA, CB and CA+CB are shown in Fig. 7. The parameter values

are listed in Table 2. The simulations were performed using the bisection method of solving

the equilibrium equations implemented in Phoenix WinNonlin 6.0 (Pharsight Corporation,

Cary, NC). The differential solution of the equilibrium equations was not used since the

initial condition of the differential equations for free drug after IV bolus dose has to be

solved using the bisection method. Therefore, converting the equilibrium equations to a

system of differential equations is somewhat redundant in this case. The WinNonlin code is

provided in the supplementary material.

The systems with and without endogenous EPO were simulated and presented in Fig. 7. It

can be seen that the concentration of endogenous EPO goes up immediately after the IV

bolus dosing of exogenous darbepoetin, and then returns to baseline. When dose equals

0.1nmol/kg, the saturation of receptor-mediated clearance of endogenous EPO by exogenous

DA leads to a temporary increase in the endogenous EPO concentration, followed by a

decreasing phase. The darbepoetin PK profile in the middle panel shows that without

presence of endogenous EPO, the DA concentration decreases faster. The lower panel in

Fig. 7 shows that after IV bolus dose, the sum of DA and EPO declines more slowly with

the presence of endogenous EPO, especially for lower IV bolus dose.
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Discussion

The rapid equilibrium TMDD model for two drugs competing for the same receptor requires

solving the equilibrium equations for the free drug concentrations. Contrary to the single

drug situation, these constitute a system of two second-order polynomials that cannot be

reduced to a system of two quadratic equations for each drug concentration separately. The

system can be reduced to a single cubic equation that has an explicit solution. Consequently,

the free drug concentrations are expressed as explicit functions of the model parameters,

total receptor, and total drug concentrations. However, the explicit relationships contain one

out of three solutions to a cubic equation that employs complex numbers. An additional

hurdle is caused by the lack of information which of three roots is the only admissible. From

a programming point of view, if one wants to code the rapid binding TMDD model, PK

software needs to support complex numbers and a set of conditional statements needs to be

implemented to select a unique solution out of three roots of the cubic equation. Worth

mentioning is also a relatively high complexity of the explicit formulas.

Mathematically, the rapid binding TMDD model is a system of differential-algebraic

equations [26], where the equilibrium equations stand for the algebraic part of the problem.

For numerical solutions, the differential equation solver needs to be augmented by a solution

of the algebraic equations that can be obtained by a number of robust algorithms such as the

Newton method [16]. In our approach the numerical solution is obtained only for the cubic

equation which simplifies the algebraic part of the problem and increases the numerical

stability of the method. The selected bisection method is not the fastest, but because of the

known lower and upper bounds for the solution, offers a straightforward control of the

accuracy of the solution. Additionally, it is relatively easy to implement in a code of PK

software.

Instead of solving the equilibrium equations for free drug concentrations, one can consider

solving a system of differential equations obtained by differentiation of the equilibrium

equation with respect to time and solving it for the time derivatives of free drug

concentrations. Such an approach has been proposed to obtain the Michaelis-Menten

approximation of the rapid binding TMDD model [27]. However, the equilibrium equations

still need to be solved to obtain the initial conditions for the system of differential equations.

If the bolus doses were administered at other times, then at each dosing time the equilibrium

equations need to be solved, and the differential equations describing the free drug

concentrations need to be initiated at these values. This implies that, at least from the

computational point of view, converting the equilibrium equations to a system of differential

equations is redundant. However, as demonstrated in our Example 1, for some applications

of the rapid binding TMDD model the initial conditions can simplify and solving the

equilibrium equations is not necessary.

The rapid binding assumption results in the equilibrium equations. An assumption regarding

slow change of the drug-receptor complex results in the quasi-steady-state approximation of

the TMDD model [11]. The quasi-steady-state assumption applied to two drugs competing

for the same target will lead to a system of equilibrium equations equivalent in structure to

ones discussed in this report. Consequently, the presented methods of solving the rapid
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binding TMDD model apply as well for the quasi-steady-state TMDD model where the

equilibrium constant KD is replaced by the constant KSS. However, the pharmacological

interpretation of the equilibrium equations through the Gaddum equations remains valid

only for the former.

