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Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation

spectroscopy (DCS) measurements may cause errors in estimation of BFI (aDB) in tissues with small

volume and large curvature. We proposed an algorithm integrating Nth-order linear model of

autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the

extraction of aDB. The volume and geometry of the measured tissue were incorporated in the Monte

Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using

computer simulations on four tissue models with varied volumes/geometries and applied on an

in vivo stroke model of mouse. Computer simulations shows that the high-order (N� 5) linear

algorithm was more accurate in extracting aDB (errors<62%) from the noise-free DCS data than

the semi-infinite solution (errors: �5.3% to �18.0%) for different tissue models. Although adding

random noises to DCS data resulted in aDB variations, the mean values of errors in extracting aDB

were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting

the relative changes of aDB using both linear algorithm and semi-infinite solution were fairly small

(errors<62.0%) and did not rely on the tissue volume/geometry. The experimental results from the

in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear

algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject

comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different

volumes/geometries. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4876216]

Near-infrared (NIR) diffuse correlation spectroscopy

(DCS),1,2 also called diffusing-wave spectroscopy (DWS),3,4

is an emerging technology for probing microvascular blood

flow in deep tissues. DCS for the measurement of blood flow

variations has been broadly validated against other standards,

including power spectral Doppler ultrasound, Doppler ultra-

sound, laser Doppler flowmetry, Xenon computed tomogra-

phy, fluorescent microsphere flow measurement, and

arterial-spin-labeled magnetic resonance imaging.2,5 DCS

has also been used for blood flow monitoring in a variety of

tissues/organs including brain, tumor, and skeletal muscle.2,5

Conventionally, blood flow index (BFI) was extracted by fit-

ting the autocorrelation function measured by DCS to analyt-

ical solutions of correlation diffusion equation under regular

tissue boundaries (e.g., semi-infinite homogenous media,6–9

multi-layer slabs,10,11 a sphere inside a slab12). Some of

those analytical solutions were proposed to account for the

influence of non-scattering layer tissues11 or to improve the

signal-to-noise ratio in deep tissues.9 However, the com-

monly used semi-infinite approximation may lead to BFI

estimation errors in small volume tissues with large curva-

ture.13 Seeking analytical solutions is mathematically com-

plicated10,12 and likely impossible for irregular geometries.

With more and more clinical and pre-clinical applications of

DCS, there is an urgent need to develop an algorithm that

can accurately extract BFI without restrictions to tissue vol-

ume and geometry.

In this study, we created an algorithm to overcome these

restrictions. Instead of solving the correlation diffuse equa-

tion analytically, we integrated an Nth-order linear model of

light electric field temporal autocorrelation function with the

Monte Carlo simulation of photon migrations in the tissue

volume measured. This algorithm is thus not restricted by

the tissue volume and geometry because such information

has been incorporated in the Monte Carlo simulation. We

validated this Nth-order linear model for the extraction of

BFI using computer simulations on four tissue models with

varied volumes/geometries and applied it on an in vivo stroke

model of mouse.

The theory and instrumentation of DCS have been

described elsewhere.13 Briefly, a laser launches long-

coherence NIR light (650 to 900 nm) into the tissue via a

source fiber placed on the tissue surface, and the light trans-

ported/scattered through the tissue is collected by a single-

mode detector fiber placed millimeters to centimeters away

from the source fiber. The collected light by the detector

fiber is then delivered to an avalanche photodiode (APD) de-

tector, wherein the count of photons per unit time (i.e., light

intensity) is recorded. The APD output is connected to a cor-

relator board yielding light intensity autocorrelation function

which is related to the motion of moving scatterers (primar-

ily red blood cells in microvasculature). The normalized
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electric field temporal autocorrelation function g1(s) of the

detected light through highly scattering media can be deter-

mined by3,4,12,13

g1ðsÞ ¼
hEð0ÞE�ðsÞi
hjEð0Þj2i

¼
ð1

0

PðsÞexp � 1

3
k2

0hDr2ðsÞi s

l�

� �
ds: (1)

