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Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their
performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that
modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These at-
tenuators can reduce dose while improving key image quality metrics such as peak or mean variance.
In each view, the attenuator presents several degrees of freedom which may be individually adjusted.
The total number of degrees of freedom across all views is very large, making many optimization tech-
niques impractical. The authors develop a theory for optimally controlling these attenuators. Special
attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individu-
ally, but the authors also investigate and compare three other, practical attenuator designs which have
been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double
wedge attenuator.
Methods: The authors pose and solve the optimization problems of minimizing the mean and peak
variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this
problem can be solved in simple, closed form. For other attenuator designs, the problem can be de-
composed into separate problems for each view to greatly reduce the computational complexity. Peak
variance minimization can be approximately solved using iterated, weighted mean variance (WMV)
minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators
which do not require a priori knowledge of the patient anatomy. The authors compare these control
algorithms on different types of dynamic attenuators using simulated raw data from forward projected
DICOM files of a thorax and an abdomen.
Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to
current techniques (bowtie filter with tube current modulation) without increasing peak variance. The
15-element piecewise-linear dynamic attenuator reduces dose by an average of 42%, and the perfect
attenuator reduces dose by an average of 50%. Improvements in peak variance are several times
larger than improvements in mean variance. Heuristic control eliminates the need for a prescan. For
the piecewise-linear attenuator, the cost of heuristic control is an increase in dose of 9%. The proposed
iterated WMV minimization produces results that are within a few percent of the true solution.
Conclusions: Dynamic attenuators show potential for significant dose reduction. A wide class of
dynamic attenuators can be accurately controlled using the described methods. © 2014 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4875727]
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1. INTRODUCTION

In x-ray CT, dynamic, prepatient attenuators have been pro-
posed as a replacement for the static prepatient attenuator
(often called the “bowtie filter” because of its shape) which
defines the distribution of x-rays as a function of fan angle.1

Compared to the bowtie filter, which is fixed for the entire
scan, dynamic attenuators provide greater flexibility to mod-
ulate the fluence incident on the patient and can therefore
reduce the dose of the scan or the variance of the recon-
structed images. In systems using photon-counting x-ray de-
tectors, a dynamic attenuator can reduce the dynamic range
of flux incident on the detector, enabling photon-counting de-
tectors with relatively modest count rates.2–5 These attenua-

tors have the potential to allow the system to more carefully
control the flux distribution compared to current clinical sys-
tems, which use only the static bowtie filter and tube current
modulation (TCM).6–8 Dynamic attenuators can also enable
region-of-interest scanning and are more tolerant of patient
miscentering.

The most important application for these dynamic attenu-
ators may be in their use for dose reduction. Previous studies
have shown that the ability to finely tune the x-ray illumina-
tion field can reduce dose by 50% in one case9 and 86% in
a separate case10 without increasing the peak (or maximum)
variance of the reconstruction.

Several dynamic attenuators have been proposed, some
of which are described only in the patent literature.
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FIG. 1. Illustrations of the (left) standard bowtie filter, (middle) translating
attenuator, and (right) double wedge attenuator. The fan beam of radiation
is illustrated in each figure. The bowtie filter is a static, beam-shaping filter
placed several cm in front of the source. Each wedge of the double wedge
attenuator can be adjusted using actuators (illustrated as long rectangles). The
translating attenuator can change its shape by motion into or out of the page
(the arrow is intended to convey motion in this direction). Both the dynamic
wedge attenuator and the translating attenuator show examples of alternative
shapes as dashed outlines.

Theoretically, a dynamic attenuator that can arbitrarily adjust
the number of photons incident in any ray would be ideal, and
in this work we will call this the perfect attenuator. In the
inverse geometry CT architecture,11–13 the “virtual bowtie”
can provide very fine control of the fluence and can approxi-
mate the perfect attenuator.10 Achieving this effect in a third-
generation CT scanner is more challenging.

One proposed dynamic attenuator changes the attenuation
profile by linear translation in the z- (or axial) direction of
an appropriately shaped rigid object.14 We will call this the
translating attenuator. Figure 1 shows an example of the
translating attenuator. As the filter is translated, the attenua-
tion introduced morphs into different shapes, and in general,
the translating attenuator allows the system to select from
a one-dimensional family of attenuator thickness functions
f (γ , c), where γ is the fan angle and c is the linear translation
of the attenuator. One choice of f (γ , t) is the family of atten-
uation functions which is optimized for circular objects of ra-
dius t5. Another is the set of parabolic attenuation functions,
so that f (γ , c) = cγ 2. We note that instead of translation in
the z-direction, rotation about the source-detector axis using
a differently shaped rigid object can also be used to achieve
very similar results.

A second dynamic attenuator configuration uses two
wedges that may be translated in the fan-angle direction
(Fig. 1).15 We will call this the double wedge attenuator. Let
the attenuation of the two wedges be represented by fleft(γ )
and fright(γ ). The double wedge attenuator presents two de-
grees of freedom to the system, γ left and γ right, so that the
attenuator thickness is f (γ , γ left, γ right) = fleft(γ − γ left)
+ fright(γ − γ right). For small patients, the wedges can be
pushed together and for larger patients the wedges may be
moved apart. Besides this, the wedge locations could be mod-
ulated throughout the scan to better conform to the patient
anatomy, and the double wedge attenuator is a natural choice
for region of interest scans.

A third dynamic attenuator which we recently proposed
uses a series of wedges which translate in the z-direction to
produce a piecewise-linear attenuation profile. We will call
this the piecewise-linear attenuator. This piecewise-linear at-
tenuator can be viewed as an approximation of the perfect
attenuator. The axial cross-sections of each wedge as a func-

FIG. 2. The piecewise-linear dynamic attenuator, consisting of a series of
wedges attached to actuators (not shown). The fan beam is also shown, and
the x-ray focal spot sits at the apex of the fan. (a) The set of N wedges. Two of
the wedges have been shaded and translated. (b) An axial cross-section of the
wedges. The wedge which was translated introduces less attenuation, while
the wedge that was translated upwards more attenuation. The path-length of
attenuator as a function of fan angle is a piecewise-linear function. Within
each of the two layers of wedges, adjacent wedges are displaced slightly to
avoid scraping during motion. Parts of this figure are used with permission
from Ref. 33.

tion of z translation are triangles of different heights, and
by adjusting the location of each wedge, the total thickness
that the beam must penetrate is piecewise-linear in fan angle.
Figure 2 shows this dynamic attenuator. Two layers of trian-
gular wedges are shown, with one layer moved by half of the
triangular base so that the apex of a triangle in one layer corre-
sponds to the meeting of corners of two triangles in the other
layer. A wide range of piecewise-linear attenuation functions
can be produced with this design. For details, the reader is
directed toward Ref. 4. This is very similar to another dy-
namic attenuator which provides a piecewise-constant attenu-
ation profile,16–18 but the use of triangular wedges may reduce
imaging artifacts caused by sharp, rapid changes in attenua-
tion as a function of fan angle. Compared to the translating
and double wedge attenuators, the piecewise-linear attenuator
offers greater control over the x-ray illumination field but is
more complex and requires more moving parts. We note that
both the translating and piecewise-linear attenuator described
here accommodate miscentered patients well, which is known
to be a problem for the conventional bowtie filter.19, 20

Each of these dynamic attenuators provides one or more
degrees of freedom per view, and each scan is composed of
hundreds of views. In order to realize dose or image quality
objectives, these attenuators should be carefully controlled.
However, with hundreds of degrees of freedom per scan, these
problems are intractable using techniques such as brute force
search. One algorithm which has been previously used is mul-
tistage simulated annealing.9 While very general, simulated
annealing does not provide guarantees on the accuracy of
its solution and may converge to a local minimum. Another
alternative used in previous work is convex optimization.10

Convex optimization is a very powerful tool but is only vi-
able for convex problems, and the control of many types of
dynamic attenuators, including the translating attenuator and
the double wedge attenuator, appears to be nonconvex. (Con-
trol of the perfect attenuator and the piecewise-linear atten-
uator can be well approximated as convex.) Both simulated
annealing and convex optimization require knowledge of the

Medical Physics, Vol. 41, No. 6, June 2014



061907-3 S. S. Hsieh and N. J. Pelc: Control algorithms for dynamic attenuators 061907-3

patient anatomy, which could be obtained by a low-dose pres-
can or perhaps from projection images.

