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Purpose: Digital breast tomosynthesis (DBT) offers poor image quality along the depth direction.
This paper presents a new method that improves the image quality of DBT considerably through the
a priori information from automated ultrasound (AUS) images.
Methods: DBT and AUS images of a complex breast-mimicking phantom are acquired by a
DBT/AUS dual-modality system. The AUS images are taken in the same geometry as the DBT im-
ages and the gradient information of the in-slice AUS images is adopted into the new loss functional
during the DBT reconstruction process. The additional data allow for new iterative equations through
solving the optimization problem utilizing the gradient descent method. Both visual comparison and
quantitative analysis are employed to evaluate the improvement on DBT images. Normalized line
profiles of lesions are obtained to compare the edges of the DBT and AUS-corrected DBT images.
Additionally, image quality metrics such as signal difference to noise ratio (SDNR) and artifact spread
function (ASF) are calculated to quantify the effectiveness of the proposed method.
Results: In traditional DBT image reconstructions, serious artifacts can be found along the depth
direction (Z direction), resulting in the blurring of lesion edges in the off-focus planes parallel to the
detector. However, by applying the proposed method, the quality of the reconstructed DBT images
is greatly improved. Visually, the AUS-corrected DBT images have much clearer borders in both in-
focus and off-focus planes, fewer Z direction artifacts and reduced overlapping effect compared to
the conventional DBT images. Quantitatively, the corrected DBT images have better ASF, indicating
a great reduction in Z direction artifacts as well as better Z resolution. The sharper line profiles along
the Y direction show enhancement on the edges. Besides, noise is also reduced, evidenced by the
obviously improved SDNR values.
Conclusions: The proposed method provides great improvement on the quality of DBT images. This
improvement makes it easier to locate and to distinguish a lesion, which may help improve the accu-
racy of the diagnosis using DBT imaging. © 2014 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4875980]
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1. INTRODUCTION

X-ray mammography is the best simple method to detect early
stage breast cancer.1 However, since it is a two-dimensional
imaging modality, accuracy of x-ray mammography is lim-
ited by overlying tissue structure.2–4 This overlap effect can
be reduced and in some cases essentially eliminated by us-
ing digital breast tomosynthesis (DBT) (Refs. 5–8) since this
limited angle tomography enables a partial three-dimensional
(3D) reconstruction. This reduction of overlap effects may
result in earlier detection and better interpretation of breast
cancer particularly in dense breasts.9–11 Projections are ac-
quired by keeping the breast and detector stationary, while
the x-ray source moves over a limited angle above the breast.
A 3D volume of the breast is reconstructed from these pro-
jections using one of the several classes of reconstruction al-
gorithms. However, due to the limited-angle acquisition, the

in-slice resolution is much higher than the resolution between
slices (depth resolution).9 Severe image artifacts radiate in di-
rections parallel to the x-ray beam paths. These artifacts result
in lower lesion contrast and blurred borders of the lesions in
off-focus planes that are not in the plane of the largest cross
section of a lesion. This problem has been investigated exten-
sively before, mainly focusing on the generation, the evalua-
tion, and reduction of artifacts along the Z axis.12–16 Perhaps
almost as important, particularly to lesion contrast and future
quantitative accuracy, are fan-shaped artifacts that are present
in planes well removed from the planes of large, high-contrast
objects, but those artifacts are not addressed specifically by
this algorithm that we propose here.

Ultrasound (US) is commonly employed as a valuable ad-
junct to mammography. Conventionally, scanned and auto-
mated ultrasound (AUS) imaging help improve the sensitiv-
ity of cancer detection, especially for younger women with
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dense breasts for whom mammography is less effective.17–20

