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Purpose: The quantification of body fat plays an important role in the study of numerous diseases. It
is common current practice to use the fat area at a single abdominal computed tomography (CT) slice
as a marker of the body fat content in studying various disease processes. This paper sets out to answer
three questions related to this issue which have not been addressed in the literature. At what single
anatomic slice location do the areas of subcutaneous adipose tissue (SAT) and visceral adipose tissue
(VAT) estimated from the slice correlate maximally with the corresponding fat volume measures?
How does one ensure that the slices used for correlation calculation from different subjects are at
the same anatomic location? Are there combinations of multiple slices (not necessarily contiguous)
whose area sum correlates better with volume than does single slice area with volume?
Methods: The authors propose a novel strategy for mapping slice locations to a standardized
anatomic space so that same anatomic slice locations are identified in different subjects. The authors
then study the volume-to-area correlations and determine where they become maximal. To address
the third issue, the authors carry out similar correlation studies by utilizing two and three slices for
calculating area sum.
Results: Based on 50 abdominal CT data sets, the proposed mapping achieves significantly im-
proved consistency of anatomic localization compared to current practice. Maximum correlations are
achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5
junction commonly utilized currently for single slice area estimation as a marker.
Conclusions: The maximum area-to-volume correlation achieved is quite high, suggesting that it
may be reasonable to estimate body fat by measuring the area of fat from a single anatomic slice at
the site of maximum correlation and use this as a marker. The site of maximum correlation is not
at L4-L5 as commonly assumed, but is more superiorly located at T12-L1 for SAT and at L3-L4 for
VAT. Furthermore, the optimal anatomic locations for SAT and VAT estimation are not the same, con-
trary to common assumption. The proposed standardized space mapping achieves high consistency of
anatomic localization by accurately managing nonlinearities in the relationships among landmarks.
Multiple slices achieve greater improvement in correlation for VAT than for SAT. The optimal loca-
tions in the case of multiple slices are not contiguous. © 2014 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4876275]
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1. INTRODUCTION

Obesity and physical inactivity are global epidemics that war-
rant the immediate attention of the health-care community. An
estimated two-thirds of Americans are overweight or obese.1

The accumulation of abdominal subcutaneous, visceral, and
organ fat has adverse effects on health and increased risks of
heart disease, diabetes mellitus, metabolic disorders, obstruc-
tive sleep apnea, and certain cancers.2–5 The ability to accu-
rately measure subcutaneous adipose tissue (SAT) and vis-
ceral adipose tissue (VAT) becomes more imperative as their
contribution to disease pathophysiology becomes clearer.

Anthropometric biomarkers for central obesity such as
waist circumference, waist-hip ratio, and body mass index
(BMI) are widely used clinically.6, 7 However, those are in-

direct methods for fat measurement, and previous research
has shown that BMI alone does not differentiate between
obese phenotypes even though body composition (differences
in fat distribution given the same BMI) may indicate different
phenotypes of obese subjects. To date, magnetic resonance
imaging (MRI) and computed tomography (CT) remain the
imaging modalities of choice for SAT and VAT assessment.8

In both modalities, SAT can be usually segmented first by
manually drawing the interface boundary between SAT and
VAT, and then VAT can be segmented by thresholding the
image left after removing the SAT portion of the image.
However, several algorithms have also been proposed to
make fat quantification more automated and efficient, such
as fuzzy clustering,9 fuzzy c-means clustering,10 active con-
tour approach, and registration.2, 11 Clustering and registration
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algorithms require much computation, and active contour ap-
proaches require human interaction. We proposed a rapid pro-
totyping method12 that adapted an automatic anatomy recog-
nition (AAR) system13 based on fuzzy object models for
body-wide anatomy segmentation to the fat quantification ap-
plication. That method demonstrated that fat quantification
can be accomplished automatically even when the imaging
modalities, subject groups, and number of delineated objects
are different from those employed for the AAR model build-
ing step. There is no clustering and registration in AAR, and it
can run quite efficiently once offline training and model build-
ing have been completed.