The purpose of this work is to develop an optimization
algorithm that is computationally tractable and that leads to
provably optimal noise metrics in the reconstructed images.
We will implement these algorithms with tools common to
CT research such as forward- and backprojection, so that our
results can be replicated by other researchers in the field, with
minimal reliance on more complex numerical techniques. We
use average variance and peak variance as our noise metrics.
The optimization algorithm must be general enough to ap-
ply to the four dynamic attenuators described above: trans-
lating, double wedge, piecewise-linear, and perfect. For the
perfect and piecewise-linear attenuators, we will addition-
ally develop heuristic control methods which do not require
a priori knowledge of the patient.

2. METHODS

Our goal is to find the x-ray illumination field that mini-
mizes peak or mean variance while satisfying the constraints
of a particular attenuator. We will define this problem more
carefully in Sec. 2.A. and we will continue by developing con-
trol algorithms for three classes of problems:

System with the perfect attenuator. This case is described
in Sec. 2.B. We analyze this class first because the theory
developed is necessary in subsequent problems. We assume
a priori knowledge about the patient’s attenuation, which is
used to formulate the optimization problem. This knowledge
could be provided from a prior scan or from a low dose pres-
can. The piecewise-linear attenuator can be treated as an ap-
proximation of the perfect attenuator.

Systems with limited attenuators. This case is described
in Sec. 2.C. We define the limited attenuator as any attenu-
ator that provides a small number of degrees of freedom D in
each view. This includes the double wedge attenuator (D = 2)
and the translating attenuator (D = 1 or D = 2 depending on
the configuration). As a rule of thumb, the methods we will
develop are effective for D ≤ 3, although they could be ex-
tended to larger values of D. The piecewise-linear attenuator
has too many degrees of freedom to be included as a limited
attenuator.

Approximate solutions without a priori knowledge. This
case is described in Sec. 2.D. We will suggest control meth-
ods when a priori knowledge of the object’s attenuation is not
available. These will also be called heuristic control meth-
ods because they are empirically derived. We will confine
ourselves to the perfect attenuator (and by extension, the
piecewise-linear attenuator). We will not analyze other, lim-
ited attenuators because the control methods must be devel-
oped on an attenuator-by-attenuator basis.

The control algorithms we develop must be validated on
data. Section 2.E describes the simulations we conducted, the
results of which are reported in Sec. 3.

2.A. Problem definition

Let the system have M detector channels and let x be a vec-
tor with xk being the incident intensity for the kth ray in the

sinogram. For k = M(i − 1) + j, the kth ray xk corresponds
to the jth detector channel in the ith view. xk is the x-ray illu-
mination field, and is the key variable the dynamic attenuator
controls. Our goal is to choose x to optimize the image quality
under a fixed dose limit.

Let νk be the photons detected in the kth ray, and let fk
be the fraction of photons transmitted through the patient for
the kth ray, so that νk = fkxk. In most cases, we will use fkxk

instead of vk to make the relationship to xk explicit. We as-
sume that xk is large enough to be noiseless. Assuming Pois-
son statistics (no electronic noise) and neglecting polychro-
matic effects, νk is then a Poisson random variable with mean
and variance

μνk
= fkxk, σ 2

νk
= fkxk. (1)

For CT reconstruction, the quantity of interest is log fk,
not νk. Because fk is estimated using the basic relationship
fk = νk/xk, propagation of error can be used to show that

σ 2
fk

= νk/x
2
k

σ 2
log fk

=
(

xk

νk

)2

σ 2
fk

= (fkxk)−1 . (2)

In matrix form, let F be a diagonal matrix whose diagonal
is f, so that Fkk = fk. The detected intensity is then a vector
with average value Fx and with variance (Fx)−1, which is the
componentwise reciprocal of Fx.

We will assume a linear reconstruction algorithm and we
will develop our algorithm for 2D scans using either analytic
parallel beam or direct fan beam reconstruction. We believe
that extension to volumetric reconstruction should be straight-
forward. Iterative reconstruction algorithms are beyond the
scope of this work, but we believe that improvements with
analytic reconstruction should translate to improvements with
iterative reconstruction.

In linear systems theory, filtered backprojection can be
written as R = −A log F, with R being the reconstructed
image in vector form and A being the mapping from the
log-normalized measurements to the image via filtered back-
projection (FBP). By propagation of error, the variance of the
reconstructed image is

σ 2
R = (A ◦ A) σ 2

log F

σ 2
R = (A ◦ A) (Fx)−1 . (3)

Here, A ◦ A is the Hadamard product of A with itself and
is simply the componentwise square of A. The variance in the
image σ 2

R can be well approximated by summing the vari-
ances in the rays that pass through the pixel,21 so that we can
write

σ 2 = cB (Fx)−1 , (4)

where B corresponds to the system matrix which sums all rays
which pass through a pixel, and c is a constant that we will
neglect. B is therefore a sparsified approximation to A ◦ A.
For more details, the reader is directed to Ref. 21. B itself
is a backprojection without the filtering step, or “unfiltered
backprojection.” The benefit of this approximation is that the
variance of the reconstruction can be produced as easily as
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reconstruction itself, with only two modifications: first, the
ramp filter is disabled, and second, the quantity to be back-
projected is (Fx)−1 rather than (filtered) log F.

Using B instead of A ◦ A ignores the mixing of variance
across detector channels within a view which results from the
convolution and also any interpolation kernel used. In prac-
tice, the errors induced by this approximation are very mini-
mal. The ramp kernel is very local, decreasing as the inverse
of distance squared, so that the square of the kernel as in
A ◦ A decays as distance to the negative fourth power. Simi-
larly, the choice of interpolation kernel can be modeled by the
use of a different constant c.

In direct fan-beam reconstruction, a weighted backprojec-
tion is used, with the weight being proportional to the inverse
square of the distance from the source to the voxel.22 In prop-
agating the variance to the image, the weight must again to
be squared. The nonzero elements of Bij should therefore be
proportional to the inverse fourth power of the source-point
distance. In this work, we will neglect the effect of the source-
point distance weighting. This would be an empirically good
model for a rebin-to-parallel reconstruction, used in many
volumetric reconstruction algorithms.23, 24 It is known that
variance alone is not sufficient to determine detectability and
that the spatial correlations of the noise and object structure
are important.25 For the purposes of this work, we assume
that reconstructed variance is an adequate figure of merit for
comparing attenuators and control algorithms.

The optimization needs a dose metric to be controlled or
minimized. We use the total energy absorbed, which is simply
a dot product

dT x =
∑

k

dkxk. (5)

The elements of dk are proportionality constants measur-
ing the relative energy absorbed from the average photon de-
livered along the kth ray. A simple choice of dk is to set dk

= 1 if the ray intersects the patient, and dk = 0 otherwise.
This choice of dk measures entrance energy. A better choice
of dk can be derived from Monte Carlo simulations. We will
impose a limit of dTx = dtot for all our optimization problems.
This ensures that all systems will be compared at equal dose.
Because variance and dose are inversely related (in the ab-
sence of electronic noise), any reduction seen in variance for
equal dose can be equally well interpreted as a reduction in
dose for equal variance.