However, conventional US imaging is performed freehand in
a different geometry than mammography, making it difficult
and time-consuming to correlate suspicious lesions detected
in either of the two modalities.21 The resulting misidentifi-
cation in the ultrasound of approximately 10% of mammo-
graphic lesions in which ultrasound diagnosis is sought can
lead to an incorrect diagnosis of solid or cystic lesion.22 It
is reasonable to assume that in situations where mammogra-
phy or DBT and ultrasound are used in screening, that diffi-
culty and uncertainty in finding a possible ultrasound mass in
the x-ray images will lead to less aggressive detection of can-
cer by ultrasound and/or a higher call back rate for diagnosis.
In an attempt to solve this problem, a 3D-AUS imaging sys-
tem is used in this study so that the DBT and AUS images of
the breast can be acquired in the same geometry. With such
a system, each of six experienced breast imaging radiologists
in a diagnostic reader study indicated increased confidence
in using DBT for hypothetical screening when 3D-AUS was
added.23 The imaging slices of the AUS are parallel to the cen-
tral x-ray beam and DBT axis of rotation. In other words, the
AUS slices are perpendicular to slices of DBT. Consequently,
the high depth resolution in the AUS imaging slices can be
appropriately applied to improve the poor quality of DBT in
that depth direction.

There are many algorithms for x-ray reconstruction, such
as filtered back projection (FBP) and iterative reconstruction
algorithms.24–30 SART (Simultaneous Algebraic Reconstruc-
tion Technique) is an iterative method that enables a fairly
good result using limited angle projection data.31–33 Because
of this property, SART was selected as the basic DBT recon-
struction algorithm for this study. A new loss function based
on SART was written to include AUS information. By solving
this new optimization problem, the new recursive formula can
be used to achieve high quality DBT images.

2. METHODS AND MATERIALS

2.A. Principle of the proposed method

2.A.1. Simultaneous algebraic reconstruction
technique

SART is a reconstruction algorithm by iteratively updates
the value of each voxel using projection images.34, 35 The
imaging system can be expressed by the following algebraic
equation:

Ax = b, (1)

where x = (x1, . . . , xj, . . . , xN)T ∈ RN is a N × 1 column
vector that denotes the unknown values of all the N voxels.
b = (b1, . . . , bi, . . . , bM)T ∈ RM represents the M projection
elements acquired by the DBT system. A = (Aij) is a nonzero
M × N system matrix in which the element Aij denotes the
influence that voxel xj has on projection element bi. Equa-
tion (1) transforms all the voxels to the projections.The loss
function36 L(x) for conventional SART is defined as

L(x) = 1
2 |b − Ax|2W , (2)
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O
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FIG. 1. Imaging slices of DBT and AUS.

where W is a weighting matrix. For a vector a ∈ RN, the
canonical Euclidean inner product is represented by 〈a, a〉,
then the weighted norm |a|2W is defined as

|a|2W = 〈a, a〉W = 〈W a, a〉. (3)

The optimization problem can be solved using the gradient
descent method. Then the SART iterative formula for each
voxel becomes

x
(t+1)
j = x

(t)
j + λ

M∑
i=1

Aij

A+,j
· bi−(Ax(t))i

Ai,+
, (4)

where λ is the relaxation coefficient and is set to 0.1 to ensure
convergence in this study. A+, j and Ai, + are given by

A+,j =
M∑
i=1

|Aij | , j = 1, 2, . . . , N,

Ai,+ =
N∑

j=1

|Aij | , i = 1, 2, . . . ,M. (5)

Every iteration using all the projection data once is called an
order-subset (OS) cycle.37 Using SART, along with the DBT
projection image data, the reconstruction volume of the breast
can be acquired after several OS cycles.

2.A.2. Detailed introduction on the novel method

As noted above, reconstructed images of AUS are perpen-
dicular to those of DBT. Except for modest refraction artifacts
in the AUS imaging of this rigid phantom, these AUS images
are nearly perfectly registered to the DBT images. Therefore,
gradient information of the images in AUS can be used to im-
prove the image quality of DBT from the same view. In this
paper, the DBT slices are parallel to the XY plane and AUS
slices are parallel to the XZ plane (see Fig. 1). The depth di-
rection of DBT and AUS is along the Z direction.

2.A.2.a. Gradient information extraction for AUS images.
For simplicity of this demonstration, the 2D gradient informa-
tion is taken in each imaging plane along two axes (X and Z
axes in this paper). Gradient information along Y is not used
here since the resolution of the AUS is poor along that axis.
Suppose f(x0, z0) to be a pixel in an AUS image, the gradient
information can be calculated following Eq. (6),

Gx(x0, z0) = f(x0, z0) − f(x0 + 1, z0)Gz(x0, z0)

= f(x0, z0) − f(x0, z0 + 1). (6)
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Specifically, the italic letter G represents this gradient at a
pixel. Subscript x and z denote the axis along which we ex-
tract gradient information. For the pixels in the top row, the
gradient along the Z axis is set to zero. Similarly, the gradient
along the X axis of pixels in the rightmost column is zero as
well.