A complete demonstration of developed algorithm requires model fitting. However, to fit

such a model, the first step is to solve the model equations using PK software. The

investigation in this paper demonstrated that obtaining the accurate solution of such model

in PK software was not a trivial task. Further studies involving model fitting and parameter

estimation are necessary to study the overall performance of this model and currently under

investigation.

Therapeutic antibodies and hematopoietic growth factors were used as examples to

emphasize the importance of the rapid binding TMDD model in describing

pharmacokinetics of drugs competing for the same receptor with endogenous substances.

However, the presented model is structured to account for any two drugs binding to the

same target. The competition for the same receptor between exogenous and endogenous

compounds has been reported for a number of protein drugs. An antibody MEDI-575

selectively binds to platelet-derived growth factor receptor (PDGFR) and blocks Platelet-

Derived Growth Factor-AA, a ligand for PDGFR [9]. A peptibody romiplostim competes

with endogenous thrombopoietin for the c-Mpl receptor expressed on platelets and platelets

precursors [28]. Similarly, a small molecule eltrombopag is an agonist of the c-Mpl receptor

[29]. Another therapeutic application is when two exogenous drugs targeting the same

receptor are administered simultaneously or consecutively. In the latter case, the overlap

between the washout of one drug and onset of another requires a competitive interaction.

Such situation takes place for a two-stage treatment approach for targeting the serum

amyloid P component (SAP) by a small molecule Carboxy Pyrrolidine Hexanoyl Pyrrolidine

Carboxylate (CPHPC) and anti-SAP monoclonal antibody [30]. First, CPHPC is

administered to deplete SAP from plasma, and then anti-SAP antibody is given to remove

SAP from amyloid tissues. All of the above examples can potentially require an equilibrium

assumption to describe the available PK data, and the techniques presented here can be

utilized. As the biotechnology of therapeutic proteins advances, one may expect an

increasing number of competitive agonists or antagonists to be developed.

In summary, we proposed a rapid binding TMDD model to describe pharmacokinetics of

two drugs competing for the same receptor. Three methods of solving the presented models

were introduced involving explicit equations, numerical bisection algorithm, and differential

representation. The first method was applied to simulate the signature profiles of the model

solutions. The two remaining methods were implemented in PK models of a therapeutic

antibody and an erythropoiesis stimulating agent competing with the endogenous substances

for the same receptor.
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Appendix A: Existence of the unique solution of Eqs. 27 and 28

Let x and y denote the RCA and RCB divided by Rtot:

(A1)

Then Eqs. 27 and 28 can be expressed in the following form:

(A2)

(A3)

Note that because of definitions in Eqs. A1 and 42, x and y satisfy the following

relationships:

(A4)

Existence Theorem

Let kA, kB, aA, aB > 0. If kA kB, then there exist exactly three solutions to Eqs. A2 and A3:

(x1, y1), (x2, y2), (x3, y3) such that

a. If kB > kA, then:

(A5)

b. If kB < kA, then:

(A6)

If kA = kB, then there exist exactly two solutions to Eqs. A2 and A3: (x1, y1), (x2, y2) such

that:

(A7)

Proof of Existence Theorem is based on the observation that the solutions of Eqs. A2 and A3

can be geometrically interpreted as intersections of the following curves:
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(A8)

(A9)

The curves of Eqs. A8 and A9 are transformed Eqs. A2 and A3, respectively. The

asymptotes of Eq. A8 are:

(A10)

whereas the asymptotes for Eq. A9 are:

(A11)

If kB > kA, the examination of the monotonicity of Eqs. A8 and A9 and the horizontal and

vertical asymptotes imply that there are two intersection points (x1, y1) and (x2, y2) such that:

(A12)

as shown in Fig. 8. kB> kA implies that the diagonal asymptote for Eq. A8 is below the

diagonal asymptote for Eq. A9. Consequently, there is a third intersection point (x3, y3) such

that:

(A13)

If kB < kA, the positions of the diagonal asymptotes reverses and the third intersection (x3,

y3) satisfies the following:

(A14)

If kB = kA, then the existence of (x1, y1) and (x2, y2) satisfying Eq. A7 is a consequence of

the same argument. Since the diagonal asymptotes collapse into one (see Fig. 8), there is no

third intersection point. A formal proof of Existence Theorem not referring to a geometric

interpretation of Eqs. A2 and A3 presented in Fig. 8 follows below.