2.B. System with the perfect attenuator

2.B.1. Weighted mean variance (WMV) optimization

The weighted mean variance minimization problem is
posed as

Minimize σ 2 = wT B (Fx)−1

Subject to dT x = dtot , (6)

where wT is the row vector of voxel weights. In the simple
mean variance optimization, wk = 1 for all voxels k which
are clinically relevant, and wk = 0 for voxels which are not

relevant (for example, which may occur outside the patient).
We will also consider WMV optimization, with each voxel
receiving different weights. The WMV problem is relevant if
the clinician is more interested in some regions of the patient
than others. It will also be used later in our solution to the peak
variance problem. We have dropped c and other proportional-
ity constants which do not affect the optimization problem.

The constraint dTx = dtot enforces a dose limit on the sys-
tem. An alternative constraint is dTx ≤ dtot. In this work, these
two constraints will lead to the same outcome because dose
and variance are inversely related and because we do not as-
sume a limit to the instantaneous source power. Therefore, the
system will always choose to bring the dose up to the allow-
able limit with dTx = dtot to improve the image quality.

A similar problem has been solved in Ref. 26. We provide
a modified solution here, which is necessary for Secs. 2.B.2–
2.D.

Looking more closely at Eq. (6), we note that because
the objective function is scalar, it may be transposed with-
out modification: (wT B(Fx)−1)T = (Fx)−T BT w. As B is the
backprojection operator, BT is forward projection. In the un-
weighted case, if we assume that wk is one inside patient tis-
sue and zero outside, BT w is the sinogram of the tissue path-
lengths (the length of the intersection of the ray with the pa-
tient, not the line integral of attenuation).

Equation (6) can be solved using Lagrange multipliers.
The Lagrangian and its partial derivatives are

� (x, λ) = wT B (Fx)−1 + λ(dT x − dtot ), (7)

δ�

δλ
= 0 ⇒ dT x = dtot , (8)

δ�

δxk

= 0 ⇒ −(BT w)kF
−1
kk x−2

k + λdk = 0, (9)

Eq. (8) simply restates the dose limit. In Eq. (9), we used
the fact that F is diagonal. This can be further simplified to

λ = (BT w)k
dkFkkx

2
k

. (10)

Therefore, the incident intensity for any ray, xk, is given by

xk =
√

(BT w)k
λdkFkk

, (11)

where λ is chosen in order to meet the dose constraint. If de-
sired, we could choose λ = 1, calculate the vector x and then
scale it by a constant to meet the dose constraint.

Equation (11) solves the WMV optimization problem and
can be very easily implemented. The numerator, BT w, is the
forward projection of the weight map. In the unweighted case,
BT w is the sinogram of tissue path-lengths. The dose costs d
are assumed to be known, and Fkk is easily measured as the
fraction of photons which are not attenuated by the patient.

We note that if we use the entrance energy approximation
for dk and if we ignore the variation in BT w and approximate
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it to be uniform, Eq. (11) simplifies to

xk ∝ 1√
Fkk

. (12)

This is consistent with previously derived theory.26 Under the
assumptions used in Ref. 7, this choice for the tube current
minimizes the variance at the center pixel subject to a limit on
the allowed mAs.

2.B.2. Peak variance optimization

Optimization of mean variance may increase the variance
in one region to obtain a reduction in another. In an extreme
case, this could render part of the image nondiagnostic and a
repeat scan may then be required. It is therefore desirable to
reduce the peak variance of the image rather than the mean
variance. We define the peak variance as the maximum vari-
ance of any voxel in the reconstruction. This problem is stated
as

Minimize σ 2 = max(B (Fx)−1)

Subject to dT x = dtot . (13)

This is a minimax problem and does not easily admit
a closed form solution. Because all engaged functions are
convex, convex optimization techniques can be used to find
an accurate numerical solution, but the computational load
can be significant given the number of variables involved.
General-purpose convex optimization algorithms operate with
computational complexity O(N3

var ) for number of variables
Nvar .27 As there is one variable for each voxel in the re-
construction and measurement in the sinogram, O(N3

var ) can
become prohibitively large. Special-purpose optimization al-
gorithms could do better but are nontrivial to develop. How-
ever, it is clear that the problem is well-posed and that
a solution exists. Let us call the optimized x to Eq. (13)
xpeak, and let xpeak achieve optimized peak variance σ 2

minimax
= max(B(Fxpeak)−1).

We note that the piecewise-linear attenuator can be thought
of as a low-resolution approximation to the perfect attenua-
tor, and convex optimization28, 29 is effective for solving this
problem. The details of this optimization have been reported
in Ref. 4.

2.B.3. Iterated WMV to bound peak variance

Instead of solving for xpeak directly, we can relate the op-
timized peak variance σ 2

minimax to the solution to the WMV
problem. Let us denote the choice of x which solves the WMV
problem with weight wT as xWMV. Let S be the set of all vox-
els k with strictly positive weight, that is, wk > 0. We define
two quantities

σ 2
maxWMV = max(B (FxWMV)−1)

σ 2
minWMV = min

k∈S
(B (FxWMV)−1)k. (14)

It can be shown that for any weight wT ,

σ 2
minWMV ≤ σ 2

minimax ≤ σ 2
maxWMV. (15)

We prove these bounds in the Appendix.

Equations (14) and (15) suggest an alternative approach
to solving the peak variance problem. Rather than optimiz-
ing peak variance directly, a WMV problem could be con-
structed which achieves a tight bound about the minimax vari-
ance. The upper bound σ 2

maxWMV is the peak variance of the
WMV solution. This simply states that the peak variance of
the WMV solution cannot outperform the minimax variance.
The lower bound σ 2

minWMV is the minimum variance of the
WMV solution, but only of voxels which have strictly posi-
tive weight.

If a tight bound existed, Eqs. (14) and (15) predict that
each voxel either attains the minimax variance with some
positive weight, or outperforms the minimax variance but is
assigned zero weight. While we do not prove that a tight
bound exists for each dataset, we have found good results
(bounds of a few percent) using this method. The challenge
is only to select an appropriate weight map. We propose an
iterative method here, but emphasize that a WMV solution
with any weight map will produce a bound on the minimax
variance.

The basic principle of the iterative technique is to increase,
in each iteration, the weight for voxels with high noise and
to decrease the weight for voxels with low noise. In order for
the bounds in Eqs. (14) and (15) to be useful, there must be a
mechanism for setting the weight of a pixel to be zero, and
another mechanism for increasing the weight from zero to a
positive quantity if the pixel was erroneously weighted to zero
in a prior step.

In our simulations, we use the following method to choose
the weight map. We initialize wT = 1T , solve the unweighted
mean variance optimization problem, and initialize the step
size to cstep = 1. In each iteration, we perform the following
steps:

(1) Let S be the set of voxels with strictly positive weight,
and sort the voxels of S in order of increasing variance.
Create a function g(σ 2

k ) which smoothly maps the
sorted variances of S uniformly to the range [−1, 1],
and which uses linear interpolation or extrapolation if
the variance σ 2

k does not match the variance of any
voxel in S.

(2) Update the weight vector for each voxel as
wk → wke

cstepg(σ 2
k ). This increases the weight for vox-

els with high noise, and decreases the weight for vox-
els with low noise. Any other mechanism which in-
creases the weight of voxels with high noise and de-
creases the weight of voxels with low noise could be
substituted for steps (1) and (2).