Since the DBT images are optimized using AUS edge in-
formation, effectively extracted gradient information of AUS
images becomes extremely important for good combined re-
construction images. This requires, for example, clear borders
and only slight artifacts. Therefore, we employed some im-
age processing methods, such as median filtering, total varia-
tion (TV) denoising to the raw AUS images. Also, we applied
median filtering and morphological methods to the calculated
gradient images so that they can best describe the useful gra-
dient information of AUS images.

2.A.2.b. Derivation of the new iterative formula. We use
the gradient information of AUS images to improve the qual-
ity of DBT images by conceiving a new loss function as

L(x) = 1
2 |b − Ax|2W + θ1

2 |Gus1 − GX1|2

+ θ3
2 |Gus3 − GX3|2. (7)

In Eq. (7), A is a nonzero M × N system matrix that trans-
forms voxels to projections.34 x = (x1, . . . , xj, . . . , xN)T ∈ RN

consists of all the N undetermined voxels in the reconstruction
volume. b = (b1, . . . , bi, . . . , bM)T ∈ RM represents the M pro-
jection elements acquired by the DBT system. The weighting
matrix W is a diagonal matrix defined as

W = diag
(

1
A1,+

1
A2,+

· · · 1
AM,+

)
. (8)

The second and third terms of Eq. (7) is the constraint we have
added. θ1 and θ3 are the parameters to control the degree of
AUS effects on the new DBT images. G ∈ RN represents the
gradient of all the voxels. To avoid confusion, we use sub-
scripts “1” and “3” to represent the two directions (X axis and
Z axis). Subscript “us” represents AUS imaging and X repre-
sents DBT imaging. Gus1 and Gus3 are the gradient informa-
tion of AUS images along the X and Z axes, respectively, that
we calculated in Eq. (6). Likewise, the gradient of the new re-
construction images (GX1 and GX3) should also be calculated
in the same way. However, since x is changing all the time
along with the progress of the iteration, GX1 and GX3 need
to be calculated during iterations. We use matrix B and C to
calculate the gradient along the X and Z axes, respectively,

GX1 = Bx, GX3 = Cx. (9)

For illustrative purposes, we will number all the voxels in the
reconstructed volume according to the following rules: The
first voxel at the origin is described as x1. After that, the num-
ber order goes along the Y axis, then the X axis, and finally
the Z axis (see Fig. 2). The size of the volume is m in length
(y), n in width (x), l in height (z), and the total number of
voxels is N = (m + 1)(n + 1)(l + 1). The 3D coordinate is
therefore transformed to a 1D coordinate.

FIG. 2. Numbered voxels in reconstruction volume.

The N × N matrix B and C are defined as

B = (B1 B2 · · · Bj · · · BN )T ,

C = (C1 C2 · · · Cj · · · CN )T , (10)

where Bj (j = 1, 2, . . . , N), Cj (j = 1, 2, . . . , N) are N-
dimensional row vectors. To get the gradient information of
x in the same way, Bj and Cj are constructed satisfying the
following two conditions:

Bj: If j ∈ plane CBEF (see Fig. 2), Bj = 0;
Else, the jth element is set to 1, the [j + (m + 1)]th element

is set to −1, and the rest elements are set to 0.
Cj: If j ∈ plane DEFG (see Fig. 2), Cj = 0;
Else, the jth element is set to 1, the [j + (m + 1)(n + 1)]th

element is set to −1, and the rest elements are set to 0.
Bj and Cj are constructed so that

Bj x = xj − xj+(m+1), Cj x = xj − xj+(m+1)(n+1). (11)

Put Eq. (10) into Eq. (7), then the loss function can be written
as

L(x)= 1
2 |b − Ax|2W + θ1

2 |Gus1 − Bx|2 + θ3
2 |Gus3 − Cx|2.