In clinical practice, a marker of the total amount of body fat
is typically obtained by the fat area measured from one trans-
verse abdominal slice (from CT or MRI), commonly acquired
at the level of the L4-L5 vertebrae, for various reasons includ-
ing decreased radiation exposure and cost.14, 15 It is generally
assumed that such an estimate can reliably act as a marker of
the burden of fat in the body. There are two issues related to
this common practice. First, no studies exist that have exam-
ined systematically how to specify spatial location for slices
in different subjects consistently so that they are in the same
homologous anatomic location. One way is to manually la-
bel the spatial location as performed in Refs. 16–19, such
as L3-L4 or L4-L5 for all subjects, where the areas of SAT
and VAT from every subject are used to calculate correlations
with SAT and VAT volumes, respectively, from all subjects.
Spatial location L4-L5 is labeled as 0 and then other adja-
cent/neighboring slices are labeled with continuous numbers,
such as “+1,” up to “+20” in Ref. 16. Seven landmarks are
set for every subject in Ref. 17 where correlation is computed
at just those slices corresponding to landmarks. However, the
slices between landmarks are omitted and the maximum cor-
relation may happen at some site between landmarks. Slice
locations are defined relative to L4-L5,18 where single-slice
image located 5 cm above L4-L5 is used to compare with
the slice at level L4-L5. But the slices at 5 cm above L4-L5
may not be at the same anatomic site for every subject due to
variability among subjects. Only the umbilical slice and slice
at L4-L5 are labeled and adopted for calculating correlation
between SAT/VAT area and volume.19 These approaches are
labor-intensive, especially since we want to check all possible
slice locations for correlation (whether with single or multiple
slices) to determine where maximum correlations may occur.
Second, by using a facility for consistency of slice localiza-
tion, such as what we propose, no studies have investigated
which single location or multiple locations for the slices yield
maximum correlation of the fat areas on the slices with the
total fat volume for the SAT and VAT components separately.
This paper addresses both these issues. For the purpose of this
paper, SAT and VAT volume/area can be quantified from CT
or MR images by using any of the above segmentation meth-
ods, although we use the AAR rapid prototyping approach
mentioned above for demonstrating our concepts and results.

In this paper, we propose two approaches for slice localiza-
tion. The first approach is linear mapping, where we linearly
map slice locations from all subjects so that the superior-most
and inferior-most anatomic slice locations match in the lon-

gitudinal direction for all subjects and other locations are lin-
early interpolated estimations. Although this linear mapping
method is similar to the linear interpolation method described
in Ref. 20, the methods differ in an essential way. To make
interpolation precise, the method in Ref. 20 requires the pa-
tients to be positioned precisely the same way and every pa-
tient should also be marked at the iliac crest for scan, which
is not required for our approach. In the second approach, slice
locations in every subject are mapped nonlinearly so that, in
addition to the superior-most and inferior-most locations, sev-
eral key landmark locations chosen in the longitudinal direc-
tion also match for all subjects. To our knowledge, this pa-
per is the first to address the above two issues by exploring
anatomic space standardization and correlation calculation for
the purpose of fat quantification.

The paper is organized as follows. The method of standard-
ization of the anatomic space is described in Sec. 2, including
landmark selection, calibration algorithms, and transforma-
tion. Experiments and evaluation results based on 50 abdom-
inal CT image data sets are presented in Sec. 3 where we also
compare the linear and nonlinear methods. Our conclusions
are summarized in Sec. 4.

2. STANDARDIZED ANATOMIC SPACE
AND ABDOMINAL FAT QUANTIFICATION

2.A. Notations and overall approach

This paper sets out to answer three questions related to fat
quantification which have not been addressed in the literature.
How does one ensure that the slices used for correlation cal-
culation from different subjects are at the same anatomic lo-
cation? At what single slice anatomic location do the areas
of SAT and VAT estimated from a single slice correlate max-
imally with the corresponding volume measures? Are there
combinations of multiple slices (not necessarily contiguous)
whose area sum correlates better with volume than does sin-
gle slice area with volume?