(3) Decrease the step size using cstep → cdecaycstep

(4) Normalize the weight vector by dividing each element
by the mean of w, setting wk → wk

mean(w) . Scaling the
weight vector uniformly does not affect optimization
but is only important for selecting voxels which should
be set to zero weight in the next step.

(5) If a voxel has a small weight so that wk < ccutoff, set
wk → 0. If wk = 0 and g(σ 2

k ) ≥ 0, then restore it by
setting wk = crestore. The purpose of this step is only
to increase the lower bound σ 2

minWMV. We found that
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abruptly changing some wk can slow the rate of con-
vergence for the upper bound σ 2

maxWMV.
(6) Solve the WMV optimization problem using the up-

dated weight vector.

In order to estimate BT w in the solution of the WMV
optimization problem, we forward project the distribution of
weights. This is the most computationally intensive step in our
method. In our implementation, this is problematic for rays
which are nearly tangent to the patient because our forward
projector is not precisely matched with our backprojector, so
that our forward projector is only an approximation to BT. We
modify the WMV solution from Eq. (11) slightly

xk =
√

(BT w)k + ε

λdkfk

. (16)

In the case of the perfect attenuator, we use a value of ε that
is equivalent to 1 mm of tissue of average weight. Since most
rays pass through several centimeters of tissue, we believed
the error incurred in this step is minimal. For the other dy-
namic attenuators we studied, ε = 0 did not cause problems.
This modification should not be necessary if a matched for-
ward projector and backprojector are used.

The choice of a simple step size in the update step can
lead to oscillatory behavior. We used cdecay = 0.96 and 100
iterations of weighted mean variance optimization in order
to establish our bound on the minimax variance. A smaller
value of cdecay leads to more rapid convergence, but we found
that better bounds are obtained with a slower decay schedule.
An adaptive step size could be used to reduce the number of
iterations.

For the case of the perfect attenuator, a wide range of
voxel weights is used and we choose ccutoff = 0.03 and crestore

= 0.05. For other dynamic attenuators, we use ccutoff = 0.2
and crestore = 0.33. The reason for the difference is that the
perfect attenuator has very fine detail, and some of the voxels
require weights which are close to zero. The other dynamic
attenuators have more sparse weight maps. This will be seen
later in Figs. 7 and 10.

We emphasize that any weight map wT will produce a
bound on the minimax variance, and that more elegant meth-
ods for choosing wT can be constructed. In our experiments,
we found that a method which simply decreases the weight
of voxels with low variance and increases the weight of vox-
els with high variance produces images which nearly attain
the minimax variance. The discontinuous transition of some
weights to zero complicates the algorithm, and is only neces-
sary to obtain a tighter bound on the minimax variance, not to
produce an image with a reduced peak variance.

One would expect this algorithm to converge to a set of
weights because the step size cstep decreases exponentially
with iteration number. However, convergence in weights is
less important than convergence in the upper and lower bound
of σ 2

minimax. Empirically, iterated WMV optimization produces
bounds of several percent about the minimax variane on our
test datasets, but it is beyond the scope of the paper to show
that a tight bound can always be produced from this method.

Our code was written and executed in MATLAB (The
Mathworks, Natick, MA) and each iteration required a few
seconds of computation time.

2.C. Systems with limited attenuators

Recall that the limited attenuator is characterized by a
small D, the number of degrees of freedom for each view. We
assume the system is equipped with TCM (tube current mod-
ulation), so that it has a total of (D + 1) degrees of freedom
for each view. Across V views, the total number of degrees
of freedom is (D + 1) V . Since V is on the order of 1000,
many general purpose optimization algorithms fail in finding
the global minimum over (D + 1) V variables. Our strategy
is to decompose the problem into V separate optimization
problems over D variables, instead of a single problem over
(D + 1) V variables.

2.C.1. Mean variance optimization

The mean variance minimization problem for this case is
similar to Eq. (6) but includes an additional constraint from
the limits of the attenuator

Minimize σ 2 = 1T B (Fx)−1

Subject to dT x = dtot

xM(i−1)+1,M(i−1)+2,...Mi ∈ Q, i = 1, 2, . . . V . (17)

Recall that M is the number of rays measured in each view.
The 2D sinogram has MV entries. Q is an M-dimensional
space that includes all allowed x-ray illumination fields for
any single view. We assume tube current modulation such that
if Q0 ∈ Q, then αQ0 ∈ Q for any α > 0.

We decompose the problem into views. Let Si be the set of
indices for rays in the ith view, and introduce auxiliary vari-
ables xSi

such that

Si = {M (i − 1) + 1,M (i − 1) + 2, . . . Mi − 1,Mi}
(
xSi

)
k

=
{

xk, k ∈ Si

0, k /∈ Si
.

Let dSi
and σ 2

Si
be the dose and total variance, respectively,

associated with the ith view:

σ 2
Si

=
∑
k∈Si

1T B�k (Fx)−1

(�k)ij =
{

1, i = j = k

0, otherwise

dSi
=

∑
k∈Si

dkxk.

Here, �k is an auxiliary matrix that serves only to select
the variance of the kth ray, and we set the variance of the
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remaining rays to zero. The problem in Eq. (17) can be rewrit-
ten as

Minimize σ 2 =
V∑

i=1

σ 2
Si

Subject to
V∑

i=1

dSi
= dtot

xSi
∈ Q, i = 1, 2, . . . V . (18)

We may now decouple the set of variables Si (the incident
intensities) in each view. Note that the optimization problem
for the perfect attenuator could also be decoupled into views,
but this was not necessary because Lagrange multipliers could
be employed directly. Suppose we are able to calculate the
solution to the mean-variance problem within each view:

Minimize σ 2
Si

Subject to di = 1

xSi
∈ Q. (19)

A solution to this problem with a dose limit of unity is directly
proportional to the solution with any other dose limit because
we can modulate the tube current. For the entire scan to be
dose efficient, each view must be dose efficient.

This is a D-dimensional optimization problem, and may
be solved with a number of optimization methods which are
reliable with D dimensions but possibly not with (D + 1) V

dimensions. For D = 1 or D = 2, exhaustive search may
be acceptable. In our simulations, we used the Neadler-Mead
simplex search, as implemented by the Matlab function fmin-
search. Let the solution to the single-view illumination opti-
mization problem, which consumes one unit of the allowed
dose budget, be denoted as x̂Si

, and let the optimized σ 2
Si

us-
ing x̂Si

be ωi. In general, if the ith view consumes dSi
of the

dose budget, then, if optimized, it will contribute ωi

dSi

to the

variance.
With individually optimized views, the only question re-

maining is how to choose the x-ray source current for each
view. This can be determined with the following problem:

Minimize σ 2 =
∑V

i=1

ωi

dSi

Subject to
∑V

i=1
dSi

= dtot. (20)

To allocate the dose distribution between different views, we
again use Lagrange multipliers and find

dSi
=

√
ωi

λ
. (21)

Therefore, to optimize the mean variance, the dynamic atten-
uator should be configured in each view to minimize the dose-
variance product for that view, and the tube current should be
adjusted such that the dose delivered in that view is propor-
tional to the square root of the dose-variance product of that
view.

2.C.2. Peak variance optimization

Peak variance optimization for the limited attenuator is a
difficult problem because hundreds of degrees of freedom ex-
ist, and the problem is nonconvex. Stochastic techniques have
been used in the past30 but do not provide guarantees on opti-
mality. Fortunately, the iterated WMV developed for the per-
fect attenuator applies directly to the limited attenuator. The
bound in Eq. (15) still holds, with any solution to the WMV
minimization providing a bound on the minimax variance.