(12)

Now we will use the gradient descent method to solve this
optimization problem. The gradient of L(x) can be calculated
as

∇L(x) = −AT W (b − Ax) − θ1 BT (Gus1 − Bx)

−θ3CT (Gus3 − Cx). (13)

The iterative scheme is

x(t+1) = x(t) − ω∇L(x(t))

= x(t) + ω[AT W (b − Ax(t)) + θ1 BT (Gus1 − Bx(t))

+θ3CT (Gus3 − Cx(t))], (14)

where ω is defined as the step size according to the gradient
descent method.38 Define ωθ1 and ωθ3 as two new parameters
λ1 and λ3. Replace ω with λ and matrix V −1 is attached to the
iteration process according to SART. Then Eq. (14) can be
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expressed as

x(t+1) = x(t) + λV −1 AT W (b − Ax(t))

+λ1 BT (Gus1 − Bx(t)) + λ3CT (Gus3 − Cx(t)),

(15)

where matrix V is defined as

V = diag(A+,1 A+,2 · · ·A+,N ). (16)

For each voxel, Eq. (16) can be expressed as

x
(t+1)
j = x

(t)
j + λ

M∑
i=1

Aij

A+,j
· bi−(Ax(t))i

Ai,+

+λ1Pj

(
x

(t)
j

) + λ3Qj

(
x

(t)
j

)
, (17)

where x
(t+1)
j is the value of the jth voxel after (t + 1) itera-

tions, i is the number of the projection element, bi is the value
of the ith projection element, and (Ax(t))i is the ith estimated
projection value. Pj (x(t)

j ) and Qj (x(t)
j ) satisfies

Pj

(
x

(t)
j

) =
⎧⎨
⎩

Gus1,j − GX1,j j ∈ plane OADG
GX1,j−(m+1) − Gus1,j−(m+1) j ∈ plane CBEF
(Gus1,j − Gus1,j−(m+1)) − (GX1,j − GX1,j−(m+1)) else

, (18)

Qj

(
x

(t)
j

) =
⎧⎨
⎩

Gus3,j − GX3,j j ∈ plane OABC
GX3,j−(m+1)(n+1) − Gus3,j−(m+1)(n+1) j ∈ plane GFED
(Gus3,j − Gus3,j−(m+1)(n+1)) − (GX3,j − GX3,j−(m+1)(n+1)) else

, (19)

where Gus1, j represents the gradient of the jth voxel of AUS
images along X axis, and Gus3, j represents the gradient of the
jth voxel of AUS images along Z axis. GX1, j represents the
gradient of the jth voxel of combined DBT images along X
axis after t iterations, and GX3, j represents the gradient of the
jth voxel of combined DBT images along Z axis after t itera-
tions. GX1, j and GX3, j can be calculated by

GX1,j = x
(t)
j − x

(t)
j+(m+1), (20)

GX3,j = x
(t)
j − x

(t)
j+(m+1)(n+1). (21)

2.B. Breast-mimicking phantom

This phantom simulates the breast compressed in the mam-
mographic cranio-caudal geometry and was designed by our
group in cooperation with Madsen and built by Madsen and
Frank at the University of Wisconsin, Madison.39, 40 The
breast-mimicking phantom contains 39 lesions in all, 21 of
which simulate cancers and 18 of which simulate cysts. It is
a rectangular solid (length = 22.23 cm, width = 12.70 cm,
height = 6.40 cm), with a thick lesion-embedded slab (length
= 18.00 cm, width = 8.50 cm, height = 5.00 cm) sandwiched
between two approximately 7 mm thick aberrating layers of
tissue-mimicking subcutaneous fat. This slab has rectangular
sections simulating fat and a medium speed, mixed fat, and
glandular tissue, labeled as low speed glandular tissue. An H-
shaped central section simulates high-speed glandular tissue.
The two 18 × 3.9 cm lesion-embedded, vertical boundaries
in this slab lie between the central glandular and side tissues.
The phantom is bounded by acrylic walls and the scanning
windows on the top and bottom are covered with 25 μm thick

Saran wrap (Figs. 3 and 4). Pedestal anchors have been in-
serted for structural stability and do not interfere with the cen-
tral volume to be scanned.

