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Various molecular and cellular pathways are active in eukaryotes to control the

quality and integrity of mitochondria. These pathways are involved in keeping

a ‘healthy’ population of this essential organelle during the lifetime of the

organism. Quality control (QC) systems counteract processes that lead to orga-

nellar dysfunction manifesting as degenerative diseases and ageing. We

discuss disease- and ageing-related pathways involved in mitochondrial QC:

mtDNA repair and reorganization, regeneration of oxidized amino acids,

refolding and degradation of severely damaged proteins, degradation of

whole mitochondria by mitophagy and finally programmed cell death. The

control of the integrity of mtDNA and regulation of its expression is essential

to remodel single proteins as well as mitochondrial complexes that determine

mitochondrial functions. The redundancy of components, such as proteases,

and the hierarchies of the QC raise questions about crosstalk between systems

and their precise regulation. The understanding of the underlying mechanisms

on the genomic, proteomic, organellar and cellular levels holds the key for

the development of interventions for mitochondrial dysfunctions, degenera-

tive processes, ageing and age-related diseases resulting from impairments

of mitochondria.
1. Introduction
Maintaining the integrity of the individual functional cellular units of any bio-

logical system is the key for its proper function. Various pathways evolved to

exert quality control (QC). The individual pathways are effective at different

stages of QC from single amino acids to a protein, to organelles and whole

cells. They constitute a complex network in which they appear to interact in a hier-

archical order. Impairments in this network lead to adverse effects, including

disease and ageing.

Mitochondria are eukaryotic organelles involved in various essential func-

tions including energy transduction, iron/sulfur cluster synthesis, lipid

metabolism and copper homeostasis. Mitochondria need an efficient QC

system because they generate a dangerous superoxide anion radical as a by-

product of respiration. The superoxide anion radical can be converted to

other types of reactive oxygen species (ROS) [1,2]. ROS are essential at low

levels for molecular signalling but increased levels are toxic since they can

damage virtually all biomolecules including lipids, proteins and nucleic

acids. In fact, the toxic features of ROS and their generation in mitochondria

led to the suggestion that mitochondria are the ‘clock’ involved in determining

the lifespan of biological systems [3]. The notion that mitochondrial ROS are the

root cause of ageing is currently questioned because of many contradictory data

that accumulated over the years [4,5]. However, a contributing role of ROS to

ageing of biological systems and in onset of diseases is generally accepted

[5–7].

In this review, we focus on the components of the mitochondrial QC system,

their function and interactions. We describe the impact of genetic mutations on
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degenerative processes including biological ageing, neurode-

generative and age-related disorders and describe mutations

that impair QC function.
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2. Mutations in mtDNA in relation to ageing and
disease

Mitochondria are semi-autonomous organelles. In mammals,

an estimated 1200–1500 proteins of this organelle are encoded

by both the nuclear DNA and the mitochondrial DNA

(mtDNA) [8,9]. In humans, only 13 proteins involved in oxi-

dative phosphorylation (OXPHOS) are encoded by the

mtDNA along with a set of 22 tRNAs and the two rRNAs

necessary for the mitochondrial protein synthesis. Preserving

the integrity of the genetic information for mitochondrial

proteins in both the nucleus as well as in mitochondria is

essential and mtDNA mutations have been associated with

complex neurodegenerative diseases [10,11]. mtDNA instabil-

ity was found to be responsible for degenerative processes,

first in lower organisms and later also in mammals [12–16].

Both point mutations and large-scale mtDNA events

(table 1) typically accumulate during ageing. Keeping the

mtDNA unchanged is a basic requirement for maintaining

the mitochondrial ‘health’ over time.

(a) mtDNA reorganization in eukaryotic cell systems
The first molecular evidence for age-related reorganization of

mtDNA is derived from the fungal ageing model Podospora
anserina [23]. This fungus is characterized by a limited life-

span and a senescence syndrome [24]. Senescence turned

out to be correlated with a massive reorganization of the

mtDNA [12,25]. The mtDNA reorganization is very effi-

ciently driven by an unusual mobile genetic element. In

juvenile cultures, the genetic element is an integral part of

the mtDNA [26,27]. In senescent cultures, it accumulates as

a covalently closed circular DNA. It was termed plasmid-

like (pl) DNA or aSen DNA [28,29]. Subsequently, the

autonomous element reintegrates into the mtDNA leading

to large reorganizations [30]. In senescent cultures, mtDNA

reorganizations may result in deletion of large parts of

the mtDNA [26,31]. These reorganizations are found in all

wild-type strains of P. anserina and seem to be the cause of

senescence. A number of modulators affect the efficiency and

the rate of reorganization. Modulators are encoded by nuclear

genes and by mitochondrial traits. One such mitochondrial

maternally inherited trait was first described in P. anserina in

a longevity mutant. The modulator, linear plasmid pAL2-1,

encodes DNA and RNA polymerase and contains long term-

inal inverted repeats [32–37]. Remarkably, the presence of

pAL2-1 delays the wild-type-specific, age-related mtDNA

reorganization leading to a 12-fold lifespan extension.

Also in other filamentous fungi, in particular different

Neurospora species, mtDNA reorganizations were linked to

senescence and organismal death [38,39]. These mtDNA

instabilities are linked to the activity of either circular mito-

chondrial plasmids, such as Mauriceville-1c and Varkud-1c,

or linear plasmids, such as kalilo and maranhar [13,40,41].

The latter resemble in their structure the pAL2-1 invertron

of P. anserina. Essentially, all elements act as efficient mutator

elements resulting in mtDNA reorganization and accumu-

lation of defective mtDNA leading to senescence and death.
(b) mtDNA reorganization in mammalian systems
First evidence for age-related mtDNA reorganizations in

mammals was obtained by heteroduplex analysis of mtDNA

isolated from rodents of different ages that revealed an age-

dependent increase in mtDNA deletions and/or duplications

[42]. Subsequently, age-related mtDNA deletions were reported

in other organisms including humans [43–45]. The mtDNA de-

letions found in mice [46] and mitochondrial myopathy

patients [47] affected only a subset of the mtDNA copies in

the cell (heteroplasmy). Similar results were observed in a

patient carrying the m.11778G . A mutation, causing Leber’s

hereditary optic neuropathy (MIM:535000) [48]. It is now recog-

nized that only those mtDNA deletions in muscle that exceed a

certain heteroplasmy threshold (proportion of mutated

mtDNA molecules) cause a biochemical defect in OXPHOS

enzyme activity [49]. For different mtDNA mutations in

muscle, various heteroplasmy threshold effects have been

observed, ranging from 67+16% [50] to more than 90% [51].

