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A microfabricated calorimeter (l-calorimeter) with an enclosed reaction chamber is

presented. The 3D micromachined reaction chamber is capable of analyzing liquid

samples with volume of 200 nl. The thin film low-stress silicon nitride membrane is

used to reduce thermal mass of the calorimeter and increase the sensitivity of

system. The l-calorimeter has been designed to perform DC and AC calorimetry,

thermal wave analysis, and differential scanning calorimetry. The l-calorimeter

fabricated with an integrated heater and a temperature sensor on opposite sides of

the reaction chamber allows to perform thermal diffusivity and specific heat

measurements on liquid samples with same device. Measurement results for

diffusivity and heat capacitance using time delay method and thermal wave analysis

are presented. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4875656]

I. INTRODUCTION

Microfabricated calorimeters (l-calorimeter) have been developed for “Lab-on-a-chip”,

medical and biochemical applications. The l-calorimeter serves to characterize biochemical

samples and interactions with high sensitivities while only using micro or nano-liter scale sam-

ple volumes.1 The l-calorimetry has been used to investigate DNA folding-unfolding processes,

molecular recognition, isothermal titration, characterization of the thermal properties of liquid

samples (heat capacity, diffusivity, and conductivity),2 and for many other lab-on-a-chip appli-

cations.3 A l-calorimeter consists of three parts: A reaction chamber, a heater, and a tempera-

ture sensor. Based on the configuration of the reaction chamber, l-calorimeters are classified

into two categories: A closed reaction chamber configuration with a fully enclosed reaction/de-

tection chamber4 and an open reaction chamber configuration, in which the sample is placed on

a membrane and partially exposed to the environment.5 The open reaction chamber configura-

tion, in contrast with the fact that it has an incomplex fabrication to achieve an excellent ther-

mal resistance, suffers from the evaporation of volatile liquid samples and sample handling

issues (manual spotting).6 On the other hand, the closed reaction chamber configuration is more

complex and typically suffers from a large thermal mass (heat capacity) owing to the use of

bulky encapsulating materials such as Polydimethylsiloxane (PDMS) or glass covers,7 resulting

in reduced sensitivity in temperature measurement.

A typical l-calorimeter uses an electrical heater to apply heat to a sample and a tempera-

ture sensor to measure resulting temperature changes. To accurately determine the thermal

energy exchange of the reaction or interaction, the contact of the heater and the temperature

sensor to the sample has to be thermally efficient. Integration of these thermal components

using micromachined methods has advantages as they ensure intimate thermal contacts by

design. However, conventional lithography-based methods are limited for use in substantially
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planar surfaces and are particularly difficult to use over 3-dimensional structures or cut-out

surfaces.8 Mostly, the heater and/or the temperature sensor are integrated on the same

membrane-based planar surface,9 or the heater and the sensor are fabricated on separate sub-

strates with an off-chip bonding process to form the calorimeter chamber.10 To simplify the

integration of the heater and the temperature sensor, the 3x (or AC mode) method uses a single

metal strip as the heater and the temperature sensor. The 3x has been extensively used for ther-

mal conductivity measurements, which still requires a bulky material to encapsulate the reaction

chamber and it yields to increase the thermal mass of the system and decreases the detection

sensitivity.

In this paper, we present a l-calorimeter with suspended three-dimensional (3D) closed

reaction chambers with a heater and a temperature sensor integrated on the opposite sides of

each reaction chamber. Figure 1 shows a fabricated calorimeter with two chambers for differen-

tial calorimetric measurements. The details of each reaction chamber are shown in the zoomed-

in schematic in Figure 1. Each reaction chamber is suspended and fully enclosed by a low-

stress silicon nitride (SixNy) membrane and a polyimide thin film forming the opposite sides of

the chamber. The thin film encapsulating structures, in contrast to other bulky closed chamber

configuration l-calorimeters, which are of the order of millimeters in thickness.7,11,12 As a

result, the thermal mass of the fabricated reaction chamber is about 3 orders of magnitude

smaller compared to the conventional bulky chambers, directly resulting in a corresponding

increase in temperature detection sensitivity. In this device, the heater and the temperature sen-

sor are integrated on different sides of the reaction chamber such that the sample can be placed

between the heater and the sensor. Configuration of heater and sensor on fabricated device cre-

ates the capability of performing different calorimetric measurements such as differential scan-

ning calorimetry (DSC),9 thermal wave analysis (TWA),13,14 3-x technique,15 and titration16

without any change in measurement setup. In addition, the heat flux directly travels through the

sample inside the chamber and with minimal fringing effects of heat flux. This enables

