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The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume ex-
cluded by solute “obstacles” and (2) long-range interactions between those obstacles and the diffuser.
Increasing excluded volume reduces transport of the diffuser, while long-range interactions can ei-
ther increase or decrease diffusivity, depending on the nature of the potential. We previously demon-
strated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory
that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional
anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW)
and electrostatic interactions between obstacle and a diffuser become significant and can strongly
influence the latter’s diffusivity, which was neglected in our original model. Here, we extend this
methodology to include a fixed (time-independent) potential of mean force, through homogenization
of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environ-
ments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance
or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we
show that the observed diffusion rate may be reduced independent of non-specific electrostatic and
vdW interactions by treating obstacles that exhibit specific binding interactions as “buffers” that ab-
sorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution
of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures
with atomistic-scale resolution can account for electrostatic influences on substrate transport. This
approach offers new insight into the influence of molecular-scale, long-range interactions on trans-
port of charged species, particularly for diffusion-influenced signaling events occurring in crowded
cellular environments. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4873382]

I. INTRODUCTION

The diffusion of small molecules in the cell cytosol is
well-known to deviate from rates observed in dilute solu-
tions, due to diffusional barriers that may include crowders,
such as proteins, DNA, or large macromolecules, or bound-
aries arising from organelles or the cell membrane1 (reviewed
in Ref. 2). A crowded environment manifests small accessi-
ble volume fractions compared to bulk solutions, as well as
long-range electrostatic and van der Waals (vdW) interactions
between diffusers and obstacles, that together conspire to
determine effective diffusion rates.1, 3, 4 For such regimes,
macroscopic models of hindered diffusion that reflect
microscopic-scale phenomena are particularly insightful for
understanding biological signaling. Particle-based methods
such as Brownian dynamics (BD) and molecular dynam-
ics simulations have traditionally been used to explore such
interactions in crowded cellular environments (reviewed in
Ref. 5), but typically at a computational expense that is or-
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ders of magnitude greater than continuum approaches, which
limits their application to small systems.

Homogenization theory, on the other hand, is a contin-
uum approach for modeling diffusion in obstructed domains,
and has been applied successfully to biological systems in-
cluding cardiac ventricular myocytes6, 7 and brain tissue.8

Homogenization is a mathematical method for “spreading
out” the influence of micro-scale obstacles on macro-scale
transport, namely, by yielding a modified diffusion constant.
Generally, the diffusion constant is dependent on the ac-
cessible volume fraction9 between obstacles, as well as the
strength of diffuser/obstacle interactions.10, 11 To our knowl-
edge, however, atomistically detailed descriptions of impor-
tant diffuser/obstacle interactions, namely, long-range elec-
trostatic and van der Waals forces, have not been considered
in these methods, which limits their applicability for model-
ing diffusion in condensed molecular environments like the
cell cytosol.

Nevertheless, progress has been made in including elec-
trostatic forces in homogenized diffusion models, which
suggest the potential for including other long-range in-
teractions. Schmuck et al., for instance, homogenized the
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Poisson-Nernst-Planck (PNP) equation to describe the diffu-
sion of charged species when the diffusion and electric po-
tential are strongly coupled.12–14 There, the coupled diffu-
sion and electric potential equations were solved for each
time step, which provided the time-evolution of the concen-
tration and electric driving force. When the charged diffuser
concentration is small relative to the solvent ionic strength,
the electro-potential may be treated as time-invariant, permit-
ting simpler models of electro-diffusion. To this end, Bour-
batache et al.15 homogenized an electro-diffusion equation
for the weakly coupled case and demonstrated its ability to
capture hindered diffusion of chloride ions in suspensions of
negatively charged colloids. However, in order to account for
non-electrostatic interactions such as van der Waals interac-
tions, further generalization of these approaches is necessary.

For this purpose, we consider the Smoluchowski equa-
tion as a well-established model for the time-evolution of
a diffuser probability density subject to a concentration
gradient and an arbitrary potential of mean force (PMF).
The Smoluchowski equation has already been shown to be
a powerful tool for modeling diffusion-controlled processes
in atomistically detailed environments, such as the binding
of small molecules to protein receptors given electrostatic
interactions16–19 or recessed binding sites.20 Hence, by rep-
resenting diffuser/obstacle interactions through an arbitrary
PMF in the Smoluchowski equation, we can estimate the
influence of such interactions on effective rates of transport
in crowded molecular systems. In this article, we propose and
implement a general homogenized Smoluchowski model,
thus permitting the up-scaling of arbitrary, microscopically
defined PMFs to transport phenomena in atomistic-resolution,
crowded systems.