Here, P(s) is the normalized distribution of detected

photon pathlength s, k0 is the wave vector magnitude of the

light in the medium, l* is the photon random-walk step

length which is equal to 1/l0s (l0s is the reduced scattering

coefficient), and s is the delay time of autocorrelation func-

tion. hDr2(s)i represents the mean-square displacement of

the moving scatterers and its form depends on specific flow

model adopted; diffuse model has been found to fit experi-

mental data well over a wide range of tissues,6 i.e.,

hDr2(s)i¼ 6DBs. Here, DB is the effective diffusion coeffi-

cient. A factor a is added to hDr2(s)i (i.e., hDr2(s)i¼ 6aDBs)

to account for the fact that not all scatterers are “moving” in

the tissue; a is the ratio of “moving” scatterers to the total

number of scatterers. The combined term, aDB, is referred to

as BFI in biological tissues.14

From DCS theory, the unnormalized electric field tem-

poral autocorrelation function G1(s)¼hE(0)E*(s)i also satis-

fies the correlation diffusion equation6,12

Dr2 � vla �
1

3
vl0sk

2
0hDr2 sð Þi

� �
G1 ~r; sð Þ ¼ �vSð~rÞ: (2)

Here, v is the light speed in the medium, la is the

medium absorption coefficient, D� v / 3l0s is the medium

photon diffusion coefficient, and Sð~rÞ is continuous-wave

isotropic source. Frequently, the analytical solution to

Eq. (2) with semi-infinite geometry is used to extract aDB.6–8

By contrast, our algorithm starts from the original definition

of g1(s) in Eq. (1); g1(s) is extended to a form of Nth-order

Taylor polynomial

g1ðsÞ ¼ g1ð0Þ þ g
ð1Þ
1 ð0Þsþ

XN

i¼2

g
ðiÞ
1 ð0Þ
i!

si þ g
ðNþ1Þ
1 ðnÞsNþ1

ðN þ 1Þ! ;

0 < n < sð Þ: (3)

From Eq. (1) with the diffuse model hDr2(s)i¼ 6aDBs,

we get

g1ð0Þ ¼
ð1

0

PðsÞds ¼ 1; (4)

g1
ðiÞð0Þ ¼

ð1
0

PðsÞsið�2k2
0l
0
saDBÞids ¼ ð�ZÞisi ; i � 1;

(5)

g1
ðiÞðnÞ ¼ ð�ZÞi

ð1
0

PðsÞsiexpð�ZsnÞds: (6)

Here; si ¼
ð1

0

PðsÞsids and Z ¼ 2k2
0l
0
saDB: (7)

Combining Eq. (3)–(7), we get

g1ðsÞ � 1�
XN

i¼2

ð�ZÞisi

i!
si

¼ ð�Z�sÞsþ
ð�ZÞNþ1

ð1
0

PðsÞsNþ1expð�ZsnÞds

ðN þ 1Þ! sNþ1;

0 < n < sð Þ: (8)

When s is sufficient small, the second term on the

right side of Eq. (8) can be ignored (see the error estima-

tion below). The first-order (N¼ 1) and Nth-order (N> 1)

approximations are thus derived from Eq. (8),

respectively,

g1ðsÞ � 1 ¼ ð�ZÞ�ss; (9)

g1ðsÞ � 1�
XN

i¼2

ð�ZÞisi

i!
si ¼ ð�ZÞ�ss: (10)

Here, si ¼
Ð1

0
PðsÞsids can be determined from the

Monte Carlo simulation of photon migrations in the tissue

measured.13 For the first-order approximation (N¼ 1) in

Eq. (9), Z1 ¼ 2k2
0l
0
saD

ð1Þ
B (Eq. (7)) can be readily calculated

from the slope of linear regression. For the Nth-order approx-

imation (N> 1) in Eq. (10), which has unknown aDB on both

left and right sides, aDB can be derived iteratively using fol-

lowing equations:

g1ðsÞ � 1�
XN

i¼2

ð�ZN�1Þ
isi

i!
si ¼ ð�ZN�sÞs; N � 2 (11)

aD
ðNÞ
B ¼ ZN=ð2k2

0l
0
sÞ; N � 2: (12)

Note that Eq. (11) utilizes the linear regression between

the Nth-order Taylor polynomial of g1(s) and delay time s to

extract the BFI (aDB). This algorithm is thus called

“Nth-order linear model.” To estimate the errors of aDB

determined by Eq. (9)–(12), we rewrite Eq. (8) as

g1ðsÞ � 1�
XN

i¼2

ð�ZN�1Þisi

i!
si

¼ ð�Z�sÞsþ
XN

i¼2

ð�ZÞi � ð�ZN�1Þi

i!
sisi

þ
ð�ZÞNþ1

ð1
0

PðsÞsNþ1expð�ZsnÞds

ðN þ 1Þ! sNþ1: (13)