Define the functions:

(A15)

Since the derivatives are negative:
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(A16)

both functions are strictly decreasing. Because a discontinuity at x = aA, there are two

solutions to the equation:

(A17)

(A18a)

and

(A18b)

One can verify by direct calculation that:

(A19)

Similarly, there are two solutions to the equation:

(A20)

(A21a)

and

(A21b)

Additionally

(A22)

Because function g(y) is strictly decreasing and continuous in the intervals (-∞, aB) and (aB,

∞), there exist inverse functions h1(x) and h2(x), respectively, such that:

(A23)
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To show existence of (x1, y1) consider a new function F1(x) = f(x)-h1(x) defined on the

interval 0 x xa. Then Eq. A22 implies that:

(A24)

As an inverse to a decreasing function h1(x) is also decreasing and Eq. A19 implies h1(xa) >

h1(1) = 0, and consequently

(A25)

Because the function F1(x) is continuous, and it changes the sign at the ends of the interval

[0, xa], the intermediate value theorem guarantees there exists a 0 < x1 < xa such that:

(A26)

Let y1 = h1(x1). Then Eqs. A26, A23, and A15 imply that (x1, y1) is a solution to Eqs. A2

and A3. Since xa < aA, then x1 < aA. This and Eq. A2 also yields that x1 + y1 < 1.

To show existence of (x2, y2) consider a new function F2(x) = f(x)-h2(x) defined on the

interval aA < x xb. By definition h2(xb) > aB > 0, and consequently

(A27)

From Eq. A15 it follows that:

(A28)

The intermediate value theorem implies there exists a aA < x2< xb such that:

(A29)

Let y2 = h2(x2). By definition of h2(x), y2 > aB. Also, Eqs. A29, A23, and A15 imply that (x2,

y2) is a solution to Eq. A2.

To show existence of (x3, y3) for the case kA < kB consider a new function F3(x) = F(x) –

h1(x) defined on the interval xb x <. The function h1(x) is decreasing and Eq. A19 implies

h1(xb) < h1(1) = 0. Hence

(A30)

Eq. A15 implies that:
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(A31)

As a decreasing function h1(x) - as x. Consequently, Eq. A31 implies that:

(A32)

Hence and from Eq. A23

(A33)

Thus

(A33)

The function F3(x) changes its sign at the ends of the interval xb x <. The intermediate value

theorem implies that there exists xb < x3 < such that:

(A34)

Since x2 < xb, then x2 < x3. Let y3 = h1(x3), then y3 < h1(1) = 0. Also Eqs. A33, A23, and

A15 imply that (x3, y3) is a solution to Eq. A2.

A similar argument holds to show existence of (x3, y3) for the case kA > kB. Consider a

function F4(x) = f(x) – h2(x) defined on the interval - < x 0. Eqs. A15, A20, and A22 imply

that:

(A35)

The same derivations as above lead to:

(A36)

The intermediate value theorem implies that there exists x3 < 0 such that:

(A37)

Let y3 = h2(x3). Since h2(x) is decreasing y3 > h2(0) = yb > y2, and Eq. A15 implies that y3 >

y2. Also Eqs. A33, A23, and A15 imply that (x3, y3) is a solution to Eq. A2.

To show uniqueness of (x1, y1), (x2, y2), (x3, y3) for kA ≠ kB one can notice that x1, x2, and x3

pairwise distinct. There are also roots of a polynomial obtained from Eqs. A2 and A3 as

follows. One can calculate from Eq. A2 the term:
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(A38)

To enforce this term in Eq. A3 multiply both sides by (aA-x)2:

(A39)

Eq. A38 implies that:

(A40)

Substituting Eqs. A38 and A40 into A38 yields:

(A40)

which can further transformed to

(A42)

A leading term of the polynomial in Eq. A42 is (kB- kA)x3. Therefore Eq. A42 is a cubic

equation with three distinct roots x1, x2, and x3. If (x*,y*) is a solution to Eqs. A2 and A3,

then x* must be a solution to Eq. A42 and hence x* = xi for some i = 1, 2, 3. Eq. A2 implies

that x* ≠ aA and Eq. A38 yields:

(A43)

Since (xi, yi) is a solution to Eq. A2 as well yi can be expressed by the right hand side of Eq.