We first derive a homogenized Smoluchowski equation
(HSE) assuming that the diffusion constant and the poten-
tial of mean force act on particles at the molecular (or
“micro”-) scale in a manner decoupled from the macro-scale.
This derivation leads to a numerical estimate of the effec-
tive diffusion constant at the macro-scale. We next validate
the HSE model against “hard cylinders,” for which analyti-
cal bounds exist, as well as against published homogenized
electro-diffusion models.10, 15 We then examine the interplay
of vdW and electrostatic forces between a lattice of immo-
bilized spherical proteins and diffuser by parameterizing the
HSE with a Derjaguin and Landau, Verwey and Overbeek
potential (DLVO). We finally apply this methodology to an
atomistic representation of a globular protein (Troponin C)
and its electrostatic potential. We find a close interplay be-
tween molecular structure, the volume fraction excluded by
molecules in solution, as well as specific and long-range non-
specific interactions that ultimately determine the effective
diffusion rate. Our approach offers new insight into the role
of molecular-scale interactions on macroscopic diffusion in
physiologically relevant systems.

II. METHODS

A. Theory

Given a diffusional domain �, portrayed in Figure 1, and
an arbitrary potential of mean force acting on the diffuser

FIG. 1. (a) Schematic of crowded domain, �, represented by a lattice of
diffusional barriers. (b) A unit cell, �ε , for the homogenized Smoluchowski
equation.

(red dot), ψ : � → R, the Smoluchowski problem seeks
to find a concentration function c : � × [0, tmax] → R such
that

∂c

∂t
= ∇ · Doe

−βψ∇(eβψc) − f on �, (1)

where Do is a known diffusion tensor for unobstructed diffu-
sion, possibly dependent on x ∈ �, β := 1/kBT with kB the
Boltzmann constant and T the temperature. The forcing term
f represents the net effect of any ionic sinks or sources in �.
We assume that � has two length scales of interest, x and
y := x/ε, which refer to the macro- and micro-scales, respec-
tively. Here, ε is small compared to the dimensions of � and
it is assumed that � is periodic at the y scale; we denote
by �u a periodic unit cell at the y-scale with �ε ⊂ �u the
non-occluded subregion. We assume that Do and ψ are es-
timated at the y-scale by theoretical models3, 21 or by phys-
ical experiments;22 the y-scale unobstructed diffusion tensor
is denoted Dε

o(y). This yields the steady-state problem: find
c̃ : �ε → R such that

∇ · D̃ε
o∇ c̃ = f on �ε, (2)

where D̃ε
o(y) := Dε

o(y)e−βψ(y) and c̃(y) := eβψ(y)c(y). A de-
tailed derivation is presented in the supplementary material.51

Since (2) is a diffusion-style problem, we apply the standard
homogenization approach:6 expand c̃ in terms of powers of
ε (i.e., c̃ = ∑

i c̃iε
i) and write ∇ as a scaled gradient opera-

tor (i.e., ∇ = ∂x + ε−1∂y). This allows the separation of (2)
into two steady-state problems at the y-scale on �u (one at
order ε−2 and one at order ε−1) as well as a time-dependent
problem at order ε0. The derivation, summarized in Ref. 6 for
a standard diffusion equation, ultimately yields coefficients
d̃ij of the effective (obstructed) diffusion tensor D̃. The ef-
fective diffusion tensor may be used in place of Do in (2)
at the x-scale, or a time-dependent equivalent of (1), such as
∂
∂t

c̃e−βψ = ∇ · D̃o∇(c̃). In this study, our focus is on estimat-
ing the effective diffusion constant, which is computed from
the integral at the y-scale via

d̃ij = 1

|�u|
∫

�ε

[
D̃ε

o(y)
]
ij

(
δjk + ∂χ̃k

∂yj

)
dy, (3)
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where |�u| is the volume of the unit cell and χ̃k are correctors,
periodic on �ε , that are the solution to the problem: find χ̃ :
�ε → R3 such that

∂

∂yi

[
D̃ε

o(y)
]
ij

(
δjk + ∂χ̃k

∂yj

)
= 0, on �ε,

[
D̃ε

o(y)
]
ij

(
δjk + ∂χ̃k

∂yj

)
· n̂i = 0, on 	ε := ∂�ε.