The fat and glandular-mimicking materials are oil-in-
gelatin dispersions, while the lesions contain no oil. The oil
produces a lowered propagation speed and density and con-
tributes to attenuation. The single hyperechoic lesion contains
water-based gelatin with powdered graphite and glass beads
(45–53 μm in diameter).41 Additionally, the tissue-mimicking
fat has an even lower speed of sound. There are five tissue
mimicking background regions plus lesions in the phantom
with speeds of sound given (see Table I). The lesions are ex-
actly positioned in the borders of the tissue-mimicking glan-
dular region to make a challenging environment for ultra-
sound beamforming. Each 1.25 cm thick depth zone contains
at least 4 “cancers” and 4 “cysts.” Besides the 35 smaller
(5 mm diameter) spherical “cancers” and “cysts,” one large
(8 mm diameter) spherical “cyst” and one large hyperechoic
spherical “cancer,” the sharp points or even spiculations of
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l ic

TM fat : 7 mm

TM fat:7 mm

Pedestal anchor : 5mm

Scanning window

Pedestal anchor : 5mm

18 cm

5
cm

Scanning window

SIDE VIEW

TM glandular with exactly positioned lesions having
centers in one of two vertical planes separated by 2.5cm

FIG. 3. Schematic of phantom: Side view.
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FIG. 4. Schematic of phantom: End View. The black lines that are attached to the lesions are the borders of different central breast mimicking materials. The
two 18 × 3.9 cm lesion-embedded, vertical boundaries in this slab lie between the central glandular and side tissues.

some cancers are simulated here by connecting two cones
symmetrically at their 10 mm diameter bases.

2.C. Imaging system

We have utilized in this study a combined DBT/AUS imag-
ing system (see Fig. 5), developed by GE Global Research
with our collaboration and modifications.21 Image planes of
the DBT are parallel to the detector, while planes of the AUS
images are perpendicular to it, XY and XZ planes of Fig. 2,
respectively. The breast phantom is imaged sequentially with
DBT and AUS in the same mammographic geometry which
makes nearly exact registration between the two modalities
possible,23 except for distortion by acoustic refraction in this
case, as well as motion when imaging in vivo.

2.C.1. DBT imaging subsystem

The DBT imaging subsystem includes the x-ray source,
which moves in the large, curved cowling along Y direc-
tion, and the x-ray detector, in black under the brown ure-
thane breast phantom. The detector consists of a matrix of
1920 × 2304 pixel elements at a pitch of 0.1 mm. During the
DBT acquisition (see Fig. 6), the tube traverses an arc above
the stationary breast or phantom and detector. The system ac-
quires 21 projection images, equally spaced over a wide an-
gular range of 60◦ (−30◦ to +30◦) with ∼3◦ angular spacing.
The source moves in the lateral plane of the phantom with a
perpendicular source to detector distance of 85 cm. The dis-
tance from the source to XZ plane is about 11 cm, half of the
length of the phantom.

2.C.2. AUS imaging subsystem

The AUS imaging subsystem in the combined system in-
cludes an ultrasound transducer, its 2D scanning mechanism,
and a compression paddle. Whenever possible, patients im-
aged with AUS and DBT in the combined system, are also
scanned with a separate, dual sided ultrasound imaging sys-
tem with two transducers and two compression paddles to
achieve higher quality AUS.42 For ultrasound, there is a trade-
off between imaging depth and resolution since higher fre-
quencies, which provide better resolution, are attenuated dis-
proportionately. In this second system we employ interleaved,
compound B mode imaging from the top and bottom of the
phantom as the transducers move in synchrony in the mam-
mographic geometry. For each transducer, two sweeps along
the Y axis are performed in order to cover the two rows of
lesions (see Fig. 7). AUS resolution along the Y axis depends
on the step size of the transducer which is set to 0.1 mm in
this study. Results of the two sweeps are combined and im-
ages of the phantom from top and bottom views are achieved.
After that, registration and fusion of the two opposed views
are implemented so that a combined AUS imaging volume
is achieved.41 Compared to one-sided scanning in the com-
bined system, AUS images achieved with the dual-sided sys-
tem have higher resolution and less artifacts, which is benefi-
cial for extracting good gradient information. The dual sided
AUS system is employed in this study, as the DBT and AUS
image volumes of the rigid phantom can be registered well.
The AUS in future combined systems can be designed for
dual-sided scanning.

In this study, the inplane resolution (parallel to XZ plane)
of the AUS images is 0.14 × 0.14 mm. This does not match

TABLE I. Speed of sound of the materials in the breast-mimicking phantom.