2.D. Approximate solutions without
a priori knowledge

When a priori knowledge of the object transmission F is
not available, heuristics must be used to approximately mini-
mize image variance metrics. The elimination of the require-
ment for a priori knowledge makes these control methods
more practical.

2.D.1. Mean variance optimization using a
square-root-log function

For mean variance optimization with the perfect attenuator,
our solution was Eq. (11), reproduced below for reference

xk =
√

(BT w)k
λdkFkk

.

For simple mean variance optimization, w, the weight map, is
1 for any voxel of clinical relevance (tissue) and 0 otherwise.
With a few approximations, this solution can be used as a real
time control algorithm. If the patient shape can be roughly de-
termined prior to the scan, e.g., from scout scans, BT w can be
estimated by calculating the tissue path-length from the esti-
mated patient shape. Alternatively, the patient can be modeled
as being composed of uniformly attenuating material with lin-
ear attenuation coefficient μ, choosing a value of μ represen-
tative of soft tissue. This approximation is sensible in regions
of the body consisting mostly of soft tissue, but could cause
problems in regions such as a thorax, with much of the lung
tissue having a low μ.

With the assumption that (1TB)k is proportional the tissue
path-length lk, Fkk = e−μlk and

lk = − log (Fkk)

μ
. (22)

We further assume that all rays which intersect the patient
contribute equally to dose. Then Eq. (11) simplifies to

xk ∝
√

log
(
F−1

kk

)
F−1

kk . (23)

This expression depends only on the fraction of rays transmit-
ted, Fkk, which can be well approximated using the previous
view. If a more accurate model of dose were available, then
the dependence on dk in Eq. (11) could also be included. Sim-
ilarly, dose sensitive organs can be protected by increasing dk

for rays which are known to intersect these organs.
The derivation of the square-root-log function used many

approximations which may, in general, not be obeyed. Under
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very specific conditions the square-root-log function is opti-
mal. We will study the performance of this control method
under more realistic conditions in Secs. 2.E and 3.

2.D.2. Power law control

An even simpler heuristic is to choose a power law. We
have found good results with an exponent of −0.6, leading to
the very simple expression

xk ∝ F−0.6
kk . (24)

For values of F−1
kk between 10 and 100, F−0.6

kk is quite similar

to
√

log(F−1
kk )F−1

kk , although at smaller F−1
kk (i.e., thin tissue

path-lengths), F−0.6
kk delivers more flux. This makes the power

law expression more robust than the square-root-log from
Eq. (23) in the thorax where the assumption of uniform at-
tenuation is inaccurate.

2.D.3. Optimized flat variance for peak variance
minimization

For the task of peak variance optimization, one approach is
to restrict ourselves to the minimal variance which is uniform
(or flat) across the image. We will continue to assume that
the dose metric is entrance energy. A similar idea has already
been used in experimental studies.17

It should be noted that the flat variance assumption is not
always a good one. One example is the perfect attenuator scan
of an annulus of water with an air core. Because this sys-
tem is radially symmetric, it is feasible to cast this as a con-
vex optimization problem and solve for the true solution xpeak

and σ 2
minimax numerically.28 This can be compared to the so-

lution which flattens the variance. We find that xpeak does not
lead to a flat variance map. For an annulus with an inner ra-
dius of 10 cm, an outer radius of 30 cm and μ = 0.2 cm−1,
σ 2

minimax
∼= 0.86σ 2

flat, where σ 2
flat is the variance if the perfect

attenuator is controlled to equalize the variance in the re-
constructed image everywhere. Using xpeak results in reduced
variance everywhere, both in the air core and water ring sur-
rounding it.

However, the flat variance assumption simplifies the prob-
lem and reduces the requirements for a priori knowledge. The
optimized flat variance problem is

Minimize σ 2
flat

Subject to dT x = dtot

(B (Fx)−1)k = σ 2
flat. (25)

We will now appeal to an argument which is strictly true only
in the continuous case and not the discretized problem as writ-
ten. Because the variance map is flat everywhere, its Fourier
transform has power only at the origin and the central slice
theorem implies that the backprojected variance should be flat
on a per-view basis. This in turn means that the variance of
each measurement within each view should be equalized, so
that

fkxk = αk, k ∈ Si. (26)

In the nearest-neighbor model of B, αk is simply the variance
delivered from each view. Although the variance must be flat
within each view, it can vary from view to view. Choosing
the optimal set of αk can again be performed using Lagrange
multipliers and yields

αi ∝
√∑

k∈Si

dkxk. (27)

Therefore, within each view the detected number of photons
should be constant, and the total dose delivered in each view
should be modulated with the square root of the dose-variance
product of that view.

These heuristics can be applied with minor modification to
the piecewise-linear attenuator. Instead of using fk for a single
ray, we use a single value for a block of fk. In our simulations,
we had one block per piecewise linear segment, with each
block abutting its neighbors, and we used the harmonic mean
of fk within the block instead of the arithmetic mean in order
to increase the weight of highly attenuated rays.

2.E. Simulations

We compared five different attenuators and assumed that
TCM was always available, unless noted otherwise.

Standard bowtie filter: The standard, fixed bowtie filter
was modeled to be similar to a commercial body bowtie filter
and is the reference system. The system has no control except
for TCM in customizing the x-ray illumination field. In part
because of limitations on the x-ray source, different CT scan-
ners determine the TCM differently. For this reason, we will,
in some cases, compare the other dynamic attenuators to the
standard bowtie without TCM.

Double wedge attenuator: Our implementation of the dou-
ble wedge attenuator assumed that each wedge was shaped
like half of a head bowtie filter. The performance of the double
wedge attenuator depends on the shape of the wedges used;
splitting the head bowtie filter is a reasonable choice but may
not be optimal. We found that splitting the head bowtie per-
formed much better than splitting the body bowtie, which has
a much shallower gradient of attenuation. The two wedges
are translated independently, so our double wedge attenuator
naturally accommodates off-center or asymmetric patients. To
provide a sense of scale, the irradiated portion of each wedge
could be about 3 cm long in the fan-angle direction if placed
5 cm in front of the source.

Translating attenuator: The translating attenuator uses
translation or rotation to provide one or two degrees of free-
dom per view (besides TCM) in the x-ray illumination field.
The performance of the translating attenuator depends on the
set of shapes that the attenuator can take on. In one extreme,
the attenuator is designed specifically for one patient scan and
made to be exactly optimal.5 We expect most translating at-
tenuator designs to be fairly generic, and we chose the thick-
ness profile to be parabolic. The degree of freedom therefore
allows the system to choose, for each view, a different value
of c1 in the thickness function f (γ ) = c1γ

2, where γ is the
fan angle of a ray normalized so that for the rays in the field
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FIG. 3. Example thickness functions which may be provided with each dy-
namic attenuator concept. These thickness functions are not optimized for
any shape, but are only meant to illustrate one possible attenuation choice.

of view, γ ∈ [−1, 1]. To increase its generality, we addition-
ally assumed that this attenuator was mounted to an actuator
which allowed the attenuator to be shifted in the lateral (or
fan angle) direction throughout the scan, so that the thick-
ness function can be modeled as f (γ ) = c1(γ − c2)2. This
improves performance for off-centered patient scans and for
centered but asymmetric patients. As one possible geometry,
the translating attenuator could be 6 cm in the fan-angle di-
rection, 5 cm in the z-direction, and would be placed 5 cm in
front of the source.