Let V(B, Q, G) denote the set of all possible 3D images of
a precisely defined body region B, taken as per a specified im-
age acquisition protocol Q, from a well-defined group of sub-
jects G. For example, B may be the abdominal region, which
is defined by its superior bounding plane located at the supe-
rior most aspect of the liver and its inferior bounding plane
located at the junction where the abdominal aorta bifurcates
into common iliac arteries. Variable Q may be CT imaging
with a specified set of acquisition parameters, and G may de-
note normal male subjects in the age range of 50–60 years.
The reason for relating all our analysis to a specified set V(B,
Q, G) is that, it may not be possible to generalize the conclu-
sions we draw about fat distribution when we change some
of the variables associated with V , especially patient group
G. We denote by V the set of images available for our study,
which is assumed to be a representative subset of V(B, Q, G).
Let Is be an image in V of some subject s of his body region
B. We view Is as a set of ns axial slices

I s = {
Ss

1, . . . , S
s
ns

}
.
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Since Is is an image of B, Ss
1 and Ss

ns
represent anatomic planes

bounding B. We assume that they correspond to the superior
and inferior bounding planes, Ps

H and Ps
D of B of subject s,

respectively. All locations and coordinates are assumed to be
specified with respect to a fixed Scanner Coordinate System
(SCS) for all subjects. If the acquired images have extra slices,
we assume that they have been removed to satisfy this condi-
tion. Note that if Is and It are images in V(B, Q, G) of two
subjects s and t, then the number of slices ns and nt repre-
senting B in the two subjects may not be equal. Similarly, the
same numbered slices in Is and It may not correspond to the
same anatomic axial location in subjects s and t. Suppose we
discretize the anatomic axial positions in B from Ps

H to Ps
D into

L anatomic locations ls1, . . . , l
s
L such that ls1 and lsL always cor-

respond to Ps
H and Ps

D, respectively, for all subjects s. For ex-
ample, position lsi may correspond to the location of an axial
plane passing through the middle of the body of the L1 lum-
bar vertebra of subject s; in this case, lti represents an axial
plane at the same anatomic location for subject t. Locations
ls1, . . . , l

s
L may also be thought of as representing anatomic

landmarks labelled l1, . . . , lL. In the above example, li is the
name of the landmark associated with location lsi . We denote
these anatomic landmarks by the ordered set AL = {l1, . . . ,
lL}. In order to perform volume to area correlation analysis
correctly, we need to first assign a correct label from the set
AL to every slice in every image Is in V. Since it is custom-
ary to use the vertebral column as reference for specifying ho-
mologous anatomic locations, in this paper we will follow this
same approach. Note, however, that our methods are general
and can use any other reference system for locations. We think
of anatomic landmarks to be defined in a Standard Anatomic
Space (SAS), and the process of assigning labels from AL
to slices in any given image Is as a mapping from SCS
to SAS.

Our overall approach to seek answers to the three questions
posed above is depicted schematically in Fig. 1. The four steps
involved are described below in detail.

V 

Segment SAT and VAT in images in V 

Map slices in each image Is to locations l1, …, lL 

For each location li, pick corresponding 
slices in images in V and perform volume-

to-area correlation analysis 

Find location(s) with maximum correlation 
for SAT & VAT separately 

Locations for SAT Locations for VAT 

FIG. 1. A schematic representation of the approach of standardized
anatomic space.

2.B. Segmenting SAT and VAT regions in images in V

In this first step, we automatically segment SAT and VAT
regions in the images in V by modifying the AAR system.21, 22

The AAR system operates by creating a fuzzy anatomy model
for a body region B and subsequently using this model to
recognize and delineate organs in B. The fuzzy anatomy
model consists of a hierarchical arrangement of the organs
of B, a fuzzy model for each included organ, and organ re-
lationships in the hierarchical order. Our modification con-
sisted of considering just three objects—skin boundary, SAT,
and VAT, with skin as the root object and SAT and VAT
as its offspring objects, in place of all 10–15 major organs
of B that are otherwise included in the model. The rest of
the processes remained the same as the previous recognition
and delineation methods.21, 22 If V is a set of MR images,
then image background nonuniformity correction and inten-
sity standardization23 will have to be performed before apply-
ing AAR-based segmentation.