Comparing Eqs. (11) and (13), we have

ð�ZN�sÞs ¼ ð�Z�sÞsþ
XN

i¼2

ð�ZÞi � ð�ZN�1Þi

i!
sisi

þ
ð�ZÞNþ1

ð1
0

PðsÞsNþ1expð�ZsnÞds

ðN þ 1Þ! sNþ1:

(14)
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Note that Z (Eq. (7)) and ZN (Eq. (12)) contain the true

aDB and estimated aD
ðNÞ
B , respectively. As seen from

Eq. (14), the errors between the Z and ZN (as well as the

aDB and aD
ðNÞ
B ) result from ZN�1 and Nþ 1 order Taylor

expansion residual. These errors can be estimated as

follows:

errðsÞ ¼
���� aD

ðNÞ
B � aDB

aDB

���� ¼
���� ZN � Z

Z

���� ¼
���� ð�ZN�ssÞ � ð�Z�ssÞ

ð�Z�ssÞ

����
¼
XN

i¼2

ð�ZÞi � ð�ZN�1Þi

i!
sisi þ

ð�ZÞNþ1

ð1
0

PðsÞsNþ1expð�ZsnÞds

ðN þ 1Þ! sNþ1

��������

��������
,
jð�ZÞ�ssj

�
XN

i¼2

ð�ZÞi � ð�ZN�1Þi

�sð�ZÞi! sisi�1

�����
�����þ ð�ZÞN

ðN þ 1Þ!

ð1
0

PðsÞsNþ1expð�ZsnÞds

�s
sN

��������

��������
�
XN�1

i¼1

ð�ZÞiþ1 � ð�ZN�1Þiþ1

�sð�ZÞðiþ 1Þ! siþ1si

�����
�����þ ð�ZÞN

ðN þ 1Þ!
sNþ1

�s
sN

�����
�����: (15)

When DZN�1 ¼ ZN�1 � Z is sufficient small,

ð�ZÞiþ1 � ð�ZN�1Þiþ1 � ðiþ 1ÞDZN�1ð�ZÞi: (16)

With this approximation, Eq. (15) becomes

errðsÞ �
����XN�1

i¼1

ð�ZÞiþ1 � ð�ZN�1Þiþ1

ð�ZÞðiþ 1Þ!
siþ1

�s
si

����
þ
���� ð�ZÞN

ðN þ 1Þ!
sNþ1

�s
sN

����
�
����DZN�1

Z

XN�1

i¼1

ð�Zs�sÞi

i!

siþ1

ð�sÞiþ1

����þ
���� ð�Zs�sÞN

ðN þ 1Þ!
sNþ1

ð�sÞNþ1

����:
(17)

When Zs�s ¼ 2k2
0aDBl0ss�s � 1 , i.e., s� 1

2k2
0
l0saDb�s

,

err(s) is approximately equal to zero.

In order to evaluate the proposed Nth-order linear model

(Eq. (11)) and corresponding errors (Eq. (17)), we created four

tissue models with different volumes and geometries in com-

puter simulations: (1) a large slab representative of an approxi-

mate semi-infinite tissue (Fig. 1(a)), (2) a large sphere

representative of a human head (Fig. 1(b)), (3) a large cylinder

representative of a human lower leg (Fig. 1(c)), and (4) a small

sphere representative of a mouse head (Fig. 1(d)). The source-

detector (S-D) separations were set as 2.5 cm for the tissues

with large volumes (Figs. 1(a)–1(c)) and 0.8 cm for the small

mouse head (Fig. 1(d)). The dimensions and measurement set-

ups for these tissue models matched approximately in vivo
experiments.13,14 The Monte Carlo simulation of 10� 106

photon migrations in the tissue was utilized to generate the

normalized distribution of detected photon pathlengths P(s) in

each tissue model.13 The calculated P(s) was then combined

with the assigned BFI (aDB) as well as optical properties (e.g.,

la and ls
0) reported in literature13 to generate an autocorrela-

tion function g1(s) based on Eq. (1). Ten levels of aDB with a

step decrement of 10% was assigned (i.e., aDB

(i)¼ [1� (i�1)/10]� 10�8 cm2/s, i¼ 1, 2,…, 10) for the eval-

uation of relative changes in BFI. Random noises generated by

an established noise model15 were added to 1000 g1(s) curves

in all tissue models, respectively. The levels of noise were

determined by the detected light intensity which depended on

tissue optical properties and S-D separation. A larger separa-

tion resulted in a lower light intensity, leading to a greater

noise. As such, larger noises were added to the larger tissue

models (by assigning a lower light intensity of 50 kHz based

FIG. 1. Four tissue models with different volumes and geometries: (a) a

large slab representative of large flat tissue, (b) a large sphere representative