Tissue-
mimicking
material Fat

Mixed fat and glandular,
Lo-G in Fig. 4

High speed of
sound glandular

Hypoechoic
lesions

Hyperechoic
lesions

Speed of
sound(m/s)

1412 1423 1455 1539 1550
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FIG. 5. Photograph of the combined DBT/AUS system.

the correspondent resolution of DBT images and hence regis-
tration between DBT and AUS is required.

2.C.3. Registration between DBT and AUS images
and segmentation of the AUS

For the DBT image improvement presented here, the DBT
image volume and AUS image volume should be registered
precisely. That is, the AUS volume should be aligned with
the DBT image volume so that the lesions and all other struc-

FIG. 6. Schematic of the DBT imaging subsystem.

tures have the same sizes and locations. This alignment is ac-
complished by image-based registration software, a task that
is trivial with this rigid phantom and usually is so with real
breasts in the combined system in the absence of motion be-
tween or during DBT and AUS.21 Registration of real breast
scans in different compressions, as between the combined
and dual-sided scanners is less consistent, but is made eas-
ier when there are lesions and other identifiable structures to
aid the registration. This latter registration task is still under
investigation43, 44 and the field of image volume registration is
progressing rapidly.

Breast Phantom

Top US transducer

Compression paddle 1

Bottom US 
transducer 

Compression paddle 2

Sweep 1 Sweep 2

Sweep 1 Sweep 2

S
w

ee
p

 1

S
w

ee
p

 2

US transducer

(a) Top View (b) End View

FIG. 7. Schematic of the dual-sided ultrasound system: (a). Top view. (b). End view. Arrows inside the phantom in (b) indicate the process of transmitting and
receiving ultrasound.
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2.D. Evaluation metrics

2.D.1. Signal difference to noise ratio

To compare the image quality of DBT and AUS-corrected
DBT in terms of contrast and noise, we define SDNR as

SDNR = S lesion − Sbg

σbg

, (22)

where S lesion is the average pixel intensity of the lesion, Sbg

is the average intensity of the image background, σ bg is the
standard deviation (STD) of the background pixel intensity.45

In this study, SDNR is calculated as a function of the distance
between the in-focus and the off-focus planes of a lesion in or-
der to investigate the improvement in those off-focus imaging
planes. For a certain slice, the region of interest (ROI) is lo-
cated approximately 1 mm inside the lesions. Meanwhile, the
H-shaped high-speed glandular tissue is chosen as the back-
ground because compared to the low-speed glandular, the re-
constructed pixel intensity of high-speed glandular is closer
to the lesions.

2.D.2. Artifact spread function (ASF)

The ASF is a metric which is intended to evaluate the Z di-
rection artifact and depth resolution of the reconstructed im-
ages and is a common method to investigate tomosynthesis
image quality.46, 47 It is a function of the distance (in the Z
direction) between the in-focus and off-focus planes and is
defined by

ASF(z) = Sblur(z) − Sbg(z)

Scenter(z0) − Sbg(z0)
, (23)

where z0 is the slice location of the in-focus plane of the le-
sion and z is the location of an off-focus plane. Scenter(z0) and
Sblur(z) are the average pixel intensities of the lesion in the
center slice and the blurred area in the off-focus planes. Sbg(z)
and Sbg(z0) are the average pixel intensities of the background
at different planes. Sblur(z) and Sbg(z) are measured in ROIs
at the same X-Y location of the in-focus slice.

3. RESULTS

In this study, the physical size of the virtual image vol-
ume we reconstruct is 20.16 cm in length, 10.48 cm in width
and 3.20 cm in thickness, which includes the first and second
lesion layers of the phantom. The distance from the bottom
of the virtual image volume to the bottom of the phantom is
1 mm. In order to investigate the performance of our method
in the depth direction, the slice interval is set to 0.1 mm in-
stead of 1 mm. Meanwhile, voxel size in the image plane
(planes parallel to the detector) is set to be 0.1 mm as well.
Therefore, the size of the volume we reconstruct is 2016
× 1048 × 320. As we mentioned in Sec. 2.A.1, the DBT
reconstruction using SART needs about 3 OS cycles, which
means updating the value of each voxel 63 times. However,
we have found that the gradient update process needs about
1000 iterations for each voxel. Since it is time consuming to
calculate matrix A during the iteration process, we execute our