2.C. Assigning landmark labels l1, . . . , lL to slices
in each image I s

Ideally, once the set AL of anatomic landmarks is selected,
one could identify manually the anatomic location, and hence
the landmark label, to be assigned to each slice Ss

i of each im-
age Is of V. Such a manual approach can be realized on CT im-
agery as follows. We first segment the vertebral column in Is,
create 3D surface renditions of the column, and interactively
indicate in this display the axial locations. We use our visu-
alization software package24 for selecting locations quantita-
tively precisely on shaded surface renditions. In MR images,
however, this approach will be more difficult since segmenta-
tion of the vertebral column is challenging. Since this manual
approach is labor intensive, we will explore two alternative
approaches—linear and nonlinear, and compare them to the
manual approach. In all approaches, the input is the set V of
images and the result is a mapping that indicates the anatomic
location (label) associated with each slice of each image of V.

2.C.1. Linear approach

This approach assumes that, once we guarantee that the
bounding planes Ps

H and Ps
D, and hence slices Ss

1 and Ss
ns

of
image Is, correspond to locations ls1 and lsL, respectively, then
anatomic locations corresponding to slices Ss

2 to Ss
ns−1 can be

found by linearly mapping the ns slices from Ss
1 to Ss

ns
to L

slices Us
1 to Us

L via linear interpolation for any subject s. Note
that L can be less than, or greater than, or equal to ns. The only
requirement on L is that it should be at least 2. Of course, it is
possible that in this approach the mapped location of a slice
Us

i may not match the true location of landmarks. To imple-
ment this approach, we first identify the data set in V whose
domain is the smallest in the longitudinal direction in terms
of the number of slices, take this number to be L, and then
linearly interpolate all other data sets to yield this number of
slices. We assume the slice locations of this data set to cor-
respond approximately to landmarks l1, . . . , lL. Mapping of
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anatomic locations to all other data sets is now established
by the correspondence of the same numbered slices. In this
manner, for any given slice number for any subject, the cor-
responding (linearly mapped) slice numbers for all other sub-
jects are identified. A drawback of the linear approach is that
nonlinearities in the relationships among anatomic locations
used as landmarks in the longitudinal direction cannot be ac-
counted for.

2.C.2. Nonlinear approach

In the linear approach, we employed two anatomic land-
marks l1 and lL to anchor the first and the last slice of B and
to predict the anatomic location of all other slices. Generally,
such a linear mapping does not yield locations that are suf-
ficiently close to actual anatomic locations (as demonstrated
in Sec. 3) of landmarks. This deficiency can be overcome by
nonlinear mapping. In this approach, in addition to l1 and lL,
other key anatomic landmarks are used to refine mapping. The
method consists of two stages—calibration and transforma-
tion.

The purpose of the calibration stage is to learn any nonlin-
earities that may exist in the relationships among anatomic lo-
cations. (Here, “learning” does not have the same meaning as
“training” widely used in machine learning.) Typically, we se-
lect M < L key anatomic landmarks, denoted by m1, . . . , mM,
from among l1, . . . , lL. In this work, we selected the midpoints
(in the vertical direction) of the vertebral bodies from T11 to
L4 as key landmarks (so M = 6). Next, these key landmarks
are identified manually in a set T ⊂ V(B, Q, G) of images. For
any image Is in T, we will denote the locations of these key
landmarks for subject s by ms

1, . . . , m
s
M. A standard anatomic

scale is then determined to be of length which is the largest of
the lengths from Ps

H and Ps
D over all data sets in T. Locations

ms
1, . . . , m

s
M for every data set in T are then mapped linearly

on to the standard scale (see Fig. 2) and the mean positions

FIG. 2. Calibration to create standard scale. M standard locations selected
on three patients are shown on the right. They are mapped linearly on to the
standard scale shown (thick) on the left.