(4)

Define χ := e−βψ(y)χ̃ . For non-interacting cases, the poten-
tial ψ is zero, and thus χ = χ̃ , which yields the conventional
homogenized diffusion model for obstructed diffusion. The
effective diffusion tensor coefficients d̃ij at the x-scale are es-
timated by first numerically approximating the solution func-
tions χ k defined by (4) and then evaluating (3). Further de-
tails of the potentials used for ψ appear in the supplementary
material.51

B. Numerical solution of the homogenization equation

We generated meshes for cylindrical and spherical ob-
stacles, as well as the globular protein Troponin as described
in the supplementary material.51 Using these meshes, we nu-
merically solve the homogenized diffusion partial differential
equation (PDE) for χ̃k in (4) and compute the effective diffu-
sivity coefficients d̃ij from (3) using the finite element solver
FEniCS23 as described in Ref. 24. Numerical solution via the
finite element method permits the use of meshes with intri-
cate and irregular geometrical features typical of biological
molecules. In our previous work,24 we validated our imple-
mentation for the standard diffusion equation against bench-
marks including Hashin-Shtrikman25 bounds for media with
cylindrical inclusions. The homogenized Smoluchowski PDE
used here was formulated as described previously, except that
we replace a constant Dε

o(y) with D̃ε
o(y) as described above,

where the latter term is dependent on the potential of mean
force (ψ). For the PMF we used potentials computed from
either the nonlinear Poisson-Boltzmann equation or the Der-
jaguin and Landau, Verwey and Overbeek model modeling
electrostatic interactions alone or both van der Waals and
electrostatics, respectively. Details of these PMFs are pro-
vided in the supplementary material,51 while relevant param-
eters are explained in the text. All other parameters related
to the solution of the homogenized PDE pertain to the solver
configuration, which are left at their default values in FEn-
iCS. We assume surfaces at the mesh outer boundary be-
long to the unit cell (	\	ε); all other boundaries are imper-
meable and thus belong to 	ε . We solve the weak form of
(4) using a piecewise linear Galerkin finite-element method
with the default direct linear solver. The solution is then
applied to (3) to yield the diagonal components d̃ii of D̃.
We report the effective diffusion constant by its normalized
value (unitless), D := D̃/Do. The protocol was validated for
the inert diffuser in Ref. 24 and for charged cylinders in
the supplementary material.51 The code will be released at
https://bitbucket.org/huskeypm/smolhomog.

III. RESULTS AND DISCUSSION

A. Validation of model using a cylindrical periodic
system

We first explain the validation of our model via estab-
lished theories and then discuss the new insights our model
provides to biological modeling. Our initial validation con-
firms that the HSE reproduces the effective diffusion constant
predicted by Hashin-Shtrikman (HS) theory for a regular lat-
tice of cylinders.9, 25 The HS theory provides upper and lower
bounds for the effective diffusivity perpendicular to the par-
allel cylinders, based on the accessible volume fraction, φ,
where 0 ≤ φ ≤ 1. In our previous study,24 we predicted ef-
fective diffusion constants perpendicular to a lattice of cylin-
drical myofilaments using a conventional homogenized diffu-
sion equation without an applied potential. We found that our
predictions were in quantitative agreement with the upper HS
bound, D = 2φ/(3 − φ), and in qualitative agreement with ex-
perimental measures of anisotropic small molecule diffusion
within myofibrils.26 Therefore, we use this upper HS bound to
validate our HSE model, where instead we replace the explicit
cylinder boundaries (to which the Neumann condition on 	ε

in (4) would normally be enforced) with boundaries implicitly
represented by a potential of mean force. This PMF is defined
by a hard-sphere potential for r ≤ R and ψ = 0 for r > R,
where R [m] is the variable cylinder radius, which in essence
excludes particles from within the cylinder boundaries, anal-
ogous to an explicit cylindrical obstacle.

