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The physico-chemical properties of colloidal nanoparticles (NPs) are influen-

ced by their local environment, as, in turn, the local environment influences

the physico-chemical properties of the NPs. In other words, the local envi-

ronment around NPs has a profound impact on the NPs, and it is different

from bulk due to interaction with the NP surface. So far, this important

effect has not been addressed in a comprehensive way in the literature. The

vicinity of NPs can be sensitively influenced by local ions and ligands, with

effects already occurring at extremely low concentrations. NPs in the Hückel

regime are more sensitive to fluctuations in the ionic environment, because

of a larger Debye length. The local ion concentration hereby affects the col-

loidal stability of the NPs, as it is different from bulk owing to Debye

Hückel screening caused by the charge of the NPs. This can have subtle effects,

now caused by the environment to the performance of the NP, such as for

example a buffering effect caused by surface reaction on ultrapure ligand-

free nanogold, a size quenching effect in the presence of specific ions and a

significant impact on fluorophore-labelled NPs acting as ion sensors. Thus,

the aim of this review is to clarify and give an unifying view of the complex

interplay between the NP’s surface with their nanoenvironment.
1. Introduction
The potential impact of colloidal nanoparticles (NPs) on the environment is a

topic of ongoing discussions [1]. The scenario of intended exposure (e.g. fertilizers

[2–4], antimicrobial agents [5–7], removal of contaminants [8–10] and clinical

use [11–15]), as well as unintended exposure (e.g. contamination [16] and general

uptake by all types of organisms [17–20]) has been analysed in a large body of

work. These studies clearly point out that in fact NPs have an impact on the envi-

ronment, whether intended or unintended. However, besides this global impact

of NPs on their environment, in a less spectacular way they also influence the phy-

sico-chemical properties of their local environment. Likewise, the local

environment impacts the physico-chemical properties of the NPs. In this way,

there is a subtle interaction between the surface of NPs and their local envi-

ronment, which affects the physico-chemical properties of both. Important

physico-chemical parameters of NP surfaces are for example charge, and hydro-

phobicity [21]. They are influenced by the local environment (e.g. the surface

charge of NPs may depend on the local pH), as the NPs themselves influence

the local environment (e.g. accumulations of ions and proteins from bulk
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owing to local charge and hydrophobicity patterns). In the

following, this will be explained with the example of two

major compounds of biological fluids: proteins and salts.

Because many proteins are charged, repulsive interaction

between proteins and NPs (for like-charged NPs and pro-

teins) or electrostatic attraction (for oppositely charged NPs

and proteins) can occur [22,23]. NP surfaces may also contain

local hydrophilic/hydrophobic patterns that cause protein

adsorption [24,25]. This layer of adsorbed proteins to the

surface of NPs has been termed protein corona [26,27]. Con-

tinuing our aforementioned argument, the formation of the

protein corona (i.e. interaction between NPs and proteins

[28]) affects both, the NPs, as well as their local environment.

Adsorbed proteins clearly change two key parameters of

NPs: their hydrodynamic diameter [29,30] and in many

cases also their colloidal stability [31–33]. On the other

hand, the NPs may also affect (some types of) adsorbed pro-

teins, in particular via structural changes, which may lead to

dysfunction of the proteins [34–36]. In addition, owing to

local charge and hydrophobicity [37] effects associated with

the NP surface, there is a higher local protein concentration

present on the NP surface (the corona) than in bulk, and

thus high NP concentrations can deplete bulk solutions

from proteins. Adsorption of proteins to NPs can be exper-

imentally assessed with a variety of different methods,

some of which are specific to the NP nature. One example

is size measurements of the NPs [38–40]. The more protein

molecules are adsorbed on the NP surface, the bigger the

size of each NP becomes [29,41,42]. In the case of highly col-

loidal stable NPs with narrow size distribution, it was shown

that in solutions with only one type of protein (such as for

example human bovine serum [29,43] or transferrin [30,44])

adsorbed proteins under saturation conditions form a mono-

layer on top of the NP surface. Often, interaction of proteins

with NPs is unwanted and thus needs to be circumvented.

Protein adsorption to surfaces is for example reduced by

controlled pre-saturation of the surface with serum albumin,

which blocks adsorption spots and thus reduces adsorption

of other proteins. The PEGylation (poly(ethylene glycol),

PEG) of NPs is also used as a general and effective approach

to reduce non-specific binding of proteins to NPs [45].

Also interaction of salt and NPs has an effect on the NPs,

as well as on the local concentration of the ions (from the disso-

ciated salt). The surface charge of NPs plays also an important

role on the stabilization of NPs. In order to prevent agglomera-

tion by van der Waal’s attraction, NPs need to be stabilized

either by electrostatic or by steric repulsion [46–48]. In the case

of electrostatically stabilized NPs, the NPs with likewise charged

surfaces repel each other and thus are dispersed. Salt in solution

screens the charge on the NP surface (basically in first order

by the Debye–Hückel effect [49]), and thus typically leads to

colloidal instability at high concentrations, followed by agglom-

eration [50–54]. While this screening effect (e.g. the effect of the

local ion concentration on the colloidal stability of NPs) is

reported plentifully in the literature, another consequence of

the same effect is less widely reported, but not less relevant. In

case, the charge on the surface of the NPs is screened by counter

ions, there is a higher and lower concentration of ions with the

opposite and the same sign of charge around the NPs compared

with bulk, respectively. Thus, the NPs change their local environ-

ment, and ion concentrations at the NP surface are different from

bulk [55–57]. Local ion concentrations around NP surfaces can be

measured using for instance ion-sensitive fluorophores [55–57].
The theoretical analysis however is not as straightforward.