A43 with xi substituted for x* and hence y* = yi.

To show uniqueness of (x1, y1) and (x2, y2) for kA = kB one can notice that then the

polynomial equation Eq. A42 reduces to a quadratic equation since the highest order term

(kB– kA)x3 vanishes. This quadratic equation has two distinct roots x1 and x2. If (x*, y*) is a

solution to Eqs. A2 and A3 then x* must be also a solution to the quadratic equation Eq.

A42, and consequently x* = xi for some i = 1, 2. Then y = yi by the same argument as above.

This completes proof of Existence Theorem.

Derivation of Eqs. 40, 43, and 57

For the case kA ≠ kB, to solve Eqs. A2 and A3 one can add them side by side:

(A44)
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Multiplying Eq. A2 by kB and Eq. A3 by kA followed and adding equation side by side

yields:

(A45)

Since

(A46)

Eq. A46 can be substituted in Eq. A45:

(A47)

With introducing a new variable:

(A48)

Eq. A47 becomes:

(A49)

The right hand side of Eq. A44 coincides with a term in Eq. A49 that can be replaced by the

left hand side of Eq. A44, resulting in:

(A50)

The only unknown in Eq. 50 is z and ordering the terms by the power of z produces a cubic

equation Eq. 43.

If kA = kB, then Eq. A44 assumes the following form:

(A51)

Rearranging terms in Eq. A51 and ordering them by the power of z yields Eq. 57.

In order to express CA and CB in terms of z, one should notice that according to Eq. A48:

(A52)

Upon substitution of Eq. A52 to the Eqs. 27 and 28 they reduce to:

(A53)
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(A54)

Solving Eq. A53 for CA and Eq. A54 for CB results in Eq. 40.

Appendix B: Derivation of Eqs. 63 and 64

Differentiating both sides of Eqs. 27 and 28 leads to:

(B1)

(B2)

Rearranging terms in Eqs. B1 and B2 so that dCA/dt and dCB/dt are unknowns leads to:

(B3)

(B4)

where

(B5)

(B6)

(B7)

(B8)

(B9)

(B10)

The system of two linear equations Eqs. B3 and B4 has a unique solution defined by the

Cramer’s rule [17] if
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(B11)

Then

(B12)

(B13)

Replacing the derivatives in Eqs. B9 and B10 by the right hand sides of differential

equations Eqs. 22, 24, and 26 and using the variables CPAtot, CPBtot, ans RPtot defined by

Eqs. 67-69 one can notice that:

(B14)

(B15)

(B16)

(B17)

Upon performing the calculations ad-bf, af-ec, and ad-bc become equal to the numerators

and denominators of the ratios in Eqs. 63 and 64. The conditions in Eq. 29 imply that the left

hand sides of the equilibrium equations are positive, and consequently E > 0 and F > 0. This

guaranties that:

(B18)

and the condition Eq. B11 is satisfied.
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Fig. 1.
Target-mediated drug disposition for two drugs competing for the same receptor. Symbols

are defined in the theoretical.
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Fig. 2.
Simulated concentration-time profiles for escalating IV bolus doses (100, 500, 1000 units

for both A and B) using TMDD model with two ligands competitively binding to the same

target. Vc = 10, kelA = kelB = 0.01, kptA = kptB = ktpA = ktpB = 0, CA0 = CB0 = 0, kintA = kintB =

0.1, Rtot0 = 50, kdeg = 0.02. For upper two panels, KDA = KDB = 1. For lower two panels,

KDA = 1, KDB = 0.1. Other parameters used for simulations are listed in Table 1. Simulations

were performed in MATLAB using the algebraic solution of equilibrium equations.
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Fig. 3.
A flow chart illustrating the bisection algorithm for solving equation f(z) = 0. The START

and STOP steps denote the beginning and end of the algorithm, respectively. The

rectangular boxes represent the assignment steps whereas the diagonal boxes refer to

conditional statement with two possible outcomes Yes (if condition is true), and No (if

condition is false). The arrows indicate the next steps. The meanings of the symbols aA, aB,

acc, and Nmax are explained in the methods and results.
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Fig. 4.
Model diagram for IgG pharmacokinetics with exogenous and endogenous IgG competing

for FcRn receptor. Symbols are defined in Example 1.
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Fig. 5.
Endogenous IgG plasma concentration profiles (upper panel) and exogeneous plasma

concentration profiles (lower panel) after administration of 10 mg/kg (6.67 nmole/kg)

exogenous IgG the equilibrium dissociation constant KDB = KDA, 0.1KDA, and 0.01KDA.