Top View

End View

Side View

(a) (b)

(c)
(d) (e)

FIG. 8. Comparison between the DBT and AUS-corrected DBT images in
Z direction. (a)–(c) are all slice images showing different views of the 8 mm
cyst reconstructed using the conventional SART. (d) shows the corresponding
perfectly registered AUS slice. (e) shows the corresponding AUS-corrected
DBT image. Voxel size in the image plane and slice interval of all the images
are 0.1 mm. The DBT and AUS images are all shown in the same scale to
make a better comparison. Distance from the center slice (a) to the bottom of
the phantom is 13.3 mm.

algorithm by splitting Eq. (17). That means after one update
for a voxel using the first term of the right side of Eq. (17),
the same voxel is updated 15–20 times using the second and
third term. With this strategy, the algorithm converges to a
fairly good result, which will be presented and quantitatively
analyzed further in Secs. 3.A and 3.B.

3.A. Reconstruction results

Figure 8 shows the comparison between the DBT images
using traditional SART method and our proposed method. In-
focus DBT plane of the first layer where the lesions have the
clearest boundaries is shown in Fig. 8(a). It should be no-
ticed that the rippling in the DBT images can be removed
with appropriate refinements of the reconstruction algorithm.
However, tracking down those refinements was not consid-
ered necessary for this study and was not pursued.

As we mentioned above, the DBT images have poor qual-
ity along the Z axis, such as blurry edges, serious artifacts, and
low resolution. Note the overlapping effect of the 5 mm lesion
and 8 mm lesion in Z direction reconstructed by conventional
SART [marked by the arrows in Fig. 8(c)]. The artifact of the
8 mm cyst and the 5 mm cancer connected with each other
makes it difficult to distinguish the two lesions. However, with
the aid of AUS images [Fig. 8(d)], the reconstruction image
of the two lesions using the proposed algorithm has sharp and
clear edges [see Fig. 8(e)]. Additionally, the high-speed glan-
dular region [left side of Fig. 8(e)] is still sharply delineated
from the low speed glandular region compared to Fig. 8(d),
keeping the advantages of DBT imaging.
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9.9mm 11.2mm 13.3mm 15.1mm 16.5mm

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

y

x

FIG. 9. Comparison of 5 slice images through the 8 mm cyst [marked with
the dotted box in Fig. 8(a)] for original DBT (top row) vs AUS-corrected
DBT (bottom row). The third row shows the physical distance from the ob-
served slice to the bottom of the phantom. Voxel size is 0.1 × 0.1 mm.

If we observe that in the images that are parallel to the
detector, the poor Z axis resolution is embodied as the fuzzy
boundary when the slice number deviates from the center slice
[Figs. 9(a1)–9(a5)]. The edge of the lesion in the off-focus
planes gets blurred rather than just shrinking. In contrast, us-
ing the deduced iterative formula introduced in Sec. 2.A.2, the
corrected DBT images have much clearer edges compared to
the conventional one [Figs. 9(b1)–9(b5)].

To describe quantitatively, normalized line profiles along
the Y direction are obtained for both DBT and AUS-corrected
DBT images. Here, the line profiles of both the in-focus and
the off-focus planes are plotted in order to compare the edge
enhancement (Fig. 10). As indicated by the arrows in Fig. 10,
the AUS-corrected DBT clearly gives a much sharper profile.

3.B. Quantitative evaluation

In the Y direction of Figs. 9 and 10, sharper edges are
shown on the images and the profiles (a) and (b), which are
off the central axis. However, the ultrasound, with its lowest,
elevational, resolution, guided the edges to be closer together
than expected. The measured and expected lesion diameters
at the full width at half max for these pixel value profiles are
given in Table II.

TABLE II. Measured diameters in Fig. 10.

Image plane
Dist to center

(mm)
Expected dia

(mm)

Measured
corrected

(mm)

Measured
original
(mm)

a 3.4 4.52 3.89 6.82
b 0 8.00 7.77 8.06
c 3.2 4.80 5.17 6.73

3.B.1. Signal difference to noise ratio

The SDNR is calculated as a function of the distance be-
tween the center slice and off-focus slices of the 8 mm cyst
(see Fig. 11). ROI size inside the cyst decreases as the cyst
shrinks in the off-focus slices, both for the calculation of DBT
and AUS-corrected DBT images.