FIG. 1. A 3D micromachined on-chip calorimeter with suspended reaction chambers is shown. Each calorimeter has two

identical chambers for differential measurements, and each chamber has two microfluidic inlets and one outlet.
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excellent fit with a 1-D heat model used to extract thermal properties of the samples, as the

boundary conditions used to drive the relations for thermal properties.17 In contrast, calorime-

ters that have a heater and a temperature sensor on the same side have non-negligible fringe

effects and have to employ 3D models specific to device configuration to accurately extract

thermal properties. These also result in lower detection sensitivity since heat fluxes diffuse radi-

ally. The measurement results for thermal properties (thermal diffusivity and specific heat) of

liquid samples using fabricated l-calorimeter are demonstrated.

II. MATERIALS AND METHODS

A. Reaction chamber design

A wide range of materials and designs have been used for the fabrication of on-chip l-cal-

orimeter chambers. The l-calorimeters with closed reaction chambers are made for the charac-

terization of liquid samples of volumes ranging from a few microliters to few nanoliters, where

evaporation of any of the sample is resulting in considerable measurement errors.7 Previously

reported methods for fabricating closed reaction chambers for l-calorimeters have used soft li-

thography techniques, isotropic etching of micro cavities,12 off-chip wafer bonding processes10

or made using polymer thin films.7 Effective use of calorimetric techniques requires quasi adia-

batic conditions in the l-calorimeter, which requires good thermal isolation of the reaction

chamber from the ambient and substrate. Another desirable aspect of a l-calorimeter is the neg-

ligible thermal mass of the reaction chamber compared to that of the sample to enable

calibration-free characterization.18

Aiming to reduce the thermal mass, the reaction chambers in this work have been

designed and fabricated using a SixNy thin film and a thin polyimide film. The reaction

chamber is also fully suspended from silicon handle to minimize the thermal loss to the

substrate by thermal conduction. The reaction chamber has been 3D-micromachined using

an anisotropic wet chemical etching process. The reported fabrication method eliminates the

off-chip wafer bonding processes and keeps the device fabrication robust and simple, while

achieves the low thermal mass and high thermal insulation result in high sensitivity of

detection.

B. Device fabrication

Micromachining of 3D structures using conventional photolithographic methods and the

integration of thermal components (heater and sensor) on thin film suspended structures are yet

challenges. In this work, we used a self-shadow masking process to form the reaction chamber

using a combination of isotropic and anisotropic wet etching techniques of silicon. The main

objectives for the process design are direct integration of the thermal components to the reac-

tion chambers and wafer scale fabrication of 3D thin film chambers. Our l-calorimeter device

was fabricated on a 300 lm thick silicon (100) wafer with thermally grown silicon dioxide

layers and low-stress SixNy thin films deposited by low-pressure chemical vapor deposition

(LPCVD) at both sides of wafer. The process flow for device fabrication is outlined in Figure

2, shows the various fabrication processes in three major steps, which are described in

Subsections II B 1–II B 3 in details.

1. Design and fabrication of the thermal components

In thermal microfluidics systems, different heat sources such as preheated liquids,19,20 Joule

heating,21–25 microwave heating,26–28 and chemical reactions29 have been used. Resistive heat-

ing (Joule heating) is selected as a heat source in this work to achieve homogeneous heating

with a wide operational temperature range, better heat control compared to other methods30 and

for ease of integration onto thin film substrates.31

An integrated resistive temperature detector (RTD) is used for the temperature sensor in

this work. The RTD temperature sensor has a number of advantages such as stability,32,33 high

accuracy,32 linearity,32 reproducibility,34 and ease of fabrication. The RTD works on the
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principle that the resistance of the RTD changes in relation to the RTD temperature. Platinum,

nickel, copper, and nickel-iron are common materials used in the RTD sensors. Platinum has a

linear resistance-to-temperature response over a wide range of temperature (�50 to 250 �C) and

long term stability. The linear regime of nickel is less (0–150 �C)35 but adequate for most bio-

chemical reactions. In this work, the nickel thin film is deposited using an evaporation process.

Nickel has a higher temperature coefficient of resistance (TCR) and low evaporation tempera-

ture is required to deposit using an evaporation process compared to platinum.