These varying threshold effects are paralleled in other tissues

[52–55] and transmitochondrial cybrid cell lines [56–58]. At

present, the majority (73%) of reported pathogenic mtDNA

mutations are heteroplasmic mutations [17].

The heteroplasmy threshold is determined by a combina-

tion of different levels of transcription, translation, OXPHOS

enzyme activity and the biochemical effect on individual

OXPHOS complexes. For example, between 50% and 80% inhi-

bition of individual complexes is required before the respiratory

rate of mitochondria is affected [59]. The threshold effect is

tissue-specific owing to a different expression of mtDNA

mutations and the tissue-specific dependency on mitochondrial

respiration, as shown for mt-tRNA mutations in muscle, blood

and urothelium [55]. These factors contribute to various clinical

manifestations of mtDNA mutations in human disease [60,61]

and ageing [62]. Similar effects of mtDNA mutations on mito-

chondrial integrity have been observed during ageing and in

mitochondrial disease [18,63,64].
(c) Clonal expansion of heteroplasmic mtDNA mutations
during ageing

The occurrence of heteroplasmic mtDNA mutations in mito-

chondrial disease and accumulation of these mtDNA

mutations with age [65,66] suggests that they are derived as

clones from a single de novo mtDNA mutation. The process

of increasing heteroplasmy with time is called clonal expansion

and might occur owing to a selective advantage of damaged

mtDNA molecules over healthy mtDNA genotypes (figure 1).

Selective replication has been attributed to mtDNA size differ-

ences in single mtDNA deletion patients [48], intracellular

heteroplasmy differences [67] or a reduced turnover rate of

damaged mitochondria [68]. The latter two hypotheses view

mitochondria as discrete organelles without the capability to

exchange matrix content (figure 1) [69], but over longer periods

of time mitochondrial fusion and fission may complement inter-

mitochondrial differences. Clonal expansion of point mutations

has also been observed in ageing mitotic tissues such as colon

[62]. Recent modelling approaches support a size-based selec-

tive advantage, but only in long-lived species [70]. Another

view is that clonal expansion is independent of a selection

advantage of damaged mtDNA molecules, and that relaxed

replication of mtDNA and constant turnover of mtDNA mol-

ecules causes random genetic drift of mtDNA mutations
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Figure 1. The influence of clonal expansion on mitochondrial integrity with time. Mutations can be introduced de novo or inherited in a number of mtDNA copies
(heteroplasmic). Circles inside the mitochondrion are a representation of the mtDNA population for that particular mitochondrion. Normal mtDNA molecules are
indicated with solid lines and mtDNA molecules with clonally expanded mutations are depicted with dashed lines. The clonal expansion of mutated mtDNA mol-
ecules dominates the expansion of normal mtDNA, indicated by thickness of the downward arrows. The mechanisms of mtDNA repair, selective/non-selective
degradation of mtDNA and upregulated mtDNA replication to block clonal expansion at each level of mitochondrial integrity are indicated on the right.
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[71,72]. Random genetic drift requires a long lifespan for a single

mtDNA mutation to occur and drift towards high-level hetero-

plasmy. For humans, these mutations would need to be

inherited, subjected to a genetic bottleneck and purifying selec-

tion [73,74], or be fixed in early life [75]. In mammalian species,

such as mice and rats, random genetic drift is not sufficient as a

general mechanism to explain clonal expansion [76]. The mode

of mtDNA selection is essential to understand the effect of clon-

ally expanded mtDNA mutations on mitochondrial integrity

during ageing and de novo mitochondrial disease.
(d) Preserving mitochondrial integrity by mtDNA repair
DNA is subjected to damage during ageing (figure 1): spon-

taneous hydrolysis forming either apurinic/apyrimidinic sites

or deaminated uracil sites, oxidative lesions, non-enzymatic

alkylation of DNA, mismatched bases or single- and double-

stranded breaks [77,78]. Formation of de novo mtDNA

mutations is believed to be the result of increased mitochondrial

oxidative stress and/or replication errors [79–81]. In order to

prevent deleterious consequences of these mutations, cells may

either repair arising mtDNA mutations or shift the heteroplasmy

of existing mutations below the phenotypic threshold effect.

Not all DNA repair pathways known for nuclear DNA

exist in mitochondria, although advances in the field of

mtDNA repair have changed the perspective that mtDNA

was hardly repaired at all. (For an extensive overview of

mtDNA repair pathways, see [77,82,83]). Here, we focus on

the role of mtDNA repair in ageing and disease.

Mitochondrial base excision repair (mtBER) is a pathway for

repair of mtDNA oxidative lesions. Next to short-patch mtBER
(repair of single bases), long-patch mtBER (removal of a string

of several bases) is now also well documented in mitochondria.

Mechanisms of nuclear BER (nBER) and mtBER are similar and

many of the proteins active in the nucleus have also been ident-

ified in the mitochondria [84–86]. Many of the BER enzymes are

essential for cellular viability, and conditional BER knockout

models show severe mtDNA depletion [87–89].

The nucleus uses an array of DNA binding proteins with

specialized tasks in DNA maintenance, but mitochondria use

only their subset. For instance, POLG is the only polymerase

responsible for DNA polymerase, 50 –30 exonuclease, dRP-lyase

and reverse transcriptase activities in mitochondria. It is therefore

not surprising that POLG malfunction causes many clinical cases

of mtDNA diseases [90,91]. Premature ageing and reduced life-

span in proofreading-deficient PolgA mutator mice were

attributed to an increased somatic mtDNA mutation load

promoting apoptosis [92,93]. However, these non-physiological

levels have been criticized [94], as recent evidence shows that

low-level transmitted heteroplasmic mtDNA variants (5–13%)

also contribute to ageing in the mutator mouse.

MtDNA is clustered in protein-rich structures called

nucleoids near the inner mitochondrial membrane, where it

interacts with mitochondrial transcription factor A (TFAM)

[95–97]. TFAM binding to damaged mtDNA could act as a rec-

ognition element for mtDNA repair enzymes. In an accelerated

ageing rat model carrying the mtDNA deletion, TFAM overex-

pression in the inner ear led to a reduction of 8-oxoguanine

DNA glycosylase OGG1, reduction of polymerase POLG

activity and an increase in heteroplasmy [98]. BER enzymes

appear to be regulated at the protein level. Whole tissue

extracts of rat lens of two- and 14 months old animals
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contained similar mRNA levels of OGG1, APE1 and POLG,

but a reduced protein expression under normoxic conditions

[99]. Finally, OGG1 mRNA and protein downregulation were

also observed in an accelerated senescence mouse model [100].