Piecewise-linear attenuator: In the limit of arbitrarily
many segments, the piecewise-linear attenuator is the per-
fect attenuator. In practice, the resolution provided by the
piecewise-linear attenuator will be limited by the number and
size of the wedges as well as the maximum motor speed. We
assumed that the piecewise-linear attenuator used 15 wedges
uniformly spaced in fan angle. In one possible geometry, the
dimension of each wedge is 11 mm wide, 40 mm long, and
up to 6 mm thick.4

Perfect attenuator: We provide the results for the perfect
attenuator. While probably impractical, it provides an upper
bound for any other attenuator.

Examples of the types of thickness profiles these modula-
tors can produce are shown in Fig. 3. The material composi-
tion of the attenuator is irrelevant for our simulations because
we assumed monochromatic radiation, but we note that mate-
rials for existing bowtie filters include aluminum and carbon,
which have effective atomic number similar to water but are
denser. It may be necessary to use materials such as iron for
the piecewise-linear attenuator.16

DICOM images of a thorax and an abdomen were ob-
tained from an online source.31 Figure 4 shows our starting
datasets. To simplify our calculations, we assumed a single-
slice monochromatic fan-beam scan with parameters listed
in Table I. The CT number of the voxels was linearly trans-
formed into attenuation values using a value of 0.2 cm−1 for
the linear attenuation coefficient of water (∼60 keV). To re-
duce the computational complexity, relatively few detector
channels and views were used. Raw data were estimated by
forward projection, and the variance of the reconstruction was
estimated by summing the variances of all rays which pass

FIG. 4. Datasets used in this study, comprising (left) an abdomen and (right)
a thorax. [WL, WW] = [0, 800] HU.

through each pixel. The effect of noise in the DICOM files
was ignored, as its impact on dose and predicted variance
should be small. Entrance energy was used as the dose metric.

3. RESULTS

3.A. Perfect attenuator

Table II shows the results for different control algorithms
on a system with a perfect attenuator. Figure 5 shows the
variance maps for these cases. The peak and mean variances
are normalized to a system that uses the body bowtie with-
out TCM. A peak variance of 50% therefore indicates that
the system is able to halve the peak variance for the same
dose (or halve the dose for the same peak variance). We
chose to disable TCM for the reference system for simplic-
ity; the effects of TCM for the reference bowtie are examined
in Sec. 3.B.

Two reference systems are provided as a comparison. A
system with uniform illumination (“no modulation”), with
xk constant for all rays, is provided as a comparison which
achieves poor peak and mean variance on both datasets. A
system with the body bowtie without TCM (“bowtie filter”) is
provided as a second dataset.

Power law control with a varying exponent, such as
Eq. (24), is among the simplest control algorithms, and ex-
amples of two different exponents are included in Table II.
Figure 6 compares the mean and peak variance of power law
control with different exponents. Mean variance is minimized
with an exponent of about 0.6. An exponent of 1 corresponds

TABLE I. System parameters.

Source-isocenter distance 50 cm
Detector-isocenter distance 50 cm
Detector type Equiangular
Energy of photons 60 keV
Views used 200
Detector channels 200
Detector pixel size at isocenter 2.5 mm
DICOM image dimensions 512 × 512
DICOM image voxel size 0.78 mm
Reconstruction voxel size 1.56 mm
Reconstructed image dimensions 256 × 256
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TABLE II. Performance of different algorithms with the perfect attenuator,
for both mean and peak variance in both the thorax and the abdomen. Each
column is normalized to 100% for the performance of the standard bowtie fil-
ter without mA modulation. The first two control methods are reference con-
trol methods, described in Sec. 3.A. All other control methods are described
in the indicated sections. Numbers in parentheses for the iterated WMV so-
lution give the bound on the minimax (or peak) variance. For example, in the
thorax, the true optimized peak variance is bounded to be no less than 34.2%.

Mean σ 2 Peak σ 2 Mean σ 2 Peak σ 2

Thorax Thorax Abdomen Abdomen
Control method (%) (%) (%) (%)

No modulation 119 142 146 178
Bowtie filter 100 100 100 100
Equalized detected flux 102 36.2 109 58.9
(Sec. 2.D.2)
Power law, 84.8 45.4 86.1 71.6
exponent 0.6
(Sec. 2.D.2)
Optimized flat variance 99.5 35.1 104 55.9
(Sec. 2.D.3)
Square-root-log 91.1 42.8 87.1 67.5
(Sec. 2.D.1)
Optimized mean variance 83.0 46.8 85.7 73.8
(Sec. 2.B.1)
Iterated WMV 93.6 34.7 99.4 54.8
(Sec. 2.B.3) (34.2, 34.7) (53.1, 54.8)
(minimax bound)

to perfect equalization of the detected radiation (“equalized
detected flux” in Table II) and is the best simple power law
control for peak variance optimization. A modest improve-
ment on perfect equalization is optimized flat variance con-
trol [Eq. (25)], which equalizes detected radiation within
each view but modulates that radiation level from view to
view.

The square-root-log control of Eq. (23) minimizes mean
variance for objects composed of uniformly attenuating ma-
terial and is nearly as simple as power law control. While
theoretically appealing, it was outperformed on these datasets
by the simpler power law control using 0.6 as the exponent.
The disparity is especially large in the thorax. In the ab-
domen, both the power law and the square-root-log nearly
reach the optimally controlled perfect attenuator in mean
variance.

The proposed algorithm for minimizing peak variance, the
iterated WMV method, is able to produce a fairly tight bound
on the minimax variance and nearly achieves it. It outper-
forms the optimized flat variance by a small margin, suggest-
ing that the flat variance assumption does not hold in these
examples, possibly because of the air-filled cavities in our
datasets. Figure 7 shows a rewindowed variance distribution
and the weight map for iterated WMV. Areas of reduced vari-
ance are apparent. The weight maps in Fig. 7 have streaks
from the repeated forward and backprojection process. These
weights determine the intensity of the fluence field x. The
streaks in the weights can cause minor errors in x but do not
cause errors in the variance estimates of the reconstructed im-
age, which is shown on the right side of Fig. 7.

3.B. Dynamic attenuator comparison

A comparison of the different dynamic attenuators is
shown in Table III. Each attenuator was optimized both for
mean variance and peak variance using iterated WMV. A sys-
tem with a standard bowtie is given as a reference, with var-
ious methods for determining the TCM. Figure 8 shows the
variance distribution for these attenuators when controlled for
peak variance, and Fig. 9 shows the corresponding fluence
sinograms.

The heuristic TCM modulates flux per view with the
square root of the attenuation of the central ray.7 The TCM
of commercial scanners, although proprietary, can be consid-
ered only an approximation to this square-root heuristic as
they are usually subject to generator limitations. Optimized
TCM gives the best-case performance of a system with TCM.

As in the perfect attenuator, we found that in most cases the
iterated WMV was able to produce a bound of a few percent
on the minimax variance. The final weight maps produced are
quite sparse, as shown in Fig. 10. The evolution of the bound
on σ 2

minimax as a function of iteration number is shown in
Fig. 11. Note that the tightness of these bounds is not mono-
tonically decreasing with iteration number but sometimes os-
cillates. Because all of these bounds hold, the tightest bound
can be obtained by pairing the maximum lower bound σ 2

bound
with the smallest upper bound σ 2

maxWMV, regardless of the it-
eration number.