The heater is designed with a serpentine structure to achieve a uniform planar heat source

to satisfy the constant heat flux boundary conditions, which are used to drive the heat transfer

equation through the liquid sample in the chamber.17 The RTD sensor is also designed symmet-

rically and aligned with the heater to detect the heat at the other side of the chamber. The pro-

cess to form the heater and RTD patterns in both sides of the wafer is shown as the first step in

the fabrication process flow in Figure 2(a). We developed a novel metal patterning process to

place the thermal components on the reaction chamber to resolve the difficulties of lithographic

patterning over 3D structures of the microfabricated SixNy chamber. We first print serpentine

grooves symmetrically on both sides of the wafer using a double-sided mask aligner. After pat-

terning serpentine structures, the silicon nitride and silicon dioxide layers are etched by reactive

ion etching (RIE) (Figure 3(a)) and buffered oxide etching (BOE 6:1) (Figure 3(b), respectively.

The exposed silicon is undercut using an isotropic wet silicon etch process (Poly Etch 95%,

KMG Chemicals) to form the SixNy overhangs. The cross-sectional view of the isotropic silicon

etch is shown in Figure 3(c). The SixNy overhang is used as an integrated self-shadow mask in

FIG. 2. The process flow for 3D microfabrication of the calorimeter device. (a) Electrode patterns are printed symmetri-

cally on both sides of the wafer and isotropically etched to form self-shadow masks, (b) a first anisotropic wet chemical

(KOH) etching on the bottom surface of the wafer defines the reaction chambers, and (c) second KOH etch to define sus-

pended tethers of SixNy on the top surface.
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a blanket metal evaporation process (last step) to isolate thermal components from the

substrate.

2. Chamber and microfluidic channels fabrication

After the isotropic silicon etch on the both sides of the silicon wafer, a 0.5 lm thick low-

stress LPCVD SixNy film is deposited to protect the exposed silicon. The reaction chamber and

microfluidic channels are patterned on the bottom surface (heater side) of the wafer as shown

in Figure 2(b). An anisotropic silicon wet etch (potassium hydroxide, KOH, 30% w/w) is used

to etch the silicon. After the first KOH etch process. Subsequently, another LPCVD process is

used to deposit 0.5 lm thick low-stress SixNy. The deposited SixNy film at this step is used to

form side walls of the reaction chambers. To suspend and thermally isolate the reaction cham-

bers from the silicon substrate, the top surface (sensor side) of the wafer is patterned and etched

with another anisotropic KOH silicon wet chemical etching process as is shown in Figure 2(c).

The resulting suspended thin film chamber configuration allows maximum thermal insula-

tion from the surrounding environment. The thin film SixNy walls reduce the thermal mass of

the chamber and increases the sensitivity of the sensor. The entire micromachining process is

fabricated monolithically from a silicon substrate avoiding any wafer bonding processes. The l-

calorimeter chip is designed with two identical chambers next to each other to be able to per-

form differential scanning calorimetry. Each chamber has two microfluidic inlets and one outlet,

which will be used in future work to study heat exchanges in mixing and reactions.

FIG. 3. The process flow for the integration of the heater and the temperature sensor on the thin film chamber. (a) The

SixNy film is etched by reactive ion etching, (b) the silicon dioxide is etched with BOE isotropic wet etching, and (c) the

poly etch is used to isotropically undercut the silicon.
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3. Metallization and polyimide bonding

At the final step of the microfabrication process, the thermal components are integrated on

the device by a blanket deposition of nickel on both sides of the wafer. A 30–70 nm thick film

of nickel is thermally evaporated on each sides of the wafer to achieve the designed

heater/RTD resistance of 1-4 kX. Figure 4 shows the fabricated chamber before and after metal

deposition. After metallization for the thermal components, a 25 lm polyimide film is used to

seal the bottom of the wafer using a silicone adhesive (70 lm total), forming a fully enclosed

reaction chamber, as shown in Figure 4. The total volume of the reaction chamber to contain a

liquid sample is designed to be 200 nl.

C. Device characterization

1. RTD sensor characterization

The electrical resistance value of a 30–70 nm thick nickel film on the wafer is 1–4 kX,

respectively. The resistance change of a RTD is a function of temperature given by the simpli-

fied Callendar–Van Dusen equation36

R ¼ Rrmð1þ arDTÞ; (1)

where the Rrm is the RTD resistance at room temperature, ar is the TCR of the nickel RTD,

and DT is temperature change.