(e) Preserving mitochondrial integrity by mtDNA copy
number regulation

MtDNA dynamics plays a significant role in preventing

biochemical defects of mitochondrial mutations. Targeted degra-

dation of damaged mtDNA molecules or increased mtDNA

replication of wild-type molecules can shift the mtDNA muta-

tion heteroplasmy below the phenotypic threshold level.

Degradation of damaged mtDNA molecules was first suggested

as the mechanism to remove deleterious mutations from the

mtDNA population [101,102]. Further data supporting this

claim only became available recently with two studies demon-

strating that increased oxidative stress by hydrogen peroxide

treatment leads to increased mtDNA degradation [103,104]. Sur-

prisingly, alkylation of mtDNA did not have the same effect and

abasic sites and single-stranded breaks were more predominant

in mtDNA than oxidative lesions [104]. When these types of

mtDNA damage are persistent, degradation of mtDNA is upre-

gulated within several hours upon damage initiation [105]. This

suggests that the mtDNA damage repair capacity is limited and

the type and amount of mutagenic agents determines a cells’

capacity to deal with mtDNA damage.

The amount of mtDNA decreases with age in various

human tissues, including pancreatic islets [106], skeletal

muscle [107], cerebral cortex and heart muscle albeit small

[108]. These findings hold also for regions of the rat central ner-

vous system [109]. Interestingly, various tissues in ageing mice

do not show a reduction in mtDNA copy number [110], and the

accumulation of mtDNA mutations in two epithelial lineages

differed between mice and men [111]. These studies suggest

that the impact of mitochondrial integrity on ageing may

differ between species.

Segments of human muscle fibres demonstrating normal

mitochondrial function contained a constant amount of wild-

type mtDNA [51]. This finding supports the ‘maintenance

of the wild-type’ hypothesis, which stipulates that cells require

a minimal amount of wild-type mtDNA to maintain normal cel-

lular function [112]. However, in human myocardium with an

age-related loss in myocardial contractile force (MCF) and age-

related increase of the mtDNA common deletion, mtDNA

copy number remained constant [113]. The authors found a

weak correlation between the level of mtDNA deletion and

MCF loss. Clonal expansion of the mtDNA deletion is therefore

not causative for age-related loss of tissue function owing to a

compensatory replication of wild-type mtDNA. The importance

of mtDNA copy number to support tissue function was also

demonstrated in a large cohort study of blood mtDNA content

in women undergoing ovarian hyperstimulation. MtDNA

copy numbers were within normal range in non-responders to

treatment, but severely decreased in patients showing premature

ovarian failure [114]. Three independent studies that quantified

mtDNA copy number in dominant optic atrophy (MIM:165500),

a dominant inherited optic neuropathy caused by mutations

in the OPA1 gene which leads to mitochondrial fragmenta-

tion, found contradicting results in mtDNA copy number

[115–117]. Finally, leucocytes of patients with classical mito-

chondrial syndromes MELAS and MERRF also demonstrated

age-related decline in mtDNA content, suggesting that beyond
the phenotypic threshold level, cells can no longer compensate

for deleterious mutations by increased mtDNA replication [118].

TFAM is the primary protein involved in mtDNA copy

number regulation [119]. Loss of TFAM is embryonically

lethal, characterized by delayed neural and cardiac tissue devel-

opment [120]. There is growing evidence that mitochondrial

proteases play an important role in TFAM-mediated mtDNA

maintenance. Proteolytic control of TFAM by the mitochondrial

LON protease regulates a stable TFAM : mtDNA ratio [121].

LON-depleted cells contained less oxidative lesions when

exposed to H2O2 [122], presumably owing to increased levels

of TFAM exerting a protective effect against oxidative stress

[123]. In addition, phosphorylation of TFAM by protein

kinase A impairs the DNA binding capacity of TFAM, leaving

it vulnerable for degradation by the LON protease [124]. The

mitochondrial matrix chaperone CLPX enhances DNA binding

of TFAM independently of its protease activity in regulation of

nucleoid size and mtDNA segregation [125]. This process may

be co-facilitated by mtDNA D-loop binding of another AAAþ
protein, ATAD3 [126], thereby linking mtDNA QC and mtDNA

metabolism [127] to proteostatic mitochondrial QC.
3. Proteostasis in mitochondrial integrity and
degenerative processes

Proteostasis of organellar proteins involves their biogenesis,

trafficking across the membranes, their sorting, folding, assem-

bly and degradation. Mitochondria contain different molecular

pathways that participate in organellar proteostasis. Impair-

ments of these pathways impact the integrity of mitochondria

and affect the mitochondrial activity leading to degenerative

processes. Error-free protein folding as well as prompt turnover

and degradation of misfolded proteins is vital for organellar

functions. Proteostasis counteracts toxic protein accumulation

impacting the mitochondrial and cellular functions. Chaper-

ones, including heat-shock proteins, are active in refolding of

misfolded proteins. Different mitochondrial proteases degrade

damaged proteins or proteins that are present in non-balanced

quantities. The individual components of the QC system are

effective in counteracting impairments caused by molecular

damage via repair, refolding and reactivation of polypeptides

to the native form. Degradation can also be used to protect mito-

chondria from damaged proteins. Proteostasis pathways are

localized in all mitochondrial subcompartments (membranes,

inter-membrane space and the mitochondrial matrix) and are

essential for proper cellular functions (table 2).

(a) Protein repair by reduction of oxidized proteins
Mitochondria generate ROS as a consequence of oxidative

metabolism, although the ROS production can increase greatly

in pathological conditions [1]. The role of ROS is highlighted by

the oxidized proteins that accumulate in aged cells and in

age-related disorders [151]. Degradation of oxidized proteins

becomes impaired with age [152]. Mitochondria can also

reverse and repair certain types of protein oxidative damage

with designated enzymatic systems that catalyse the regener-

ation of protein-bound oxidized cysteine and methionine [153].