Iterated WMV could not be applied to the piecewise-
linear attenuator because each view includes 15 degrees of
freedom, which is too large for our general-purpose opti-
mization methods. Instead, we used the heuristics derived in
Sec. 2.D, which do not require a priori knowledge and which
are easy to implement. The mean variance heuristic approx-
imates power law control (with exponent 0.6) and the peak
variance heuristic approximates flat variance optimization.
This is compared with the convex optimization methods de-
scribed in Ref. 4. The power law control heuristic outperforms
convex optimization for mean variance minimization.

Our optimization process did not include constraints re-
lated to the finite speed of actuators and motors. In Fig. 9,
rapid motions can be seen in the ideal control of the double
wedge attenuator (marked with an arrow) which could be im-
practical for actuators of limited speed. The behavior of the
translating attenuator is smoother than the double wedge at-
tenuator, and the optimized control is plotted in Fig. 12. The
trajectories of the different wedges of the piecewise-linear dy-
namic attenuator are also shown in Fig. 12 in terms of the
thickness of attenuator material (iron) per view index. For
both the translating attenuator and the piecewise-linear at-
tenuator, tradeoffs exist between the speed of the actuators,
the desired fluence modulation rate and the cone angle of the
system, analysis of which are beyond the scope of this work.
Qualitatively, it appears that a speed of thickness modulation
of about 25 mm of iron per revolution may be sufficient for
the piecewise linear attenuator to approximately achieve the
wedge patterns in Fig. 12. For the system parameters sim-
ilar to those adopted in earlier work,4 including a 300 ms
gantry rotation time, this requires actuator speed of 75 cm/s,
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FIG. 5. Variance distributions for the systems and control algorithms in Table II. Both the abdomen and thorax are shown. Black is zero variance (also used
for the region outside patient), and 100% for each dataset, as defined by the peak variance for a system with the standard bowtie, is set to be white. The peak
variance is the largest variance within each dataset, which corresponds to the brightest pixel.
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FIG. 6. Performance of power law control using different exponents. Perfor-
mance is relative to a standard bowtie filter without tube current modulation,
so a value of 1 is equivalent to 100% in Table II. Peak variance is minimized
with an exponent of 1; larger exponent shows decreased performance.

which is nontrivial but within reach of compact motion
systems.

4. DISCUSSION

We have introduced several control algorithms for mini-
mizing mean or peak variance using dynamic attenuators. We
focused on two families of dynamic attenuators: attenuators
which provide limited degrees of freedom per view (D = 1 or
D = 2), and approximations to the perfect attenuator. The for-
mer includes the translating attenuator and the double wedge
attenuator, but other concepts are possible. The latter includes
the piecewise-linear attenuator, the related piecewise-constant
attenuator,16 the virtual bowtie of inverse geometry CT,13 and
the perfect attenuator itself.

For the first family of limited attenuators, we provided
a method for decomposing the optimization problem into
smaller problems with reduced dimensionality. In order to use
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(a)
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(b)

(d)

FIG. 7. (a) Weight map and (b) variance map for iterated WMV optimization
of the thorax. These correspond to the final iteration (iteration #100). The
window for the variance map is [30%, 38%] according to the units in Table II
for the thorax. (c) Weight map and (d) variance map for the abdomen, with a
window of [50%, 60%]. The weight maps are both windowed between 0 and
5, with the average weight throughout the reconstruction being one, in order
to show regions of the weight map which are zero. The weight maps saturate
at values over 25.

these methods, a priori knowledge of the patient anatomy is
needed. This is a significant assumption, and at least in some
situations may not be practical and it will be necessary to de-
velop heuristic algorithms on a case-by-case basis for each
dynamic attenuator.

For the second family of attenuators, we provided meth-
ods for minimizing the mean and peak variance of the perfect
attenuator. The perfect attenuator may prove very difficult to
achieve, but flexible attenuator designs such as the piecewise-
linear attenuator can mimic the optimal fluence field with high
accuracy. For mean variance minimization and peak variance
minimization, power law control and optimized flat variance,
respectively, are good heuristics that eliminate the need for
a priori knowledge. Optimized flat variance has similarities
to power law control with an exponent of 1. A compromise
between mean and peak variance can be achieved using an
appropriate, intermediate exponent.

The control methods we developed can be implemented
with standard CT reconstruction tools, such as forward and
backprojection, and do not require detailed knowledge of nu-
merical optimization techniques. Our proposed methods can
be used on some problems (such as the double wedge or
translating attenuators) which cannot be solved with convex
optimization. Compared to stochastic optimization methods,
our proposed methods bound the objective function and have
provable accuracy. On the other hand, there are certain atten-
uators which are neither perfect attenuator-like nor limited
attenuator-like, which cannot be analyzed by the algorithms
proposed here.

For the peak variance minimization task, a tradeoff ex-
ists between attenuator complexity and dose reduction. TCM

alone could be considered a degenerate dynamic attenuator
and, when optimized, reduces the peak variance by 10% be-
yond that of the square root heuristic TCM. The translating
and double wedge attenuators further reduce dose by about
20%. Although we believe we chose reasonable shapes for
these attenuators, further refinement and dose reduction may
be possible. The 15-wedge piecewise-linear dynamic attenua-
tor provides an additional decrease of about 15%, and finally,
the perfect attenuator provides another decrease of 15%. This
tradeoff between complexity and dose reduction has also been
observed in another, recent study that used multistage simu-
lated annealing.30, 32

The dynamic attenuators were much less successful at re-
ducing mean variance than peak variance. This is sensible be-
cause controlling the fluence field provides the system with
the ability to redistribute noise. Peak variance is determined
by the pixels with the highest variance, and a dynamic atten-
uator can redistribute fluence to reduce the variance in those
pixels at the expense of increasing variance elsewhere. This
is more beneficial for the peak variance metric than the mean
variance metric. In any case, we suggest that in the absence of
a priori information, peak variance is more appropriate than
mean variance because it provides a guarantee on minimum
image quality. In the clinic, it may not be acceptable to com-
promise diagnostic image quality in one part of the image to
produce excessive image quality in another region. In the end,
the variance metric that is most appropriate may depend on
the clinical task. In Fig. 8, the attenuators that were most suc-
cessful at reducing peak variance also increased the variance
in the lung field. In many applications, this is acceptable, be-
cause contrast is much higher in the lungs than in the medi-
astinum. In other applications this may be disadvantageous.

If regions of interest can be delineated, further dose reduc-
tion can be achieved. These regions of interest need not be
binary so that data outside the region of interest is discarded,
but may instead take the form of “image quality plans” which
parallel the dose plans in radiation therapy.9

The purpose of this study was to develop the theory
for controlling dynamic attenuators, and we therefore in-
voked several simplifications. We have previously examined
the effect of polychromatic spectra, Monte Carlo dose esti-
mates, volumetric datasets, and volumetric reconstruction al-
gorithms, and we found that the dose reductions predicted
from the simple 2D studies continued to hold in the more real-
istic environment.33 We therefore anticipate that the dose re-
ductions observed here would also hold in the more complex
settings. However, the dose reduction may be reduced for vol-
umetric scans with wide collimation in the z-direction. The
attenuators that are described here are themselves designed
for fan-beam systems. They are not intended to control mod-
ulation in the cone angle (or z) direction unless extended or
combined with other concepts. For 64-slice scanners, because
the field of view in the z-direction is much smaller than the
field of view in the x-direction, this approximation should be
acceptable. For more recent scanners with tens of centimeters
of coverage in the z-direction, the dynamic attenuators will
be less effective at dose reduction. Other approaches for dy-
namic beam shaping, such as a rotating compensator which
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TABLE III. Performance of different dynamic attenuators at minimizing either peak variance or mean variance for constant entrance energy. The first two rows
are reference systems, which use the standard body bowtie and the suggested tube current modulation. All percentages given relative to the standard bowtie
without TCM. When iterated WMV is used to minimize peak variance, numbers in parentheses below the peak variance indicate the bound on the minimax
variance. For the piecewise-linear attenuator, “peak optimized,” and “mean optimized” refer to the results from convex optimization under some approximations
and are not truly optimal.