The TCR for the nickel RTD is measured using a HAAKE thermal bath by sweeping the

bath temperature range from 10 to 50 �C. The measured resistance of the nickel film as a func-

tion of temperature shows excellent linearity (R2¼ 0.9999) within the calibration range. From

the slope of the measured values, the measured ar of the sensor is 2.58� 10�3/ �C. The ar for

bulk nickel has been reported to be 6� 10�3/ �C.37 The ar is a function of the film thickness to

the mean free path of electrons in the film38 and the scattering at the film surface and the grain

FIG. 4. The fabricated chamber and the final device after metallization are illustrated. (a) shows the optical image of the

fabricated chamber after anisotropic wet chemical etching, (b) shows the top view of the fabricated chamber, and (c) shows

the final calorimeter chip after metallization.
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boundaries of deposited metal.39 The ar is changing based on different deposition parameters

and film thinness.

Increasing the thickness and thermal annealing of the nickel film may increase the ar.

Using a commercial RTD sensor (Pt-100) at the same time as the calibration test, the accu-

racy of the RTD over the measured temperature range was calculated to be 2.36%. The resolu-

tion of temperature measurement with RTD is limited by the Johnson–Nyquist thermal

noise.40,41 From calculated thermal noise, 8.17� 10�6 �C resolution for the temperature mea-

surement with bandwidth of 28.5 Hz for fabricated device is expected. However, the measure-

ment noise of the preamplifier and source meter far exceeds this noise floor and results in a

measurement temperature resolution of 2� 10�3 �C. An 1 mA DC is used as excitation current

of the sensor with a 4-wire measurement configuration to minimize the effects of contacts and

connecting wires on temperature measurements.

2. l-calorimeter DC characterization

A first-order lumped element model is used to model the l-calorimeter and the loaded sam-

ple, as shown in Figure 5. A step function response is used to extract thermal parameters such

as the thermal resistance, the thermal mass, and the equilibrium time constant of the system. A

heat pulse is generated at the heater by applying a 1 mA current, and travels through the liquid

sample. The temperature response (step response) as well as measured DC parameters of the

calorimeter is shown in Figure 6. Two Keithley 2400 source/meters are used as a current source

and a 4-wire resistance measurement unit for the heater and the sensor, respectively.

The step response of the temperature change can be expressed as

DT ¼ a½1� eð�t=bÞ�; (2)

where DT is the temperature change, a and b are fitting parameters obtained from the measured

data, and t is time.

FIG. 5. (a) Shows the calorimeter reaction chamber cross sectional view and (b) shows the lumped parameter circuit model

where the Pin is the input power, the Rth is the total thermal resistance of the fabricated calorimeter, and the Ct is the ther-

mal mass of the system.
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From the step response, the thermal resistance, thermal mass, and the time constant of our

l-calorimeter are 58.87 K/W, 6.63� 10�3 J/K, and 1.33 s, respectively. These DC parameters

are used for the DC thermal characterization of samples such as water, glycerol, and ionic

liquids.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

Our l-calorimeter is designed to integrate different calorimetry methods capabilities in a

single device using 3D micromachining of a suspended chamber on a silicon wafer. The fabri-

cated calorimeter is designed to perform DC calorimetry, AC calorimetry (transient), and TWA.

The fabricated l-calorimeter has two identical chambers with separate microfluidic channels,

one as the calorimeter chamber and other as the reference chamber, which makes it possible to

perform differential calorimetry (e.g., DSC) as well. The methods and the experimental setup to

measure different thermal properties of liquid samples are described in this section using differ-

ent calorimetric methods. The thermal properties of Deionized (DI)-water, glycerol, ionic liquid

samples are measured and compared with literature values. The measurements are all performed

in stationary condition to avoid any external flow and its impact on the measurement.