Methionine residues can be oxidized to their sulfoxide forms

as a result of oxidative damage [152]. This creates two forms of

methionine sulfoxide, S and R. The two diastereomers can

be reduced by the peptide methionine sulfoxide reductases A



Table 2. Human mitochondrial proteostasis proteins and their association with disease. Proteins that have no known disease-causing mutations, but implicated
in disease or ageing (e.g. up- or downregulation in mitochondria-deficient cells) are also indicated. ER, endoplasmic reticulum; IM, inner membrane; OM, outer
membrane; IMS, intermembrane space.

human
gene description function localization disease references

MSRA mitochondrial peptide

methionine sulfoxide

reductase

reduction of methionine

sulfoxide to methionine

matrix, cytosol — [128 – 130]

MSRB2 methionine-R-sulfoxide

reductase

reduction of methionine

sulfoxide to methionine

matrix — [131]

MSRB3 methionine-R-sulfoxide

reductase

reduction of methionine

sulfoxide to methionine

matrix, ER deafness, autosomal recessive

74 (MIM:613718)

[132]

YME1L ATP-dependent zinc

metalloprotease

i-AAA subunit, proteolytic

regulation of respiratory

chain and OPA1

IM

( protruding

IMS)

— [133]

SPG7 ATP-dependent zinc

metalloprotease

m-AAA subunit, maturation and

degradation of mitochondrial

proteins

IM

( protruding

matrix)

spastic paraplegia 7

(MIM:607259)

[134]

AFG3L2 ATP-dependent zinc

metalloprotease

m-AAA subunit, maturation and

degradation of mitochondrial

proteins

IM

( protruding

matrix)

spinocerebellar ataxia 28

(MIM:610246); spastic

ataxia autosomal recessive

5 (MIM:614487)

[135,136]

PHB,

PHB2

prohibitins protein turnover, mitochondrial

biogenesis and function

IM — [137,138].

CLPP component of a

mitochondrial ATP-

dependent proteolytic

complex

unfolded-protein response stress

signalling pathway

matrix Perrault syndrome

(MIM:614129)

[139]

CLPX component of a

mitochondrial ATP-

dependent proteolytic

complex

unfolded-protein response stress

signalling pathway

matrix forms a complex with CLPP [140]

LONP1 mitochondrial ATP-

dependent protease

Lon; serine protease

15

degradation of misfolded,

missorted, non-assembled

and oxidized proteins;

mtDNA regulation

matrix protein levels affected in

disease and disease

models

[141]

MFN1 transmembrane GTPase mitochondrial fusion and

distribution, forms

heterocomplexes with MFN2

OM — [142]

MFN2 transmembrane GTPase mitochondrial fusion and

distribution, forms

heterocomplexes with MFN2

OM Charcot – Marie – Tooth

disease (MIM: 609260)

[143 – 145]

OPA1 dynamin-related

mitochondrial GTPase

regulation of mitochondrial

network, OXPHOS and

apoptosis

IM optic atrophies (MIM:165500

and MIM:125250)

[146,147]

HSPA9 HSP70 protein import, chaperonin matrix — [148]

HSPD1 HSP60 chaperonin matrix spastic paraplegia (SPG13;

MIM:605280); MitCHAP60

disease (MIM:612233)

[149,150]
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(MsrA) and B (Msr B). Both sulfoxide reductases are necessary

for complete reduction [154,155]. In mammals, the system is

active in mitochondria (MSRA and MSRB2/3) as well as outside

the organelle [128,129]. This underscores the important role of

these enzymes for the whole cell in both the maintenance of pro-

teins under oxidative stress and the overall redox homeostasis

[153]. The deletion of MSRA is known to negatively impact

lifespan in mammals and enhance sensitivity to oxidative

stress, resulting in accumulation of oxidized proteins and devel-

opment of neurological disorders [130]. Consistent with the role

of methionine sulfoxide reductases, the MSRB2 gene was shown

to have beneficial effects on a human leukaemia cell line that

missed the MSRA gene. MSRB2 overexpression protects

human cells from H2O2-induced oxidative damage, generation

of ROS, loss of mitochondrial membrane potential, protein

carbonyl accumulation and apoptotic cell death, thus ensuring

the mitochondrial integrity and cell survival by scavenging ROS

[131]. The autosomal recessive null mutations in the human

MSRB3 have been implicated in mitochondrial dysfunction

leading to deafness (DFNB74 MIM:613718 [132]).

(b) Protein reconstitution by refolding
Mitochondria effectively prevent their deterioration by engaging

molecular mechanisms of protein repair [156]. The majority of

mitochondrial proteins are delivered and translocated to the

matrix in their unfolded state [157] making them vulnerable to

misfolding and aggregation owing to exposed hydrophobic

regions. Mitochondrial chaperones mtHSP70, HSP60 and

HSP10 facilitate correct protein folding [148,158–160]. The

mammalian HSP60 (HSPD1) gene has been shown to be essen-

tial for cell survival [161]. Different mutations in the human

mitochondrial chaperonin HSP60/HSPD1 are associated with

two different disorders [162]: the dominantly inherited form of

spastic paraplegia (SPG13; MIM:605280) [149] and an autosomal

recessively inherited white matter disorder termed MitCHAP60

disease (MIM:612233) [150]. Interestingly, both disorders exclu-

sively affect the central nervous system, and no other systems or

organs. A mouse model with HSPD1 mutation has been devel-

oped to recapitulate clinical characteristic of SPG13 patients:

swollen mitochondria in the corticospinal tracts, impaired ATP

synthesis in the neocortex and spinal cord, and a pronounced

defect in complex III assembly and activity [162]. At the molecu-

lar level, it appears that disease aetiology stems from

haploinsufficiency of the HSPD1 chaperonin.