3.B.2. Artifact spread function

The ASFs of the DBT and corrected DBT are measured
using the method introduced in Sec. 2.D.2. Figure 12 shows
the ASFs of a 5 mm cyst in the second layer reconstructed
by the two methods. The diameter of the ROIs inside the cen-
ter slices of the 5 mm cyst and inside off-focus blur and the
background is 4 mm (40 pixels). The proposed method gives
much better ASF than the traditional method, indicating less
Z artifact. The FWHM Z length of the AUS peak is 3.3 mm
corrected and 6.7 mm uncorrected.

4. DISCUSSION

In comparing the reconstructed DBT results (Figs. 8
and 9), visual improvements using the proposed method are
obvious. The artifact along the Z-axis is highly reduced,
minimizing or eliminating the overlapping effect on the two
nearby lesions presented. The long tail of the ASF for the
uncorrected reconstruction (Fig. 12) no longer exists. Its

FIG. 10. Normalized line profiles of the 8 mm cyst along Y direction. Distance from the bottom of the phantom to slice: (a) 9.9 mm (b) 13.3 mm, and
(c) 16.5 mm. The black vertical lines show the actual limits of the 8 mm cyst in each plot.
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FIG. 11. SDNR of the 8 mm cyst reconstructed in different slices. The solid
line indicates the traditional DBT and the dashed line indicates the proposed
AUS-corrected DBT. “0” in the x-axis denotes the center slice and the left
side of “0” is the slices under the center slice.

uncorrected FWHM is twice that of the ASF peak of the cor-
rected reconstruction. The almost sixfold improvement in le-
sion SDNR shown in Fig. 11 is perhaps the most important
improvement made possible by this partial correction for the
reduced information available in limited angle tomography.
This is from the higher brightness in the lesion as well as
reduced noise in the lesion and background (Figs. 8 and 9).
This is true for the in-focus, center, but particularly for the
off-center planes of the lesion.

Despite the advantages discussed above, the proposed
method still exhibits some limitations. High quality AUS im-
ages will yield better AUS-corrected images using the pro-
posed method. However, some kinds of lesions such as can-
cers show irregular margins and posterior shadowing. Also,
availability of coregistration between the two modalities is
still limited. More image processing can and should be ap-
plied to the AUS images to make sure that the gradient in-
formation gained from the AUS images is as accurate as pos-
sible. Anatomical noise may also complicate the problem by
making it more difficult to extract the gradient information.

FIG. 12. ASFs of the 5 mm cyst measured from the traditional DBT and
AUS-corrected DBT. The solid line indicates the traditional DBT and the
dashed line indicates the AUS-corrected DBT.

Although it can be chosen manually, automatic selection of
the optimum gradient information needs further study.

Furthermore, the proposed method is intended to bring
useful information from AUS images to DBT images, so it is
also important to decide whether the information from AUS
images is actually useful. For example, for small microcalcifi-
cations that often do not appear in AUS, the proposed method
may result in a conspicuity reduction. A local application of
the proposed method may be helpful in minimizing this prob-
lem. Other reconstruction techniques may also be helpful to
improve DBT using the proposed method as long as accurate
edge information can be acquired.

Although this unique prototype system has the potential
to present better image reconstructions compared to a con-
ventional, single modality system, there remains unresolved
issues regarding the clinical utility and commercial potential
of such a hybrid system.

5. CONCLUSIONS

This study proposes a new method to improve the quality
of DBT images. By using the a priori information from cor-
responding AUS images and introducing a new loss function,
the new reconstruction result of DBT images does much bet-
ter than the traditional SART in noise reduction, edge preser-
vation, increased resolution, and decreased artifacts along the
Z axis, as evaluated through quantitative analysis. Further-
more, the signal to noise ratio of the glandular materials and
the tissue-mimicking fat between and around lesions are in-
creased to benefit identifying the lesions and determining
their boundaries. By improving the resolution of possible can-
cers from the over- or underlying areas of dense fibroglandu-
lar or scar tissue, this method is of potential significance for
the development and application of DBT imaging in clinical
diagnosis.
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