By showing that predictions from this latter approach
adhere to well-established analytical bounds for a lattice of
cylinders, we provide evidence that the HSE captures the ap-
propriate influence of potentials of mean force on the effective
diffusion constant, D. In Figure 2, we indeed find that D (open
circles) decreases with decreasing accessible volume fraction,
φ, in quantitative agreement with the HS bound (dots). To

FIG. 2. Predicted normalized effective diffusion constants (D) as a func-
tion of accessible volume fraction (φ), where D = 1.0 signifies equivalence
with an arbitrary bulk diffusion constant. For a box-shaped, repulsive po-
tential of mean force (PMF) representing a cylindrical obstacle (open cir-
cles), the quantitative agreement with the analytical Hashin-Shtrikman (HS)
upper bound (dots) indicates that the homogenized Smoluchowski equation
(HSE) with a hard-wall PMF sufficiently describes the influence of obstacles.
Diffusion constants for a negatively charged diffuser (z = −1) with neutral
(σ = 0, black) and electro-negative explicit cylinders (σ < 0, blue) shows
that the HSE using an electrostatic potential quantitatively agrees with results
from Ref. 27 which showed that repulsive interactions slow diffusion.

https://bitbucket.org/huskeypm/smolhomog
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understand how the effective diffusivity varies with respect
to the scale of the potential, we report in Figure S4 of the
supplementary material,51 for a fixed cylinder radius the ef-
fective diffusion coefficients, given potentials ranging from
repulsive (ψ = 10 [kcal mol−1]) to attractive (ψ = −6 [kcal
mol−1]). We note that V > 2 [kcal mol−1] is sufficient to re-
capture the HS limit for the given volume fraction and as ψ

→ 0, the unhindered (D = 1) diffusion constant is recovered.
These results confirm that diffusion obstacles may be repre-
sented by potentials of mean force using the HSE formalism
and that the diffusivity scales inversely with the amplitude of
the repulsive PMF. Interestingly, we also observe diffusion
rates greater than 1 (the normalized bulk diffusion rate) for
attractive potentials, which will later be discussed in the con-
text of electrostatic interactions.

We next validate our HSE approach using an electro-
diffusion model established by Bourbatache et al.27 In Fig-
ure 2, we evaluate D for a diffusing anion (z = −1) given
a range of electronegative surface charge densities, σ [C
m−2], distributed uniformly on an explicit cylinder with radii
of up to 50 Å. We estimate the resulting electrostatic po-
tential of mean force by numerical solution of the non-
linear Poisson-Boltzmann equation (see the supplementary
material51), which serves as input for the ψ term in the HSE
model. We observe that the diffusion coefficients are reduced
as the electro-repulsion increases with more negative σ values
and smaller accessible volume fractions. For instance, with a
surface charge density of 0.05 [C m−2], D = 0.6 at φ = 0.8
and D = 0.15 at φ = 0.4, in quantitative agreement with Fig-
ure 9 of Bourbatache et al.27 The slowing effect of repulsive
interactions was previously attributed to an increased effec-
tive radius of the obstacles due to exclusion by the repulsive
force, which reduces the accessible volume fraction.28 These
findings not only validate our model, but also suggest the util-
ity of the HSE framework in modeling small-molecule dif-
fusion within lattices of charged cylinders, such as the nega-
tively charged thick (myosin) and thin (actin) filaments com-
prising muscle cell myofibrils29 that we previously examined
in the absence of electrostatics.

B. HSE model with electrostatic and van der Waals
potential

The HSE formulation permits arbitrary potentials of
mean force between a diffuser and immobile obstacles that are
periodic on a micro-scale domain, which could be invaluable
for modeling small-molecule transport in colloidal solutions
or densely packed globular proteins in the cell cytoplasm. We
explore diffusion in an analogous environment in this section,
where we represent a crowded cytosol as a lattice of spheri-
cal proteins, which impact small molecule diffusion through
electrostatic and van der Waals interactions. To capture the
dominant vdW and electrostatic interactions common to these
environments, we use the DLVO model30 given by

ψ(rdo) = 1

2
RoZe−κrdo − ARo/12rdo, (5)

where rdo [m] is the diffuser/obstacle separation, Ro [m] is the
diffuser radius, κ [m] is the inverse Debye length, A [J] is the

FIG. 3. Effective diffusion constant, D, for coions (red), counterions (blue),
and neutral diffusers (black) for a unit cell with a 12.5 [Å] negatively charged,
spherical protein. Attractive counterion/protein interactions have faster dif-
fusion relative to neutral and negatively charged diffusers. Inclusion of at-
tractive van der Waals interactions (+VDW) through the HSE with a DLVO
potential increases the effective diffusion constants.