(c) Protein degradation
Mitochondrial proteases comprise another part of the QC

system which copes with protein damage. Mitochondrial pro-

teome turnover appears to be prevalent in mammalian cells

and proteolysis occurs continuously in every mitochondrion

under physiological and pathological conditions [163] by

means of autophagy, through mitochondrial proteases [164]

and the ubiquitin–proteasome system [165]. Subunits of the res-

piratory chain are encoded in both mitochondrial and nuclear

genomes, therefore they are vulnerable to an imbalance in

gene expression that could lead to dysfunctional respiratory

chain complexes. Protein degradation is a mitochondrial mech-

anism that can potentially not only eliminate damaged proteins,

but can also restore the balance between mtDNA- and nuclear-

encoded subunits of the respiratory chain. Turnover rates vary

greatly for different proteins and even for subunits of the same

respiratory complex [166]. We used the data of Price et al. [167]
to calculate protein half-lives in mammalian brain. In general,

mitochondrial proteins in mammalian brain have exceptionally

long half-lives (median 16 days, avg.¼ 20.5, s.d. ¼ 20.2), two

times longer compared to proteins that localize to the nucleus

(median 7 days, avg. ¼ 11.8, s.d.¼ 23.8) and all other proteins

surveyed (8 days, avg. ¼ 12.4, s.d. ¼ 21.4). The half-lives and

lower mitochondrial turnover rate are evolutionarily conserved

[166]. The rate depends most likely on biological properties of

the proteins and the role they play in mitochondria [163].
(i) The inner membrane proteases: i-AAA and m-AAA protease
The mitochondrial inner membrane embeds the oxidative

phosphorylation chain essential for proper respiratory func-

tion. Surveillance of protein quality as well as regulation of

biogenesis of the inner membrane subunits, vital for mitochon-

drial function, is carried out by m-AAA and i-AAA proteases.

Misfolded or damaged proteins are degraded to peptides,

which are then either exported from the organelle or degraded

further to amino acids by various oligopeptidases [168]. Two

ATP-dependent protease enzymes are embedded in the inner

mitochondrial membrane. The ATPases associated with

diverse cellular activities (AAA) domain-containing pepti-

dases form oligomers and expose their catalytic centre to the

opposite sides of the inner membrane. i-AAA proteases pro-

trude into the inter-membrane space and m-AAA protease is

directed to the matrix. Both proteases regulate biogenesis of

mitochondrial proteins [133], exert chaperone-like properties,

monitor the folding state of solvent-exposed domains and

specifically degrade non-native membrane proteins [169,170].

Despite different localization of the active sites i-AAA and

m-AAA proteases can partially complement each others func-

tion in fungi. This implies overlapping specificities of both

enzymes. Additionally, human i-AAA and m-AAA are able

to rescue fungal deletion strains [134,164].

Mitochondrial i-AAA protease is an oligomeric enzyme

composed of YME1L subunits. Human YME1L proteolyti-

cally regulates respiratory chain biogenesis as evidenced by

excessive accumulation of non-assembled respiratory chain

subunits (Ndufb6, ND1 and Cox4) upon YME1L depletion

[133]. The loss of YME1L leads to reduced cell proliferation,

apoptotic resistance, altered mitochondrial ultrastructure,

diminished rotenone-sensitive respiration and increased

sensitivity to oxidative damage [133].

A recent study with P. anserina revealed an important

impact of PaIAP, the homologue of YME1L, on ageing [171].

Deletion of PaIap led to a temperature-dependent phenotype.

Unexpectedly, at 278C growth temperature, lifespan was

strongly increased. At 378C growth temperature, a reduction

in lifespan and impairments in fruiting body formation and

spore germination were observed. Significantly, in wild-type

strains, PaIAP abundance is strongly increased. In addition,

two other QC proteins, PaCLPP and PaHSP60, were also

found to be abundant in wild-type strains at 378C. Moreover,

while the total abundance of OXPHOS complexes was essen-

tially unchanged in the mutant, a shift towards the formation

of stable respiratory supercomplexes and a destabilization of

complex V dimers was found in the mutant. Overall, the data

identified a function of PaIAP to cope with temperature

stress in the fungus that, in contrast to humans, is not able to

control temperature in its vegetation body.

In contrast to i-AAA protease, m-AAA proteases expose

their active sites towards the matrix space. In humans,
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m-AAA proteases are present either as a homo-oligomer with

AFG3L2 alone or a hetero-oligomer together with its homolog

paraplegin (encoded by SPG7 gene). The composition of

m-AAA protease is variable in different tissues [134]. m-AAA

proteases are responsible for removal of damaged or misfolded

proteins and proteolytic activation of essential mitochondrial

proteins as well as autocatalytic processing [172]. In mammals,

m-AAA protease has been implicated in maturation of MRPL32

essential for ribosomal assembly [173], maturation of cyto-

chrome c peroxidase [134], OPA1 processing [174,175], as well

as surveillance and degradation of unfolded and damaged

proteins [168].

Heterozygous missense mutations in the gene coding for

m-AAA subunit AFG3L2 cause dominant hereditary ataxia

SCA28 (MIM:610246), mostly due to altered proteolytic activity

manifesting itself as Purkinje neuron degeneration [135].

Another genetic variant, a homozygous missense AFG3L2

mutation, results in hypomorphic allele and impaired

ability of AFG3L2 to assemble homo- and hetero-oligomeric

m-AAA complexes (with and without paraplegin), resulting

in low levels of functionally active protease complexes and a

functional paraplegin defect [136]. This molecular defect mani-

fests itself as early onset spastic ataxia-neuropathy (SPG5,

MIM:614487) with features characteristic for mitochondrial dis-

orders [136]. Yet another molecular mechanism that underlies

neurodegeneration caused by AFG3L2 mutations is the

fragmentation of the mitochondrial network [176] and abnor-

mal distribution of mitochondria in neurons [177]. Defective

mitochondrial protein synthesis has been proposed as the mol-

ecular mechanism of fragmentation in Purkinje neurons [177].

The fragmentation leaves many mitochondria without ER con-

nections limiting the Ca2þ distribution along the mitochondrial

network [176].

Mutations in the paraplegin gene cause axonal degener-

ation in hereditary spastic paraplegia (SPG7, MIM:607259)

[178], with phenotypic consequences likely partially alleviated

by the presence of AFG3L2 homo-oligomer and the presence of

m-AAA protease activity [134]. Both the age of onset and sever-

ity of the symptoms are highly variable even among related

individuals [178,179] but are generally characterized by pro-

gressive weakness and spasticity of the lower limbs owing

to degeneration of corticospinal axons with optic, cortical

and cerebellar atrophy [178]. Neurodegeneration is preceded

by mitochondrial morphological abnormalities in axons

[180,181] with impaired axonal transport as a possible cause

of axonal degeneration [181]. Next to the axonal phenotype,

decreased complex I activity has been observed in fibroblasts

of some patients [182]. In such cases, the negative impact of

the paraplegin mutation may be twofold: on the one hand,

paraplegin dysfunction results in impaired complex I activity

resulting in increased ROS production, on the other hand,

proper degradation of ROS-damaged mitochondrial proteins

is impaired in the paraplegin mutant [164]. Respiratory com-

plex instability is fully realized in a double paraplegin-Afg3l2

mouse mutant that shows, next to neuronal degeneration,

also loss of mtDNA and respiratory complexes instability [168].
(ii) Prohibitins
Human mitochondrial prohibitins PHB1 and PHB2 assemble

into a ring-like macromolecular structure in the inner mitochon-

drial membrane and act as protein and lipid scaffolds [183].