of human head, (c) a large cylinder representative of human lower leg, and

(d) a small sphere representative of mouse head. The separations between

the source (S) and detector (D) fibers were 2.5 cm for the models of (a), (b),

and (c), and 0.8 cm for that of (d). The S-D fibers were placed in the ways to

mimic in vivo experimental configurations. Note that the illustration scales

may not be the same among different models.
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on previous in vivo human studies13) using the larger S-D sep-

aration of 2.5 cm (Figs. 1(a)–1(c)) while smaller noises were

added to the mouse head model (by assigning a higher light in-

tensity of 200 kHz based on previous in vivo mouse studies14)

using the shorter S-D separation of 0.8 cm (Fig. 1(d)). From

the generated g1(s) curves, we extracted aDB using the

semi-infinite solution and Nth-order linear model. DCS data

with the delay time 0.2� s� 30 ls (78 data points) were used

in the linear model to satisfy the approximation made in Eqs.

(9)–(17). The mean and standard derivation (mean 6 SD over

the 1000 g1(s) simulations) of aDB errors between the recon-

structed and assigned values are quantified for evaluations.

After computer simulations, we applied our Nth-order lin-

ear model on an in vivo stroke model of mouse. The experi-

mental protocol was approved by the University of Kentucky

Institutional Animal Care and Use Committee. Ten C57BL/6

mice (male, 10–12 weeks old, Harlan Laboratories, Inc., IN,

USA) were utilized. The mouse was anesthetized throughout

cerebral ischemic procedure via inhalation of 1%–2% isoflur-

ane in oxygen and a warm blanket was used to maintain the

rectal temperature at 37 	C.14 For installation of optical probe

on the skull, scalp was surgically removed from the mouse

head.14 Left common carotid artery ligation (CCAL) was

applied first, followed by a permanent left middle cerebral ar-

tery occlusion (MCAO) to induce a stroke. A foam pad

(5 mm� 10 mm) containing a pair of source and detector fiber

was glued on the mouse skull.14 The S-D separation was set

as 0.8 cm, matching the simulation setup for mouse head

(Fig. 1(d)). Cerebral BFI was continuously monitored by a

DCS device throughout the ischemic procedure and extracted

using the Nth-order linear model with small sphere tissue

model, and compared with the semi-infinite solution.

Figure 2 shows the percentage errors of aDB at the

first step of BFI variation (i.e., aDB (1)¼ 1� 10�8 cm2/s)

reconstructed from the simulated DCS data without (Fig. 2(a))

or with noises (Fig. 2(b)). For comparisons, aDB was

calculated using the semi-infinite solution and the Nth-order

linear model (N¼ 1, 3, 5,…). For all tissue models without

noises (Fig. 2(a)), the reconstructed errors of aDB decreased

with the increase of the order number, and the solutions with

higher orders (i.e., N� 3) generated smaller aDB errors than

the semi-infinite solution. The accuracy of the semi-infinite

solution relied on tissue geometry and volume; aDB errors

increased with the increase of tissue curvature and the

decrease of tissue volume (large slab: �5.3%; human head:

�6.3%; human lower leg: �9.1%; mouse head: �18.0%). By

contrast, higher order solutions of the linear model retrieved

more accurate aDB values consistently regardless of the varia-

tions in tissue volumes and geometries. The reconstructed

errors of aDB using the third-order and fifth-order solutions

were less than 65.5% and 62.0%, respectively, for all tissue

models. Note that the errors using the linear model at higher

orders (N> 5) were too small (<60.5%) to be displayed

(data are not shown). Furthermore, the BFI errors generated

by the high-order linear algorithm (N� 5) and semi-infinite

solution were not correlated (p> 0.05). All BFI errors

observed in the simulations fell into the range estimated by

Eq. (17). Adding random noises to DCS data resulted in varia-

tions in the errors of reconstructed aDB (Fig. 2(b)). However,

the mean values of these errors (Fig. 2(b)) were similar to

those obtained from the noise-free DCS data (Fig. 2(a)).