FIG. 3. Nonlinear mapping from patient space to standard anatomic space.

m1,. . . , mM of the key points on the standard scale over all
mapped data sets of T are computed. The mapping from SCS
to SAS is subsequently determined to be the piece-wise linear
function that maps ms

1, . . . , m
s
M to m1,. . . , mM, as depicted in

Fig. 3.
In the transformation stage (Fig. 3), given any image Is,

first the locations of its anatomic landmarks ms
1, . . . , m

s
M are

identified. Then the mapping function from SCS to SAS deter-
mined in the calibration stage is used to determine the label to
be assigned to each slice Ss

i of Is. The algorithm, called SAS,
for mapping to the standardized anatomic space, summarized
below, is straightforward and requires no special

Algorithm SAS
Input: Two disjoint sets of images T and V, T ⊂ V(B, Q, G), V ⊂ V(B, Q,

G); AL; {m1, . . . , mM}.
Output: A mapping from SCS to SAS; the set V of images with a label

assigned to each slice of each image of V.
Begin

Calibration Stage
C1. Determine standard scale and identify key landmarks m1, . . . , mM in
each image in T;
C2. Map key landmarks linearly to standard scale;
C3. Estimate mean locations m1,. . . , mM of key landmarks on standard scale;
Transformation Stage
T1. For each image Is of V and for each of its slices, determine its key

landmark locations ms
1, . . . , m

s
M;

T2. Find the mapping of these locations as per SCS to SAS function;
T3. Based on this mapped value assign label to each slice of Is;
End

data structures or optimization in implementation.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.A. Image data

This retrospective study was conducted following approval
from the Institutional Review Board at the University of Penn-
sylvania along with a Health Insurance Portability and Ac-
countability Act (HIPAA) waiver. Variables G and Q defining
V(B, Q, G) for our experiments were as follows. Contrast-

Medical Physics, Vol. 41, No. 6, June 2014



063501-5 Tong, Udupa, and Torigian: Optimization of abdominal fat quantification on CT imaging 063501-5

FIG. 4. Anatomic locations of slices in B = Abdominal Region for 50 sub-
jects. Abscissa shows subject numbers, and ordinate indicates the extent of
B in different subjects in the cranio-caudal direction in terms of the vertebral
bodies.

enhanced abdominal CT image data sets from fifty 50–60
year-old male subjects with an image voxel size of 0.9 × 0.9
× 5 mm3 were utilized in our study. The subjects were radi-
ologically normal with exception of minimal incidental focal
abnormalities. The abdominal body region B was defined in
the same way for the 50 subjects, with Ps

H located at the su-
perior most aspect of the liver and Ps

D corresponding to the
point of bifurcation of the abdominal aorta into common il-
iac arteries. Of the 50 data sets, five were used for calibration
(constituting T) and the rest (constituting V) were used for
testing.

To illustrate the anatomic variability that exists among
subjects, in Fig. 4 we plot schematically the locations of
the midpoints of vertebral bodies in the cranio-caudal (ver-
tical) direction for all subjects considered in the study. The
top and the bottom of the vertical line drawn for each sub-
ject indicate the extent of B in relation to the vertebral bod-
ies. For example, in subject numbered 50 (the right-most
location on the abscissa), the abdominal region starts from
roughly the T11 vertebra and ends at the L5 vertebra. The
locations of both the top-most and bottom-most slices have
significant variability in terms of anatomic correspondence
as seen in Fig. 4. To further illustrate qualitatively the vari-
ability in the layout of the vertebrae among subjects, we dis-
play in Fig. 5 surface renditions of the skeletal components
in B for some of the 50 subjects who show wide variation in
Fig. 4.

3.B. Correlation analysis

To study the nature of the volume-to-area correlation, we
analyzed the relationship between 3D volume and area es-
timated from a single slice as well as summed up areas esti-
mated from two and three slices where the slices were selected
at all possible locations and not necessarily contiguously sit-
uated.

3.B.1. Correlation with single slice

We considered 34 subjects for correlation analysis by se-
lecting those subjects whose body region B covered vertebrae
from T10 to L4 as a common/overlap region among the 50
subjects. The reason for this decision is to guarantee that the
body region of the subjects for calculating correlation will be
in the same anatomic range in SAS. Some subjects for whom
slices start from T12 or even higher positions as shown in
Fig. 5 are not selected. For all 34 subjects, six spinal land-
marks were selected from T10 to L3 as the midpoints of
the respective vertebral bodies. Although we illustrate our
method by using six landmarks here, this number can be set to
any value greater than or equal to 2 and any other landmarks
can also be used.