Simulations were performed in ADAPT 5 using the differential solution of equilibrium

equations.
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Fig. 6.
Model diagram for target-mediated drug disposition for darbepoetin competing for EPO

receptor with endogenous erythropoietin. Symbols are defined in Example 2.
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Fig. 7.
Simulated concentration-time profiles for escalating IV bolus doses (0.1, 0.02, 0.002

nmol/kg) of darbepoetin (DA). Upper panel: concentration-time profiles of endogenous

EPO. Dash-dot line represents the baseline EPO level. Middle panel: concentration-time

profiles of darbepoetin. Lower panel: concentration-time profile of the sum of DA and EPO.

Solid lines represent these profiles when kEPO = 0.00043 nM h-1. Dash lines represent these

profiles when kEPO = 0. Other parameters for simulation are listed in Table 2. Simulations

were performed in Phoenix WinNonlin using the bisection method of solving equilibrium

equations.
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Fig. 8.
Graphical representation of solutions of the equilibrium equations when KDA ≠ KDB (upper

panel) and KDA = KDB (lower panel). The equilibrium equations Eqs. 27 and 28 are

equivalent to a system of two hyperbolic equations represented by the solid lines. Their

intersection coordinates (x1, y1), (x2, y2), (x3, y3) (upper panel), and (x1, y2), (x2, y2) (lower

panel) are all possible solutions of the system. The dashed lines represent the asymptotes for

the hyperbolas. In case KDA = KDB (equivalent to kA = kB) the diagonal asymptotes collapse

to a single one reducing the number of solutions to two. The vertical and horizontal

asymptotes intersect the axes at aA and aB, respectively. Only the solution (x1, y1) is inside

the rectangle of vertices defined by 0, aA, and aB.

Yan et al. Page 37

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2014 May 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Yan et al. Page 38

Table 1
Parameter values used for simulating the time courses of model variables from Example 1

Parameter Description Value Reference

kret = kup (day−1) Endosome uptake and recycle 1.03 [18]

kdeg (day−1) First-order elimination 0.43 [18]

Rtot (nM) Total FcRn receptor 1.22 [18]

VE = Vc (mL kg−1) Volume of distribution 66.9 [18]

CA0 (nM) Baseline for free endogenous IgG 14700 [18]

KDA (nM) Dissociation constant for endogenous IgG 4.8 [18]

InA0 (nM h−1) Zero-order production for endogenous IgG 108 Calculated

KDB (nM) Dissociation constant for exogenous IgG 4.8, 0.48, 0.048
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Table 2
Parameter values used for simulating the time courses of model variables from Example 2

Parameter Description Value Reference

Vc (mL kg−1) Volume of distribution 46.97 [24]

kelA (h−1) First-order elimination for EPO 0.0949 [24]

kptA (h−1) Tissue distribution for EPO 0.0359 [24]

ktpA (h−1) Tissue distribution for EPO 0.1151 [24]

kint (h−1) Receptor internalization 0.2216 [24]

kdeg (h−1) Receptor degradation 0.8974 [24]

KDA (nM) Dissociation constant for EPO 0.0123 [24]

R0 (nM) Baseline free receptor 0.0162 [24]

kEPO (nM h−1) Zero-order production for EPO 0.00043 [24]

ksyn (nM h−1) Zero-order receptor synthesis 0.0122 [24]

CA0 (nM) Baseline for free EPO 0.00343 [24]

kelB (h−1) First-order elimination for DA 0.0413 [31]

kptB (h−1) Tissue distribution for DA 0.0047 [31]

ktpB (h−1) Tissue distribution for DA 0.00669 [31]

KDB (nM) Dissociation constant for DA 0.0529 [21]
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