Prohibitins are implicated in diverse cellular processes, from
mitochondrial biogenesis to a role in cell death and replica-

tive senescence [184]. Prohibitins regulate the turnover of

membrane proteins by the m-AAA protease [185], act as

chaperone proteins in the mitochondria, and stabilize and pro-

tect unassembled membrane proteins until the assembly of

respiratory complexes is complete [186,187]. Their expression

increases in situations of imbalance between nuclear- and

mitochondrial-encoded OXPHOS proteins in mammals

[137,186,188]. Prohibitins function in the stabilization of the

mtDNA in mitochondrial nucleoids [189,190]. Mammalian cell

senescence is accompanied by reduced expression of PHB pro-

teins, correlated with a heterogeneous decline in mitochondrial

membrane potential during ageing [137]. Abnormal prohibitin

levels have been reported in Parkinson’s disease [191]. Prohibi-

tins influence mitochondrial inner membrane fusion and

cristae morphogenesis by stabilization of OPA1 [192]. Loss of

PHB2 in mouse forebrain leads to extensive neurodegeneration

associated with aberrant mitochondria and hyperphosphoryla-

tion of the microtubule-associated protein tau [138]. In aged

PHB2-deficient neurons, mitochondrial genome destabilization

and respiratory deficiencies are observed [138].

(iii) Matrix peptidases CLPP and CLPX
The mitochondrial matrix peptidase CLPP and ATPase/

chaperone CLPX form together a proteasome-like hetero-

oligomeric cylinder that cleaves unfolded substrates. The

specificity of this proteolytic chamber is provided by CLPX

that translocates substrates [140]. In mammals, induction of

CLPP is observed upon accumulation of unfolded proteins

supporting the protein’s role in cell stress and protein QC

[193]. This observation is consistent with experiments in

Caenorhabditis elegans, where the loss of CLPP modulates

mitochondrial unfolded protein response (UPRmt) [194,195]

and the filamentous fungus P. anserina that shows a surpris-

ing healthy lifespan increase upon a deletion of the CLPP

gene when grown under standard growth conditions [196].

Remarkably, the lifespan extension phenotype can be

reverted by the expression of the human CLPP gene indicat-

ing a strong functional conservation of the fungal and the

human protease. In humans, recessive CLPP mutations

were observed in the Perrault variant of ovarian failure and

sensorineural hearing loss [139]. In an independent study,

the disease has been faithfully recapitulated in a mouse

model that enabled detailed molecular and phenotypic

studies [197]. CLPP-deficient mice accumulated mitochon-

drial chaperones as well as cytosolic proteolytic machinery

as a probable compensatory effort to prevent further adverse

effect of CLPP-deficiency. Owing to this compensatory mech-

anism rather subtle bioenergetic deficits were observed,

despite many-fold elevated mtDNA levels. The disease mech-

anism likely involves deficient turnover of mitochondrial

components, sustained inflammation with induction of

T-lymphocytes in the spleen and resulting severe growth

retardation with other age-associated phenotypes [197].

(iv) LON protease
LON protease is an ATP-dependent protease that plays a crucial

role in protein QC in the mitochondrial matrix. This protease is

the homo-oligomeric enzyme involved in the degradation of

misfolded, missorted, non-assembled and oxidized proteins

[198]. Each subunit of the protein homo-oligomer contains a

substrate binding domain, an AAA motif and the proteolytic
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domain. Degradation of folded proteins requires ATP for the

unfolding of substrates [198]. In contrast to the matrix peptidase

CLPP, a number of LON substrates have been identified. In

yeast, the LON homologue PIM1 was reported to degrade a

subunit of matrix processing peptidase MPPb, a subunit of

the F1F0ATPase, and a number of other proteins, the majority

of which are metabolic enzymes or subunits of the respiratory

chain. An age-related change of LON abundance and activity

was reported as being tissue-specific. While a decrease of

LON activity was found in liver of old rats, LON activity

remained the same in the hearts [199,200]. In patients with

hereditary spastic paraplegia (SPG13), a decline in LON and

CLPP levels was reported [201]. Additionally, mitochondrial

LON has been implicated in six other diseases with its

expression levels significantly up- and downregulated [141]:

myoclonic epilepsy and ragged-red (MERRF) fibres syndrome

(MIM:545000), myopathy, encephalopathy, lactic acidosis,

stroke-like episodes (MELAS) syndrome (MIM:540000) and

Friedreich ataxia (MIM:229300).

A clear effect of the experimental modulation of LON levels

on organismal ageing was demonstrated in P. anserina. A del-

etion of the gene, PaLon1, coding for the mitochondrial

LON was found to reduce the lifespan of the fungus [202].

Accordingly, constitutive overexpression resulted in an increa-

sed health span. PaLon over-expressors were improved in

mitochondrial function (i.e. respiration), lower levels of glycoxi-

dized proteins, reduced carbonylation of mitochondrial

aconitase and a reduced generation of hydrogen peroxide [203].
4. Mitochondrial dynamics
Mitochondria are dynamic cellular units that constantly

change their morphology by fission and fusion. These two pro-

cesses are genetically controlled and are effective in keeping a

‘healthy’ population of mitochondria. Mitochondrial dynamics

is thought to be indispensable once the molecular QC systems

comprised by repair enzymes, proteases and chaperones are

overwhelmed in their capacity and damage passes certain

thresholds [204–206]. In particular, separation of parts of a

mitochondrion with a local accumulation of damage can lead

to mitochondria with higher mtDNA quality. The mitochon-

drion can subsequently ‘grow’ by biogenesis and divide

again to generate a fully functional population of mitochondria

[204]. The damaged mitochondria that remain are sub-

sequently removed by mitophagy. A recent study revealed

that sensing of damaged mitochondria requires interaction

between autophagy and fission machineries. In yeast, ATG32,

which binds to the mitochondrial outer membrane and recruits

ATG11, interacts with components of the fission machinery

DNM1 and FIS1. Subsequent fission of the mitochondrion

and delivery of the part marked by the ATG32/11 to the vacu-

ole leads to the degradation of the organelle [207]. In addition,

translocation of DRP1, the homologue of DNM1, to mito-

chondria [208] and subsequent mitochondrial fragmentation

are associated with apoptosis [209,210].