In order to study how correlation may vary for different
anatomic slice locations, in Fig. 6 (using data from 34 sub-
jects) we display the correlation values as a curve for different
slice locations for SAT and VAT by using both linear and non-
linear mappings. Some key landmark positions are indicated
along the horizontal axis in the bottom row of the figure. The
number of slices for linear and nonlinear mapping is different
and as such there is not much meaning in comparing the slices
for the two methods by numbers. This is due to the fact that for
linear mapping, the mapped slices are found by mapping the
total number of slices to the same number of (smallest/largest)
slices for every subject. For nonlinear mapping on the other
hand, because of the fact that the distance between successive
landmarks is allowed to be different for different subjects, the
total number of slices in SAS may not be the same as that
of linear mapping. To examine how the location of maximum
correlation may vary across subjects, in Fig. 7, we display the
anatomic landmark locations at which maximum correlation
occurred for SAT and VAT for the two methods for different

FIG. 5. Surface renditions of the skeletal components in B of some of subjects who show wide variation in vertebral positions in Fig. 4 including Subjects 4, 7,
11, 12, 14, 20, 22, 23, 33, 34, 37, 48.
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FIG. 6. Correlation values from linear mapping (top row) and nonlinear mapping (bottom row) for SAT (left) and VAT (right). The vertical axis shows the
correlation value. The horizontal axis shows the location of image slices (Slice 1 is at the inferior most position). Some key landmark positions are indicated
along the horizontal axis in the bottom row.

FIG. 7. Anatomic locations (marked with “*”) of maximum correlation between (single) slice area and volume (SAT on left, VAT on right, linear method in top
row, nonlinear method in bottom row). The horizontal axis shows subject numbers, and the vertical axis shows anatomic location from T7 to L5.
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FIG. 8. Anatomic locations where maximum correlation is achieved for the two mapping methods. The top two rows are for SAT (left) and VAT (right) by using
linear mapping; and the bottom two rows represent SAT and VAT for nonlinear mapping. The first and third rows are from the same subject, and the second and
fourth rows are from another subject. The spine is used as a reference to show the slice locations (as a white line) of maximum correlation.

subjects. Figure 8 demonstrates the anatomic locations where
maximum correlation is achieved by the two methods for two
sample subjects, where slice images and their locations in the
anatomic space for both SAT and VAT are shown with refer-
ence to the 3D rendered spine.

The following observations may be made from Figs. 6 to
8. The maximum correlation for VAT derived from nonlinear
mapping achieved a 10% higher value than that of linear map-
ping. It is also clear that the maximum correlation occurs at
different anatomic locations for SAT and VAT. With nonlinear
mapping, the maximum correlation occurs at T12 for SAT and
L3 for VAT as shown in the bottom figures in Fig. 6. The max-
imum correlation also occurs at different anatomic locations
for the different mapping methods. For SAT and VAT, the lo-
cations of maximum correlation derived from linear mapping
vary considerably among subjects. The goal of correlation
calculation is to find one or more anatomic locations which
are optimal for estimating abdominal fat distribution. The

slices from all subjects used for correlation calculation are ex-
pected to be at the same anatomic location. Correlation test-
ing will have no meaning if every subject has the slice consid-
ered for correlation calculation at a different location. The site
of maximum correlation derived from nonlinear mapping has
more precision than from simple linear mapping. In the bot-
tom row of Fig. 7, there is a small variation of locations over
all subjects which is less than 5.0 mm (same as slice spac-
ing), implying that the slice localizations are anatomically
very precise in the SAS (see Table I). Table II shows the cor-
relation derived from a single slice at different true anatomic
locations where the maximum correlation for VAT occurs at
L3-L4 and at T12-L1 for SAT. The results are similar to the
correlation calculated from the nonlinear method as shown
in the bottom row of Fig. 7. Again, the anatomic location of
maximum correlation for SAT is different from that of VAT.

Examining the top two rows derived from linear mapping
for SAT and VAT in Fig. 8, we observe that the anatomic

TABLE I. Correlation coefficients and slice location variation (in mm) for linear and nonlinear mapping techniques. Correlations shown are maximum values.