When interactions of ions with the curved nanoenvironment

of NPs are generally discussed, most applied models, e.g. the

Derjaguin–Landau–Verwey–Overbeek (DLVO) theory [58,59]

are based on continuum effects considering ions as point charges

[60]. However, effects considering the nature of the used ions,

namely specific ion effects, are often disregarded, though they

may be of high importance for example for the colloidal stability

of the NPs. These effects have long been known for example in

biological systems, in which they are responsible for the well-

known Hofmeister effect [61–64], describing stabilization and

precipitation tendencies in proteins. Another example is the

well-known fact that specific adsorption and monolayer for-

mation of anions occurs in flat charged gold surfaces dipped in

electrolytes [65–69]. Hence, ion-specific effects must not

be ignored when the nanoenvironment of NPs is studied,

particularly at low salinities in case the previously discussed

screening of charges described by continuum models is not

dominant. Changes in the ion concentration around the surface

of NPs have a profound effect on ion-sensitive NPs, as instead

of the bulk ion concentration the local ion concentration is

determined [55–57].

Thus, interaction of ions and proteins with NPs affects both

the ions and proteins as well as the NPs. In the following, we

will focus on the case of ions.
2. Non-specific effects of ion-induced
nanoenvironments on the synthesis and
stability of ligand-free metal nanoparticles

The nanoenvironment of charged NPs has been extensively

studied for a long time. Generally, the model of the electro-

chemical ‘double layer’ by Stern [70,71] which describes a

fixed layer of surface charges (the Helmholtz model [72]),

and a continuous diffuse layer of counter-ions (the Gouy–

Chapman model [73–75]) is used in this context. The thickness

of this diffuse layer, and hence the nanoscopic vicinity of the

NPs, is highly dependent on the solution’s ionic strength and

may be characterized by the Debye parameter (k) or its recipro-

cal value, the Debye screening length (k21). In a classical DLVO

model [58,59], which considers dissolved ions as point charges,

k21 decreases with increasing ionic strength (I[M], which is a

function of the concentration of all ions: I ¼ 1/2
P

i z2
i ci;

where zi is the valence of ions of species i, and ci [M] the

respective concentration of these ions). This leads to a screening

of surface charges accompanied by a reduction of the electro-

static stability and induces NP agglomeration owing to

dominant van der Waal’s attraction. Next to these frequently

described effects, the nanoenvironment also affects the elec-

trophoretic mobility (m [m2V21 s21]) of NPs and hence

related values, such as the zeta-potential (z [V]), a parameter

of utmost importance when judging NP stabilities in colloidal

science [76]. The main parameters in this context are the ionic

strength, influencing the Debye parameter (k [m21]), and the

NP radius (rc [m]). Based on these values, the best represen-

tation of the correlation between m and z may be given by

the Smoluchowski formula [77] for the nanoenvironment of

larger NPs at high ionic strengths (k� rc � 1) and by the

Hückel equation [78] for low ionic strengths and small NPs

(k� rc � 1). In the intermediate regime, the Henry function

fH(k � rc) may be used [79]. Please note that we are referring
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–1.5 1.5–0.5 0.5
–1.5

–1.0

–0.5

0

0.5

1.0

1.5(a) (b)

–1.0 1.0

1
2
3
4
5
6
7
8
9
10

12
11

0
x̂

ẑ
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to (geometrical) particle radii rc, not to hydrodynamic radii rh

[21]. A more detailed discussion of the different models can be

found in a review article recently published by Doane et al. [80].

Figure 1 shows the different regimes dependent on NP radius rc

and ionic strength I. With the zeta-potential z being inversely

proportional to the Henry factor, zeta-potentials of an NP at

a given mobility m are up to 50% higher ( fH ¼ 1.5) in the

Hückel regime. NPs synthesized by wet chemistry methods

typically bear charge and mobility properties in the inter-

mediate regime (marked in figure 1) between Smoluchowski

and Hückel [76], whereas colloids with low ionic strength,

e.g. physically prepared colloidal NPs [81–84], are often

located in the Hückel regime, being more sensitive for local

changes or fluctuations in the ionic environment as a result

of the larger Debye length k21. Note that ion adsorption

to the surface of NPs results in a non-continuum ionic strength

regime around the NPs, causing a gradient in the Henry factor.

In ideal conditions (no drag force, very low or very high fluid

Reynolds numbers), the two-dimensional distribution of the

Henry factor around the NP is symmetric.