First data about such a role of mitochondrial dynamics

were obtained for the two fungal ageing models P. anserina
and S. cerevisiae [211]. In this study, it was reported that mito-

chondria of juvenile cultures are filamentous while those from

senescent cultures are punctate. In P. anserina, this age-related

change in mitochondrial structure is linked to an increase of

transcripts of Dnm1 coding for a GTPase that is essential for
mitochondrial fission. Deletion of the Dnm1 gene in yeast

and P. anserina leads to an increase in health span. However,

it appears that the lifespan increase occurs only under certain

conditions (e.g. laboratory conditions) as demonstrated for

the i-AAA protease and CLPP in P. anserina. Under variable

natural conditions, the fission of mitochondria may be ben-

eficial or indispensable in certain developmental stages. This

can be concluded from studies in mice in which the deletion

of the Dnm1 homologue (Drp1) was found to be lethal [212].

It appears that Drp1 is dispensable for proliferation and viabi-

lity of cells, but is essential at some time during development

and organogenesis. This conclusion was validated in a study

in which deletion of Drp1 was restricted to the neural system.

Such strains died soon after birth owing to brain hypoplasia

and increased apoptosis in brain. In mammals, mitochondrial

fission appears to be an example of antagonistic pleiotropy

theory [213]. The theory states that genes coding for com-

ponents that are beneficial or essential early in life will be

selected for—even if they are disadvantageous later in life.

Three large GTPase proteins, MFN1, MFN2 (localized in

the outer membrane) and OPA1 (inner membrane), regulate

mitochondrial dynamics by mitochondrial fusion [214].

MFN1 and MFN2 are anchored to the mitochondrial outer

membrane and mediate mitochondrial fusion by tethering

outer membranes of opposing mitochondria [142]. Mutations

in MFN2 cause Charcot–Marie–Tooth disease type 2A

(CMT2A) [143] likely owing to loss of protein function [144]

resulting in a defect of transport of mitochondria and their

distribution [145]. OPA1 is another large GTPase that regu-

lates mitochondrial dynamics. OPA1 functions in the fusion

of the inner membrane and cristae remodelling. Muta-

tions in OPA1 cause autosomal dominant optic atrophy, a

degenerative disease of the optic nerve [146,147].

In general, mitochondrial dynamics is accepted to be an

effective way to control mitochondrial quality. Fusion of

mitochondria is thought to improve overall quality of the

mitochondrial population by content mixing of fully func-

tional mitochondria with defective organelles enabling

protein complementation, mtDNA repair and equal distri-

bution of metabolites [215]. Fission of mitochondria is

important during growth and development to increase the

number of mitochondria. On the other hand, fission is an

important mechanism to separate damaged parts of the mito-

chondrial network from parts that are less affected [216].

Mitochondrial dynamics, however, may only be beneficial

to a system under conditions of moderate damage. A recent

mathematical model in which mitochondrial damage by

ROS, mitochondrial dynamics, biogenesis and mitophagy

were integrated suggested a reduction of fission/fusion as

beneficial in cells with damaged mitochondria after passing

a critical threshold of impairment [204].
5. Autophagy
Autophagy is a cellular recycling mechanism that sequesters

cellular components into vesicles, termed autophagosomes,

which subsequently deliver their cargo to lysosomes in animal

systems and to vacuoles in fungi and plants. The role of autop-

hagy as a QC system is to break down damaged molecules or

whole organelles. Its function in ageing is currently intensely

investigated [217–222]. Autophagy is induced in several C. ele-
gans longevity mutants in which different molecular pathways
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are affected, [223] and during ageing of P. anserina [222]. In mice,

it was found that the overexpression of Atg5, a gene coding for

an essential component of autophagosome formation, leads to

an extension of lifespan [224]. In addition, in P. anserina, evi-

dence arises that impairments in specific pathways (e.g.

knockout of genes coding for scavenging enzymes) appear to

be compensated by increased autophagy [219]. Such responses

and cross talks complicate the analysis of defined experiments

because they can lead to counterintuitive or controversial results

(e.g. no effect of the deletion of a gene coding for a QC pathway).

One type of selective autophagy, termed mitophagy, specifi-

cally delivers mitochondria to lysosomes or vacuoles. In

mammalian cells, several components including NIX [225],

PARKIN [226] and PINK1 [227] have been associated with the

degradation of mitochondria. PINK1 is a serine/threonine

kinase, which, in functional mitochondria, is localized in the

inner mitochondrial membrane. In impaired mitochondria, a

dissipation of the mitochondrial membrane potential leads to

the translocation of PINK to the outer mitochondrial membrane.

There, PINK1 together with PARKIN promote segregation of

damaged mitochondria from the mitochondrial network

[228]. The PINK1 kinase phosphorylates the E3-ubiquitin

ligase which subsequently ubiquitinates several proteins includ-

ing the voltage-dependent anion channel 1 [229] and the two

mitofusins MFN1 and MFN2 [230–232]. Ubiquitinated outer

membrane proteins subsequently are degraded by the cytosolic

proteasome. Impairments in this system are associated with the

development of Parkinson’s disease. According to the model,

mitophagy interacts with mitochondrial dynamics and delivers

mitochondria with impaired function that became separated

from the mitochondrial network and are unable to fuse with

other mitochondria due to reduced membrane potential

[216,233]. At this time, information on the impact of autophagy

and mitophagy on biological ageing is sparse and remains to be

unravelled in more detail.
6. Apoptosis
In multicellular organisms, apoptosis is a type of programmed

cell death (PCD) that is essential for proper development and

organogenesis. In addition, it is part of the cellular QC network

that eliminates severely damaged cells [234]. Interestingly, PCD

is also found in unicellular organisms such as yeast, or in

multicellular fungi such as P. anserina [235,236]. In the fungal

systems, the pathways controlling PCD are less complex than

in mammals. While in fungi there is no extrinsic pathway

known to control apoptosis, there is an intrinsic pathway, in

which mitochondria play a key role. In this pathway, the release

of apoptogens cytochrome c and apoptosis inducing factors as

well as the induction of a mitochondrial permeability transition

pore (mPTP) initiates apoptosis. The intrinsic pathway is active

in lower systems such as fungi as well as in mammals. Other

components of apoptosis are specific to higher organisms, for

example, the mitochondrial outer membrane pore has not

been identified in fungi so far [235,237–239].