Control Mean variance Peak variance Mean variance Peak variance
Attenuator type Algorithm Thorax (%) Thorax (%) Abdomen (%) Abdomen (%)

Standard bowtie No TCM 100 100 100 100
Standard bowtie Heuristic TCM 123 76.9 98.4 96.9
Standard bowtie Mean optimized 97.9 88.1 95.3 92.4
Standard bowtie Iterated WMV 114 68.6 97.5 88.6

(67.7, 68.6) (85.6, 88.6)
Translating (parabolic) Mean optimized 94.3 88.1 92 91.5
Translating (parabolic) Iterated WMV 103.7 52.9 104 71.7

(51.5, 52.9) (69.4, 71.7)
Double wedge Mean optimized 93.0 68.7 92.1 84.5
Double wedge Iterated WMV 104 55.0 97.6 69.5

(53.7, 55.0) (67.5, 69.5)
Piecewise-linear Mean optimized 87.2 59.6 87.7 80.3
Piecewise-linear Peak optimized 92.9 41.8 96.8 60.1
Piecewise-linear Mean heuristic 86.4 55.2 87.2 75.0
Piecewise-linear Peak heuristic 91.8 46.4 100.4 63.9
Perfect Mean optimized 83.0 46.8 85.7 73.8
Perfect Iterated WMV 93.6 34.7 99.4 54.8

(34.2, 34.7) (53.1, 54.8)

is 3D printed for the individual,34 could be applicable. The
theory developed here can still be adapted to applied to the
volumetric case as it is implemented on the basis of stan-
dard forward and backprojection operators. The control of the
perfect attenuator without a priori knowledge would also be
similar. One difference is that if a reconstruction algorithm
with data weighting is used, peak variance optimization with-

out a priori knowledge should proceed by forcing the variance
of detector channels in a view to be weighted instead of flat,
similar in principle to a beam shaping filter which has already
been described.35

We neglected electronic noise in the definition of our prob-
lem. A simple model of electronic noise is additive noise of
fixed magnitude to each detector channel. Measurements with

standard bowtie translating double wedge piecewise linear, heuristic perfect

FIG. 8. Variance distributions for the dynamic attenuators in Table III when controlled for minimum peak variance using iterated WMV optimization. The
piecewise-linear attenuator here is not controlled using iterated WMV but using a heuristic control algorithm by approximating the solution to the optimized flat
variance problem (Sec. 2.D.3). Black is zero variance (or the region outside patient), and 100% for each dataset, as defined by the peak variance for a system
with the standard bowtie, is set to be white.
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standard bowtie translating double wedge piecewise linear, heuristic perfect

FIG. 9. Fluence sinograms which produce the variance maps shown in Fig. 8 and are controlled for the peak variance minimization task. The top row is the
abdomen dataset, and the bottom row is the thorax dataset. An arrow with the double wedge attenuator shows a discontinuous shift in the desired fluence profile
on the thorax dataset. Achieving this fluence would require very rapid motion of one of the wedges, and may not be possible with actuators of limited power.

the fewest photons are therefore degraded the most by elec-
tronic noise. Since these measurements already dominate the
noise streaks in the image, adding electronic noise would lead
to even stronger noise streaks. Therefore, one of the priorities
in detector design is to reduce the electronic noise as much as
possible. In some cases, such as low-dose scans of very large
patients, additive electronic noise cannot be neglected. Here,
we expect that these control methods and dynamic attenuators
could lead to greater dose reductions if they increase the flux
delivered to rays with otherwise few photons.

The amount of dose reduction is expected to depend on
the reconstruction algorithm used. Iterative reconstruction al-
gorithms have recently become clinically viable, and it has
been well established that simple measurements such as im-
age variance are poor predictors for image quality with these
nonlinear algorithms. One of the advantages of iterative al-
gorithms is that they model the noise statistics and can reduce
the impact of noisy measurements.36 We suggest that dynamic
attenuators would still be useful with iterative reconstruction
for the same reason that TCM is still useful, but that the

standard bowtie translating double wedge

FIG. 10. Weights maps for iterated WMV show significant sparsity. This weight map is for the final iteration of the 100 iterations used. Weights are windowed
from 0 to 5, with the value of the average weight being normalized to 1. The sparsity is predicted from the theory in Sec. 2.B.3. Top row: abdomen. Bottom row:
thorax.
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FIG. 11. Evolution of the bound on σ 2
minimax derived from iterated WMV

optimization for the abdomen dataset. The error bars correspond to the lower
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minimax, and the solid line in between simply tracks the
midpoint. For readability, only every fifth bound is shown, and the bounds are
reported as a percentage relative to the peak variance of the standard bowtie
without TCM.

magnitude of dose reduction may be reduced. For example,
the dynamic attenuator will likely make the data statistics
more uniform, reducing the impact of the iterative reconstruc-
tion algorithm.

Introducing a dynamic attenuator into a CT system is
a nontrivial task. The mechanical system must be both
fast and accurate, and imaging artifacts must be carefully
controlled. More sophisticated beam hardening correction
algorithms may also be necessary.4, 37 However, it could be
argued that other routes to dose reduction, such as photon-
counting detectors and iterative reconstruction, have faced
similar or larger challenges and yet are being actively pur-
sued. We believe that the dose reductions presented by dy-
namic attenuators are large enough to warrant further study.
While the piecewise-linear dynamic attenuator showed the
largest dose reduction of the practical attenuators studied, all
attenuators showed potential for significant dose reductions,
and some of them are relatively simple. Given the growing
concern for radiation dose in CT, it seems prudent to consider
adoption of these attenuators in clinical systems.
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of the central nine wedges in the dynamic attenuator.
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APPENDIX: BOUND ON THE MINIMAX VARIANCE

The upper bound

σ 2
minimax ≤ σ 2

maxWMV

follows from the definition of the minimax variance. The min-
imax variance is the smallest possible peak variance for any
x, and σ 2

maxWMV is simply the peak variance for xWMV.
The lower bound

σ 2
minWMV ≤ σ 2

minimax

can be proven by contradiction. Suppose σ 2
minWMV > σ 2

minimax.
Let us examine the objective function of the WMV problem.
Because of the optimality of xWMV, we must have that

wT B (FxWMV)−1 ≤ wT B(Fxpeak)−1.

However, we may also apply an elementwise bound. Let
1 be the column vector of ones, and note that for any k,
(B(Fxpeak)−1)k ≤ σ 2

minimax by the definition of the minimax.

wT B(Fxpeak)−1 ≤ wT σ 2
minimax1.

If it were true that σ 2
minWMV > σ 2

minimax, we must have

wT σ 2
minimax1 < wT σ 2

minWMV1.

Finally, by definition of σ 2
minWMV,

wT σ 2
minWMV1 ≤ wT B (FxWMV)−1 .

We therefore find that assuming σ 2
minWMV > σ 2

minimax leads us
to

wT B(Fxpeak)−1 < wT B (FxWMV)−1 ,

which contradicts the optimality of xWMV. Therefore, our sup-
position that σ 2

minWMV > σ 2
minimax must be false. The preceding

arguments were independent of the particular choice of wT ,
so we must have that for any weight wT with elements non-
negative,

σ 2
minWMV ≤ σ 2

minimax ≤ σ 2
maxWMV.
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