Hamaker constant, and Z [J m−1] is the interaction constant
specific to sphere-sphere or sphere-surface interactions (see
Figure 14.10 in Ref. 30). The first and second terms describe
screened electrostatic and attractive vdW interactions, respec-
tively, between the diffuser and the obstacle. We validate our
implementation of this DLVO model in Fig. S3 of the supple-
mentary material.51

While a faithful representation of the biological cell
should include unit cells with a distribution of protein types,
sizes, shapes, and surface potentials,31 as a starting point we
assume a uniformly spaced protein lattice consisting of a
small spherical protein with 12.5 [Å] radius of gyration and
net charge of z = −3. The spherical protein was centered in a
unit cell whose edge-lengths were varied to achieve volume
fractions typical of a crowded cellular environment (0.19–
0.27 excluded31). Assuming a physiological ionic strength of
150 mM for a monovalent ion pair, the protein-spacing be-
tween unit cells is comparable to the 7.8 [Å] Debye length
within which electrostatic interactions are significant.

Similar to the charged cylinders, in Figure 3 we demon-
strate for a lattice of spherical protein that D generally de-
creases for decreasing volume fractions and that repulsive
interactions (red) further reduce diffusivity. First, assum-
ing negligible vdW interactions (A = 0), we observe that
attractive charge interactions (blue, solid) yield increased
effective diffusion rates relative to the electrically neutral
(ψ = 0) case (black, solid) and the repulsive charge inter-
actions case (red, solid). We next consider attractive vdW in-
teractions in the DLVO model. Since the Hamaker constant
for protein-protein interactions is typically 1 [kT] or greater,32

we assume a smaller value of A = 0.2 [kT] to approximate
the vdW interaction between a protein and small diffuser. We
find that attractive vdW interactions consistently increase D
independent of diffuser charge, and the effects are most sig-
nificant at small volume fractions where the region of signif-
icant obstacle/diffuser attraction represents a greater percent-
age of the free volume. Furthermore, D was maximized for
the positively charged ion at φ = 0.9 without vdW interac-
tions, where the accelerating attractive potentials are coun-
terbalanced by the hindrance from a decreasing accessible
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volume fraction; this maximum shifts to smaller volume frac-
tions (φ = 0.8) as the attractive vdW interactions are added.
Hence, it is apparent that the electrostatic potential and acces-
sible volume fraction could be tuned to promote or disfavor
the diffusion of charged species in a fixed lattice of molecular
obstacles.

These findings of accelerated diffusion given attractive
interactions concur with predictions from a homogenized
electro-diffusion equation applied to a layered geometry of
charged slabs,10 between which accelerated and slowed dif-
fusion rates were predicted for counter- and co-ions, respec-
tively. Similarly, Brownian dynamics simulations of diffu-
sion within a lattice of negatively charged, immobile obsta-
cles also indicated attractive particles experienced faster dif-
fusion than repulsive particles.28 These theoretical results are
moreover consistent with measurements of the limiting cur-
rent for cationic and anionic solutions through suspensions
for negatively charged, sulfonated silica beads33 which evi-
denced accelerated diffusion for attractive electrostatic inter-
actions that diminished with increasing ionic strength. Fur-
ther quantitative comparison against such experimental data
would require atomistic-resolution details of the silica bead
lattice and a model for the interaction potential between
the lattice and the ionic diffusers that to our knowledge is
unavailable.

We suspect that the accelerated diffusion arises due to a
macroscopic concentration gradient imposed on the micro do-
main by the homogenization convention. This gradient gives
rise to a steady-state situation in which the diffuser concen-
tration differs on opposite sides of the unit cell. Since more
particles are available to diffuse from the higher concentra-
tion side toward the attractor in the cell interior, a net flux
due to the attractive interaction may be observed. In support
of this interpretation, in a previous study34 we considered an
analogous configuration, in which diffusion of an anionic re-
action intermediate between two positively charged reaction
centers was modeled. In that model, one reaction center pro-
duced an intermediate while the other absorbed the interme-
diate, yielding a concentration gradient at steady-state. When
the region between the reactive centers was bridged by attrac-
tive “crowders,” we found that net rate of transport toward
the absorbing center, as measured by the association rate, was
faster relative to inert or repulsive crowders. This agrees with
our predictions by homogenization theory for attractive obsta-
cles. In the absence of a concentration gradient, e.g., in equi-
librium conditions, we expect that the effective diffusion rate
is determined by the amplitude of the potential fluctuations,
or “roughness,” which universally acts to slow the diffusing
particle.35