A. Thermal diffusivity measurement

The 3x method using the phase change measurement for liquid samples has been com-

monly used for the thermal diffusivity measurement.42 However, this method requires calibra-

tion of the device with various samples of known thermal diffusivity to fit the two unknown pa-

rameters. In this paper, the non-steady-state (transient) method is used to measure the thermal

diffusivity of liquid samples. The laser flash method developed by Parker et al.43 is a com-

monly used non-steady-state method. Although this method has been used to measure the diffu-

sivity of both solid and liquid samples, the experiment requires no heat loss to surroundings

(adiabatic condition). Other researchers have further developed the method for non-adiabatic

conditions due to radiation44,45 and a heat pulse width effects on the measurements.46 In our

case, the heat loss mechanism is more complex than the laser flash method. To avoid the com-

plex analysis for the thermal diffusivity measurement, we adapted the heat penetration time

measurement method.17 The principle of the heat penetration time measurement is to apply a

FIG. 6. Shows the DC step response of the l-calorimeter and the calculation of the DC parameters of the calorimeter from

the output data. Tss is the steady state temperature response, to the input DC step, measured at the sensor. The

Rth¼ 58.87 K/W is calculated from DTss over input power, thermal time constant (s¼ 1.33 s) based on the Eq. (2) is the

time it takes the temperature rises to 0.63 Tss and the thermal mass (Cp¼ 6.63� 10�3 J/K) is the input power times the

inverse of the slope at t¼ 0.
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constant continuous heat flux to the one side of the sample, and to measure the time delay to

reach the other side, where the sensor is located. The time delay can be expressed as17

t0 ¼
L2

ð16
p Þa

" #
; (3)

where L is the length of the sample in the direction of the heat flux and a is the thermal

diffusivity.

The time delay for the heat to travel across the reaction chamber in this work is typically a

few hundred milliseconds. Since the time constant for our l-calorimeter is 1.33 s, the measure-

ment satisfies the requirement of quasi-adiabatic condition.

In the time delay thermal diffusivity measurement method, the l-calorimeter and microflui-

dic pumps are placed in an enclosure to reduce the ambient effects. The DC source (Keithley

source/meter) is used to apply a current pulse to the heater. At the sensor side, the other DC

source (a second Keithley source/meter) is used to apply constant excitation current to the RTD

sensor and measure the temperature change by monitoring the resistance change. To amplify

the signal and increase the detection limit and resolution, a low noise current preamplifier

(Stanford SR570) was used to amplify the current signal and convert it to a voltage signal. The

output signal is monitored and recorded by a LabView program controlling an oscilloscope

(Agilent DSOX2024A). The program ensures the synchronization between the input pulse to

the heater and data acquisition at the sensor side. Figure 7 shows the measurement setup for

the time delay method.

The typical time delay measurement is shown in Figure 8(a). To determine the time the

temperature changes arrives at the sensor, the maximum of the second derivative of the tempera-

ture profile is used as shown in Figure 8(b). Although the thickness of the sample is approxi-

mately the thickness of the wafer, which is 300 6 5 lm, we used DI-water with a known diffu-

sivity47 at 25 �C to calibrate the thickness of our device. The time delay, t0, can be expressed as

t0 ¼
ðL� pÞ2

ð16
p Þa

" #
; (4)

where p is a correction parameter for the chamber thickness.

FIG. 7. The experimental setup for the time delay method to measure the thermal diffusivity of liquid samples with the on-

chip l-fabricated calorimeter.
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With the DI-water sample, p is found to be 0.89, which means the effective distance

between the heater and sensor is 270 lm. Using this correction factor, the thermal diffusivity of

glycerol is measured (9.94� 10�8 m2/s). The measured values of thermal diffusivity show good

agreement (<8% error) with values reported in literature.48

B. Specific heat measurement

TWA was first introduced by Garden et al.1 to measure the specific heat of a material.

When an AC voltage with an angular frequency x is applied to a heater, the power from the

Joule heating results in 2x frequency, which can be expressed as

Pin ¼
A2R

2
½1þ cosð2xtÞ�; (5)

where A is the amplitude of the current, R is the resistance of the heater, and x is angular fre-

quency of the applied AC voltage to the heater.

When the alternating power is applied to the heater, the temperature of the sample is raised

and this changes the resistance of the heater, which generates the 3x component of temperature

at the heater. This 3x component is measured in the typical single-strip heater and the sensor

configuration. In this work, the 2x component of the heat is measured at the sensor for meas-

uring the heat capacitance of the sample. The measurement setup for performing TWA using

the fabricated l-calorimeter is shown in Figure 9.