Single slice at L4-L5 Linear mapping Nonlinear mapping

SAT VAT SAT VAT SAT VAT

Correlation 0.74 0.87 0.89 0.81 0.88 0.92
Location variation (mm) . . . . . . 17.80 15.70 4.38 2.63

Medical Physics, Vol. 41, No. 6, June 2014



063501-8 Tong, Udupa, and Torigian: Optimization of abdominal fat quantification on CT imaging 063501-8

TABLE II. Correlation with single slice at different true anatomic locations.

Correlation with single slice

Anatomic slice location SAT VAT

T10-T11 0.85 0.79
T11-T12 0.87 0.81
T12-L1 0.88 0.90
L1-L2 0.88 0.89
L2-L3 0.85 0.92
L3-L4 0.76 0.92
L4-L5 0.74 0.87

locations of maximum correlation are significantly different
for different subjects. Yet, for the nonlinear mapping, for both
SAT and VAT, the anatomic locations of maximum correla-
tion are much closer even though they come from different
subjects. In particular, for the nonlinear mapping, there ap-
pears to be relatively constant high correlation values for SAT
in the lower thoracic/upper abdominal region and for VAT in
the lower abdomen.

To test the sensitivity of the results to the choice of the
calibration data set, in Fig. 9 we show the single-slice corre-
lation curves for SAT and VAT derived from a different set
of randomly chosen five calibration data sets. The maximum
correlation achieved was again 0.88 and 0.92 for SAT and
VAT, respectively, which are the same as the results in Fig. 6,
and the slice locations where fat volume maximally correlated
with fat area are also the same. The curves are remarkably
similar, as expected, except for some minor differences at the
ends of the curves. Compared with linear mapping and earlier
methods, one advantage of the proposed nonlinear mapping
approach is to guarantee that the slice where maximum cor-
relation occurs is at the same anatomical location irrespective
of patient-to-patient anatomical variability.

3.B.2. Correlation with multiple slices

To address the question as to whether single slice or
multiple (contiguous or noncontiguous) slices yield bet-
ter area-to-volume correlation, we calculated the correla-

TABLE III. Correlation by using one or more slices per subject, where cor-
relations shown are maximum values for the two mapping techniques.

Multiple slices One slice Two slices Three slices

SAT 0.89 0.90 0.91
Linear mapping

VAT 0.81 0.84 0.85

SAT 0.88 0.88 0.89
Nonlinear mapping

VAT 0.92 0.95 0.95

SAT 0.74 0.74 0.75
Slices at L4-L5

VAT 0.87 0.88 0.89

tion by using multiple slices with both linear and nonlinear
mappings.

Table III lists the maximum correlation achieved by using
one, two, and three slices per subject with linear and non-
linear mapping. The correlation derived from the slice at the
L4-L5 junction is also listed for comparison since this loca-
tion is most commonly used. For this case, the choice of two
and three slices is such that the slices are contiguous and they
are as close to the L4-L5 junction as possible. Note that non-
linear mapping with multiple slices achieved the highest cor-
relation. Table IV lists anatomic locations where maximum
correlation is achieved for the two methods. The locations of
maximum correlation for SAT and VAT are again different,
and the multiple slices achieving maximum correlation are not
contiguous. For nonlinear mapping, the sites in the standard-
ized anatomic space where maximum correlation is achieved
are also listed in Table IV. One possible explanation for the
findings is that discontinuous slice location combination may
allow for a more representative sampling of the average fat
area per slice across the abdominal region (vs the scenario
where all the slices are from contiguous slices through the ab-
domen).

Figure 10 shows the correlation curves when multiple
slices are used for correlation calculation. Here, only the
results using two and three slices are shown since single slice
results have been shown above. From Figs. 6 and 10, we
observe that higher maximum correlation can be achieved
when more slices are used for correlation calculation.
The maximum correlation for VAT derived from nonlinear

FIG. 9. Correlation curves from nonlinear mapping derived from a calibration data set different from that used in Fig. 6. Left: SAT; Right: VAT. The vertical
axis shows the correlation value. The horizontal axis shows the location of image slices (Slice 1 is at the inferior most position). Some key landmark positions
are indicated along the horizontal axis.
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TABLE IV. Slice locations after mapping (linear and nonlinear) where the maximum correlation is achieved. The
values listed in the table are the slice numbers in the volume files (where number 1 indicates the bottom slice of
the abdominal region and larger numbers are located closer to the top of the abdominal region). The anatomic
locations in SAS are also listed for the nonlinear mapping.