The notion of cations diffusing faster in the presence of
negatively charged obstacles seems counterintuitive, in light
of studies such as from Hou et al,36 whereby it was shown
by pulsed-field nuclear magnetic resonance (NMR) imaging
that specific ionic interactions between a diffusing cation and
a negatively charged sulfonated surface slowed diffusion. To
explain this apparent discrepancy, we resort to a common
model of small-molecular diffusion in the presence of buffers
that selectively bind a diffuser.37, 38 Assuming that the specific
cation/surface interactions are short-ranged (relative to vdW

FIG. 4. Predicted effective diffusion constants due to specific binding inter-
actions demonstrate that increased binding strength (in terms of the dissocia-
tion constant, KD) can depress counter ion diffusion relative to co-ion.

and electrostatic interactions) and reduce the diffuser concen-
tration through a dissociation constant KD [μM], the effective
diffusion constant Dbuff can be described by

Dbuff = D

1 + [B]/KD

, (6)

where [B] is the concentration of buffer B.37, 38 From the equa-
tion it is clear that both increasing densities of B on the lattice
(increased [B]) and stronger specific binding interactions (de-
creased KD) reduce the overall diffusion rate, Dbuff, from its
unbuffered value, D.

In Figure 4, we compare the effective diffusion constants
given very weak (KD � 1 [μM]) to comparatively strong spe-
cific binding interactions (KD ≤ 1 [μM]) acting on a cationic
diffuser. Assuming that [B] = 1.0 [μM], a modest, but physi-
ologically reasonable concentration, we observe that stronger
binding interactions (reduced KD) depress D for the counter
ion. At KD = [B] the counter ion and co-ion curves intersect
near φ = 0.8; for volume fractions below this critical value, at-
tractive counter ion diffusion exceeds that of co-ions, whereas
the opposite is true above this value. Thus, we believe the dis-
parity between accelerated effective diffusion rates for attrac-
tive diffuser/obstacle interactions predicted by us and others11

and experiments demonstrating the opposite, can be partially
explained by accounting for the effect of specific-binding in-
teractions on the effective diffusion rate. An additional con-
sideration could include how the distribution of obstacles an-
neals when subjected to diffusers of different charge polarity,
as it has been numerically shown that diffusion rates differ
between immobile and annealed obstacle lattices.28 Although
it is beyond the scope of this paper, a detailed model that in-
cludes estimates of the specific cation/obstacle binding and
annealing of the obstacle lattice could provide further insight
into the conditions required to favor co-relative to counter-ion
diffusion, as well as possible tuning parameters.
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FIG. 5. Predicted diffusion constants for positively charged (blue) and neg-
atively charged (red) particles diffusing around the charged globular protein
Troponin C (TnC) at a range of ionic strengths. Dots and lines represent uni-
formly distributed and localized charges, respectively. Top inset: Prediction at
physiological ionic strength (150 mM) for TnC (black) and based on Hashin-
Shtrikman bound (orange) Bottom inset: Projection of χ satisfying (4) for
TnC. The blue and red tones indicate the extent of diffusional hinderance
imposed by TnC.

C. Simple model of diffusion in a crowded
environment using a realistic protein structure

We finally extend the previous protein lattice model by
using an atomistic detailed molecular surface, upon which
the protein surface charge is nonuniformly distributed. In do-
ing so, we can examine the extent to which molecular-scale
details of individual protein obstacles can influence small-
molecule diffusion. In lieu of the DLVO model in Sec. III
B, here we use an electrostatic PMF from numerical solu-
tion of the Poisson-Boltzmann equation, since we assume
that the van der Waals interactions between the diffuser and
protein are negligible. We report effective diffusivities us-
ing a lattice of obstacles represented by the N-terminal do-
main of Troponin C (TnC), based on structures available
in the Protein Databank (PDB ID: 1SPY39). Although TnC
has an overall net negative charge, the surface charge is lo-
calized toward the negatively charged amino acids respon-
sible for coordinating metals (namely, Asp 67 to Glu 76).
Given its estimated 12.5 [Å] radius of gyration, we create
a 40 × 40 × 40 [Å] unit cell to yield a 70% accessible
volume fraction comparable to a crowded cellular environ-
ment. In the bottom sub-panel of Figure 5, we show the
TnC molecular surface, upon which a χ x solution satisfying
(4) is projected. We note that the blue (χ x < 0) or red (χ x