An AC source voltage 3 Vpp with frequency from 0.01 Hz to 0.1 Hz is applied to the heater

using a function generator (HP 3324A) with a frequency increment of 0.005 Hz between each

measurement. To measure the temperature change at the sensor, a DC source (0.1 mA sources

current) is used with a source/meter (Keithley 2400 source/meter). The output voltage from the

FIG. 8. The results of the time delay method to measure thermal diffusivity are presented. (a) The cross-sectional view

illustrating the heat flux from the heater to the sensor across the liquid sample and (b) time-signal of temperature recorded

at the temperature sensor and its second derivative to calculate exact time of arrival of the heat pulses at the sensor.
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sensor is measured using a lock-in amplifier (Stanford Research Systems SRS830). A LabView

program was used for data acquisition and to synchronize all sources and measurement units.

Two conditions have to be satisfied for TWA. First, the temperature within the sample has

to be homogenous and second, the system has to maintain the quasi-adiabatic condition.1 The

quasi-adiabatic condition is satisfied if

sint �
1

x
� s; (6)

where sint is diffusion time of the heat into the sample, x is excitation frequency in the heater,

and s is the thermal relaxation time of the sample to the environment.

The specific heat of a sample is determined from the frequency at which the normalized

value, x � Tac, is maximum to satisfy the required condition (Eq. (6)), where Tac is the ampli-

tude of temperature oscillation.1 Figure 10 shows the normalized Tac graph for different meas-

ured samples. A 1% error line is used to detect the thermal bandwidth of the system and deter-

mine the working frequency of the TWA method for each sample.

FIG. 9. The experimental setup for thermal wave analysis to measure the specific heat of liquid samples with the l-

calorimeter.

FIG. 10. The normalized values of the measured Tac for different samples are illustrated. The dotted line represents the 1%

error line and the selected frequency within this range that satisfies the TWA condition.

034101-11 Davaji et al. Biomicrofluidics 8, 034101 (2014)



The specific heat, cp can be expressed with measured AC temperature at the sensor

cp ¼
C0 Pin

2 x m @TAC
; (7)

where the C0 is the input power calibration factor, Pin is the input power, x is the frequency of

input thermal wave, m is the mass of the sample, and @TAC is the amplitude of oscillating tem-

perature. The input power calibration factor is used to reduce the measurement error by calibra-

tion of effective input power to the chamber excluding the heat loss. DI-water sample is used

to calculate the calibration factor for input power.

The specific heat of DI-water is measured (3.93 J/g K) by the described method and the

measured value is in good agreement(�5% error) with reported value.49 The heat capacity for

different Ionic liquids is measured for the first time. For the Ionic liquids, 1-ethyl-3-methylimi-

dazolium bis(trifluoromethylsulfonyl)imide ([EMIM][Tf2N]), 1-buthyl-3-methylimidazolium

hexafluorophosphate ([BMIM][PF6]), 1-hexyl-3-methylimidazolium hexafluorophosphate

([HMIM][PF6]), and 1-methyl-3-octylimidazolium hexafluorophosphate ([OMIM][PF6]), the

measured specific heats are 2.75, 2.83, 0.86, 2.55 J/g K, respectively. The specific heat mea-

surement results, using the TWA method is presented to demonstrate the feasibility of perform-

ing specific heat measurement with the fabricated l-calorimeter for different liquid samples.

The measured errors in the thermal parameters are always less than 10%, and it might be

caused by two reasons: The high surface area of the chamber, which cases heat loss to the envi-

ronment and the small volume (200 nl) of samples where in all of measured parameters the

bulk samples with large volume is being used.

IV. CONCLUSION

We demonstrate a novel on-chip l-calorimeter fabricated using wafer-scale 3D microma-

chining processes to measure the thermal properties of liquid samples. Our fabrication method

of l-calorimeter allows the integration of heaters and temperature sensors on the 3-dimensional

chambers for the efficient coupling and detection of heat from the thermal elements for accurate

characterization. The reaction chambers of the l-calorimeter are fully enclosed using thin film

materials to reduce the thermal mass of the system and are suspended by narrow tethers to

increase the thermal resistance without any bonding process. The incorporation of the heater

and the sensor on opposite sides of the reaction chamber allows for the measurement of both

the thermal diffusivity and specific heat without changing or re-configuring the measurement

setup. Two methods, the time delay and thermal wave analysis, are used to determine the ther-

mal diffusivity and capacitance showing repeatable measured performance and good agreement

(within 8%) with previously reported results. The l-calorimeter can characterize liquid samples

using only a small volume of sample (200 nl) and can be used to perform various measure-

ments with the same sample and the same setup.
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