For the aDB values at different variation steps (i.e., from

0.1� 10�8 to 1� 10�8 cm2/s) with or without noises, the

absolute BFI errors reconstructed by both the semi-infinite

solution and Nth-order linear model were found to be propor-

tional to the assigned absolute aDB values. As a result, the

errors in extracting the percentage changes of BFI (relative

to the baseline BFI at the first step) were small (<62.0%)

for all tissue models with and without noises, which did not

rely on the tissue volume and geometry (data are not shown).

Figure 3 shows cerebral blood flow data reconstructed

using the semi-infinite solution and fifth-order linear model

FIG. 2. Percentage errors of aDB at the first step of BFI (i.e., aDB

(1)¼ 1� 10�8 cm2/s) in four tissue models reconstructed from the simulated

DCS data (a) without and (b) with noises. The average errors calculated

from the simulated 1000 autocorrelation curves with noises (b) are presented

as means 6 standard deviations (error bars).

FIG. 3. Cerebral BFI (aDB) data measured from 10 mice during the ischemic

procedures to induce a stroke: (a) time course changes of aDB extracted from

a representative mouse and (b) percentage changes of aDB during CCAL and

during MCAO relative to their baselines (assigning 0), respectively. The aDB

was reconstructed using the semi-infinite solution and fifth-order linear algo-

rithm, respectively. The percentage changes of aDB were averaged over 10

mice and presented as means 6 standard deviations (error bars).
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from 10 mice with stroke. As illustrated from a representa-

tive mouse (Fig. 3(a)), time course changes in aDB during is-

chemic procedures were continuously monitored and

reconstructed by the two solutions for comparisons. An im-

mediate large decrease in aDB occurred at the onset of the

left CCAL, followed by another deep reduction after the left

MCAO. The two solutions yielded substantial difference in

baseline aDB. On average (n¼ 10), the significant differen-

ces in baseline aDB (�20.7% 6 3.6%, p< 10�7, paired

t-test) reconstructed by the two solutions were similar to

those (�17.8% 6 8.7%, p< 10�10, paired t-test) observed in

the simulated data with noises (Fig. 2(b)). However, the per-

centage changes in aDB during CCAL and MCAO (Fig. 3(b))

were not significantly different (p¼ 0.47, one-way repeated

measures ANOVA), which also agreed with our simulation

results.

In the simulations and in vivo tests, DCS data with delay

time 0.2� s� 30 ls were selected to extract aDB. According

to Eq. (17), using DCS data with smaller s to extract aDB

would result in smaller errors. On the other hand, the linear

regression model (Eqs. (9) and (11)) needs more data points

involved to yield a stable and accurate slope for extracting

aDB. Based on a few simulations, 78 DCS data points with

0.2� s� 30 ls were thus selected to balance the contradic-

tory requests.

In summary, BFI is often extracted by fitting DCS data

to the semi-infinite solution of correlation diffusion

equation,6–8,13,14,16 which assumes the homogeneous tissue to

have a semi-infinite volume and flat surface. However, ignor-

ing geometrical/volume influence (i.e., using semi-infinite

approximation) may lead to remarkable evaluation errors in

BFI (e.g., 5.3% to 18.0% observed in this study). Minimizing

these errors is particularly crucial for these studies to compare

the small differences in BFI at different time points or differ-

ent regions of tissues (e.g., 10% to 28% differences observed

in the infant’s brain with a small volume and large curva-

ture7,16). The linear algorithm created in this study overcomes

the restrictions of semi-infinite solution and our results dem-

onstrate that high-order linear solutions (N� 5) can accu-

rately extract absolute BFI values in homogenous tissue

models with different geometries and volumes. Although we

have tested this linear model only on several simple

geometries/volumes (i.e., slab, sphere, cylinder), arbitrary

geometry/volume can be obtained and tested in the future by

incorporating other imaging modalities (e.g., MRI). It is also

possible to extend the capability of the linear algorithm for

extracting BFI values in heterogeneous tissues from DCS

measurements at multiple S-D separations. Overall, our linear

algorithm enables accurate quantification of absolute blood

flow index, which is crucial for the inter-subject comparison

and longitudinal flow monitoring in a variety of tissues/

organs with different volumes and geometries.
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