> 0) shading indicate regions of space where diffusion gener-
ally deviates from the bulk. In the top sub-panel, we demon-
strate that the effective diffusion constant predicted with the
atomistic resolution geometry using the HSE protocol (D =
0.70, black) is in close agreement with the diffusivity pre-
dicted using the HS bound for a spherical inclusion (D = 0.6,
orange using D = φ/(3 − φ)), given a neutral diffuser and
a volume fraction we determined directly from the protein
geometry in our unit cell. The agreement between these two
models indicates that under circumstances where interactions
between diffuser and obstacle are insignificant, the diffusivity

for globular proteins can be analytically computed based on
a reasonable estimate of the protein’s volume. In a previous
study, we found similar agreement with the HS model for dif-
fusion in cylinder lattices given atomistic resolution details of
myofibril proteins.24

In the main panel, we show the diffusivities for a diva-
lent cation (blue), anion (red), and a neutral diffuser versus
ionic strength for two choices of charge density: (1) a uniform
charge density of σ = −0.01 [Cm−2] (dots) and (2) localiza-
tion of the charge density toward the binding domain (solid).
Our results indicate that the non-uniform charge distribution
leads to more extreme values of the diffusivity relative to the
uniform charge distribution, with larger or smaller diffusivi-
ties for the cation and anions, respectively. These findings il-
lustrate that both structural details of the inclusion and the lo-
cal charge distribution are important determinants of effective
diffusion rates. Hence, detailed descriptions of diffuser trans-
port in crowded biological environments may require models
that include a representative range of protein sizes, densities,
and charge distributions in high detail.

D. Limitations

We review several assumptions in our model that could
be addressed to better generalize the HSE framework. The
HSE assumes that the diffusing species evolves according to
a concentration gradient and static potential of mean force in
the over-damped limit. The static potential assumes that the
distribution of the protein charges and solvated co-ions (spec-
tator ions) are fixed relative to the diffusion timescale of the
diffuser. Additionally, the HSE assumes that diffusing ions
are non-interacting and do not significantly impact the elec-
trostatic field, which is typically appropriate when spectator
ions are in equilibrium and the diffuser is dilute. When the
co-evolution of ions and the associated electrostatic field is
significant, more elaborate models such as the PNP equation
may be used, for which recent homogenization prescriptions
may be well-suited.12

We have also assumed hydrodynamic interactions (HI)
are negligible in our simulations given the small sizes as-
sumed for the diffusing particles.40 In the event that larger
particles are considered, for which HI may be significant,41, 42

one may resort to the Rotne-Pragner HI model,43 which yields
a position-dependent diffusion tensor for which the diagonal
and off-diagonal terms represent self- and inter-particle diffu-
sivities. In principle, this tensor could be used to parameterize
the spatially dependent Dε(y) term of the HSE, under the as-
sumption that the obstacles are fixed relative to the diffuser.
Other spatial considerations include the finite size of ions and
anomalous diffusion, which may be addressed through ho-
mogenization of fractional diffusion models44 and finite-ion
size models.45

IV. CONCLUSIONS

Our simulations support the common belief that long-
range interactions and specific interactions between ob-
stacles and charged species serve important roles in
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diffusion-influenced events in biological environments. The
homogenization of the Smoluchowski diffusion equation el-
egantly captures these regimes and thus provides a power-
ful, multi-scale framework for understanding the molecular
origins of macroscopic diffusion. Furthermore, the general-
ity of the Smoluchowski equation for potentials of mean
force arising from a variety of molecular interactions suggests
that its homogenization may bridge a variety of diffusion-
coupled phenomena across spatial scales, especially where
densely packed proteins and macromolecular structures are
concerned. Such examples could include metabolic fluxes
within the sarcomere46, 47 and “compartmentalized” cyclic
adenosine monophosphate (cAMP) signaling via localized A-
kinase anchor proteins (AKAP) complexes.48 We, further-
more, see the prospect of using the HSE to describe molecular
phenomena well-represented by low-dimensional diffusional
processes subject to a potential of mean force, such as the
sliding of proteins along DNA.49, 50
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