One slice Two slices Three slices

SAT 36 27, 53 26, 52, 54
Linear mapping

VAT 25 4, 27 3, 25, 29

SAT 33 (T12) 22, 37 (L1-L2, T11) 22, 33, 35 (L1-L2, T12, T11-T12)
Nonlinear mapping

VAT 8 (L3-L4) 8, 36 (L3-L4, T11) 8, 16, 36 (L3-L4, L1-L2, T11)

FIG. 10. Correlation curves from linear and nonlinear mapping. Rows 1 and 2: SAT (left) and VAT (right) results for linear mapping using 2 and 3 slices. Rows
3 and 4 are similarly for nonlinear mapping. The vertical axis shows the correlation values and the horizontal axis shows the combination number for the different
combinations among all possible choices of 2 and 3 slices. The oscillations seen are due to the systematic pattern of multiple slice number combinations.
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mapping is substantially (10%) greater than that from
linear mapping as shown in Table III. Especially note that the
correlation curves for VAT go down considerably for certain
combinations of two and three slices for linear mapping. This
is due to the fact that the multiple slices are in fact from
much different anatomic locations among subjects as in the
single-slice case, while the nonlinear method performs much
better since slices are selected anatomically more accurately
in the standardized anatomic space.

4. CONCLUSIONS

Correlation analysis to determine the optimal anatomic
slice locations in the abdomen for estimating body fat has
not previously been performed to our knowledge. The opti-
mal anatomic slice locations for single slice SAT and VAT
estimation are not the same, contrary to common assump-
tion. This result is important since these fat components may
have different effects upon the pathophysiology of different
disease processes. Use of multiple slices can achieve higher
correlation than use of a single slice. The optimal locations
of slices in this latter case are not contiguous. Experimental
results on 50 abdominal CT image data sets showed that the
standardized anatomic space created through nonlinear map-
ping of slice locations achieves better anatomic localization
than linear mapping. The proposed method can be extended
with greater or fewer landmarks than those adopted in this
paper. We illustrated the method by using CT image data sets,
and will continue to explore the applicability of this method
on MR image data sets in the future. Overall, our conclusions
are as follows:

(1) The maximum area-to-volume correlation achieved is
quite high, suggesting that it may be reasonable to es-
timate body fat by measuring the area of fat from a
single anatomic slice at the site of maximum correla-
tion. However, the site of maximum correlation and
the degree of correlation itself may both depend on the
particular patient group or disease condition studied.
This paper focused on (near) normal male subjects in
the age group of 50–60 years.

(2) The site of maximum correlation is not at L4-L5 as
commonly assumed, but is more superiorly located at
T12-L1 for SAT and at L3-L4 for VAT. Furthermore,
the optimal anatomic locations for SAT and VAT esti-
mation are not the same, contrary to common assump-
tion.

(3) It is important to make sure that the slices for differ-
ent subjects are selected at the same anatomic loca-
tions for correlation analysis. These locations seem to
vary nonlinearly from subject to subject, at least for
the population (G) and body region (B) considered in
this paper. The proposed standardized space mapping
achieves this consistency of anatomic localization by
accurately managing nonlinearities in the relationships
among landmarks. The dependence of VAT on the pre-
cision of anatomic localization seems to be far greater
than that of SAT, perhaps due to the complex shape of
the distribution of VAT compared to SAT.

(4) Multiple slices achieve greater improvement in corre-
lation for VAT than for SAT. The optimal locations of
slices are not contiguous.

The goal of this research is to find optimal location(s) of
slices for any given patient group and body region utilizing
the data sets under any given image modality. Once the opti-
mal locations are determined in the manner demonstrated in
this paper, actual acquisition of images at precisely those lo-
cations in clinical practice can be implemented without much
difficulty by making appropriate changes to the scan protocol,
for example, by marking off plane locations on scout views.

One drawback of the proposed strategy is that it is difficult
to implement on MR images since it is quite challenging to
segment vertebral bodies in MR images. However, if certain
features to tag anatomic locations reliably can be identified
on slice images, then the method can be implemented in a
straightforward manner.
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