One aspect that is not sufficiently investigated in mam-

mals is the role of PCD on organismal ageing. In fungi, the

induction of PCD appears to be the final executor of organis-

mal ageing. Recent studies with P. anserina and mice revealed

a role of the mPTP in ageing [237,240,241]. In the fungal

system, mitochondria from senescent individuals contain

three times more cyclophilin D (CypD), a mitochondrial
peptidyl–prolyl–cis, trans-isomerase that is a regulator of a

protein complex in the inner mitochondrial membrane pore

and a part of the mPTP [240]. Binding to still undetermined

proteins, probably ATPase complexes, leads to membrane

opening and the induction of PCD leading to death of the

cell [242]. The time of induction can be accelerated by the

overexpression of CypD and decelerated again by the appli-

cation of cyclosporine A. During ageing of P. anserina, the

ultrastructure of the inner mitochondrial membrane becomes

strongly remodelled [237]. In juvenile cultures, tubular cristae

are found, while during ageing the inner membrane retracts

and a reticulate network of membranes is formed. Major

structure-building components are ATPase dimers at the

site of the strongest cristae curvature. According to a

model, these ATPase dimers are speculated to bind CypD

during ageing, thereby giving rise to the severe membrane

changes and finally to the disruption of mitochondria and

the release of apoptogens [242]. In how far such processes

are also occurring during ageing in other organisms, in par-

ticular in mammals, is currently unsolved. At least, the

structure-forming function of ATPase dimers appears to be

conserved from yeast to mammals [243]. Moreover, in mice

an increase of CypD was reported in gastrocnemius muscle

in aged individuals. By contrast, in the mitochondrial ‘muta-

tor mouse’ with accelerated ageing a significant depletion of

CypD in quadriceps and gastrocnemius muscle has been

reported [244]. CypD is deacetylated in the vicinity of a

functional site by NADþ-dependent deacetylase SIRT3.

SIRT3-deficient mice show signs of accelerated ageing and

mitochondrial swelling due to increased mPTP opening

[245]. These mice are characterized by cardiac hypothropy,

fibrosis and were hypersensitive to heat stress. Overall,

it appears that apoptosis linked to mitochondrial pathways

is relevant for skeletal and heart muscle function and

age- and cardiac failure-related deaths in humans.
7. Conclusions and perspectives
The importance of mitochondrial QC is demonstrated by the

expression of a variety of human diseases, often manifested

later in life, and effects of impairments of QC systems on

ageing processes. Degenerative disease and ageing have

been associated with the increased generation of ROS and

perturbations in cellular redox status [141]. Oxidative phos-

phorylation, a major source of ROS in the cell, exposes

mitochondria to the risk of oxidative damage that may

result in organellar imbalance at the level of mtDNA, resi-

dues, proteins and the whole organelle. But mitochondria,

although being the main source of ROS, also contain impor-

tant lines of defence against the oxidative damage and are

equipped with protective pathways. Understanding the

effects of ROS accumulation, the regulation and crosstalk of

different mitochondrial QC pathways holds the key to under-

standing the mechanisms leading to degenerative diseases

and ageing.

Apart from the molecular machineries described above,

there are other systems that participate in mitochondrial QC,

but which have not yet been directly linked to disease and

ageing processes. One mechanism that recently was reported

in yeast to play a role in mitochondrial QC is mitochondria-

associated degradation (MAD). This pathway is active on

proteins located and translocated to the outer mitochondrial
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membrane. The underlying pathway is similar to ER-

associated degradation involved in the degradation of proteins

by the ubiquitin proteasome system [246]. The system is depen-

dent on the ubiquitination of the proteins to be degraded by E3

ligates at the outer mitochondrial membrane. A number of

different proteins with this activity have been identified. Ubi-

quitinated proteins are subsequently extracted out of the

membrane via cdc48/p97 protein complexes and present the

ubiquitinated protein for degradation to the proteasome. A

number of mitochondrial proteins including DRP1/DNM1,

MFN1 and MFN2 as part of the mitochondrial fission/fusion

machinery have been demonstrated to be ubiquitinated

[246,247]. However, the relevance of MAD in respect to

ageing is not established so far.

Overall, different pathways that are active at the level of

single molecules (DNA, proteins), of organelles (mitophagy),

as well as whole cells (programmed cell death), raise questions

about redundancy of their components, their hierarchy and

regulation (figure 2). Currently, it is believed that pathways

of ‘higher-order’ (e.g. mitophagy) become activated when

‘lower-order’ pathways (e.g. reduction of ROS-damaged resi-

dues) are overwhelmed in their capacity. This concept
[205,206,248], although intuitive, is not rigorously proven.

However, it does offer explanation for counterintuitive results

obtained in specific experiments. For instance, the deletion of

the gene coding for mitochondrial superoxide dismutase

does not lead to a reduced lifespan in P. anserina. The induction

of mitophagy to get rid of damaged mitochondria as they

accumulate faster would be a possible way to ‘heal’ the

impaired ROS scavenging capacity in this mutant.

It appears that the ‘lower-’ and ‘higher-order’ QC pathways

do not work as separate entities, but rather resemble a network

with hierarchies intrinsically connected and highly intervening

with each other (figure 2). A striking example of interactions

between different levels of QC is the mitochondrial matrix

LON protease. On the one hand, the protease functions in pro-

teolytic and protein-regulatory functions, on the other hand, it

plays an important role in mtDNA metabolism, regulating the

mtDNA copy number [121]. In mammals, LON protease

additionally interacts with mtDNA regions in nucleoids and

is involved in mtDNA transcription and replication [122,141].

Other types of cross-level QC interactions are i-AAA and

m-AAA peptidases and prohibitins that primarily degrade

and regulate OXPHOS proteins. Additionally, they process
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and regulate OPA1 thus influencing mitochondrial fission

and mitochondrial dynamics [144]. Conversely, OPA1 ‘plus’

patients harbour mtDNA deletions in their muscle cells,

suggesting a role for mitochondrial fusion in maintaining

mtDNA integrity [249,250]. These proteins clearly cross the

hierarchy boundaries of mitochondrial QC pathways.
 y
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