Next to external electrical fields, the symmetric vicinity of an

NP may also be altered by gravitational forces as they are found

during centrifugation. A detailed understanding of this process
and its correlation with ionic strength, g-force and zeta-

potential may help to elucidate the sedimentation process and

might contribute to controlling agglomeration processes occur-

ring during centrifugation. Recent simulation experiments

conducted by Keller et al. [85] revealed that the counter-ion

cloud found in the vicinity of the NPs is deformed at high

g-forces (figure 2a). This leads to a local electric field which

causes a reduction in the sedimentation velocity vS [m s21].

This process is highly dependent on the present zeta-potential

z and the ionic strength I. This correlation is depicted in

figure 2b, where z is shown as the dimensionless factor

ze/kBT, where e is the elemental charge (e ¼ 1.602� 10219C),

kB is the Boltzmann factor (kB ¼ 1.380 � 10223 J K21), and T
[K] is the temperature of the solution. In that context, a factor

of 1 at room temperature (T ¼ 298 K) is equivalent to a zeta-

potential of 26 mV. The ionic strength is plotted as the factor

k � rc, where a value of 2 is equivalent to an ionic strength of

1.04� 1026 M at a particle radius of rc ¼ 3 � 1027 m.

The preceding examples clearly demonstrate that the con-

tinuous, ion-induced nanoenvironment can remarkably alter

the physical properties of NPs and may have a severe influence

on colloidal chemistry. These effects are meant to be particu-

larly pronounced at ligand-free particles, which hence could



rsif.royalsoc

4
provide a sufficiently sensitive system to study such effects.

However, in the above described examples, the ions were

only considered as point charges and ion-specific effects were

not yet considered [60]. The point of ion specificity is further

addressed in the following paragraph.
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3. Specific effects of ion-induced
nanoenvironments on the synthesis and
stability of ligand-free metal nanoparticles

The specific impact of ions on bare noble metal surfaces has

been widely studied for decades, e.g. for gold electrodes

in the presence of different electrolytes. A significant accumu-

lation and adsorption of the halogens Cl2, Br2 and I2, and

hence changes of the nanoenvironment have been reported

and verified by several methods, including atomic force

microscopy [68], X-ray diffraction analysis [67], scanning

tunnelling microscopy [66] and surface enhanced Raman

scattering [65]. Additionally, it has been known for a very

long time that bare gold surfaces dipped in pure water sup-

positionally collect a negative surface charge owing to

accumulation of OH2 [69]. Another example of specific ion

interactions is the Hofmeister effect, which has been known

since the nineteenth century [62]. It was first discovered in

the field of protein precipitation [61,63,64], but was success-

fully applied to other fields, ranging from simple physical

effects on electrolytes to colloidal dispersions and macromol-

ecules [86]. This effect is based on the fact that ions may be

classified into chaotropic (soft) and kosmotropic (hard)

based on their stabilization of biomolecules and their inter-

actions with surfaces. The nature of these effects is not yet

fully understood but it is believed that it may be related to

the polarizability of the ions [87,88]. While chaotropic ions

have a diffuse charge distribution, they may interact with

hydrophobic surfaces, whereas kosmotropic ions with a

high surface charge density are repelled. Other findings

seem to indicate that the structure of the water molecules

found on their surface may be of paramount importance.

While water molecules close to kosmotropic ions are highly

ordered, chaotropic ions are known to alter their surrounding

water shell [89–91]. Hence, ions may lose their hydrate shell

and become chemisorbed on hydrophobic surfaces, which is

not possible for densely hydrated kosmotropic anions [92].

Even though ion-specific effects have been discussed for

a very long time, a detailed examination and transfer of

these effects to the nanoenvironment of NPs has long been

neglected owing to the unavailability of appropriate test sys-

tems. NPs obtained from gas-phase synthesis are barely

available in colloidal state owing to their strong agglomera-

tion tendencies and hence undefined surface areas [93,94].

On the other hand, ion-induced interactions with metal sur-

faces are screened in the presence of surface ligands such as

citrate [95] negating a study of these effects with chemically

synthesized NPs. In this case, ion–NP interactions in the

nanoenvironment are dominated by the nature of the organic

ligands, which is thoroughly discussed in the next paragraph.

Most recently, the availability of ligand-free colloidal NPs

synthesized by the quickly emerging field [82,96] of pulsed

laser ablation in liquid [83,84,97,98] has significantly stimu-

lated this research, whereas particularly gold colloids were

extensively studied [96,99,100]. Owing to this emerging
synthesis route, ultrapure curved NP surfaces are nowadays

available which enable studies of NP–ion interactions in

the Hückel regime at extremely low ionic strengths [31,101].

These effects will be thoroughly reviewed in the following

and complemented by some recent findings. Basically, these

effects can be subdivided into (i) ion effects, and (ii) pH

effects though in many experiments this influence cannot be

clearly distinguished.

3.1. Ion effects
When it comes to interactions of NPs with electrolytes, gener-

ally, a destabilization owing to the well-known screening of

surface charges is predominantly discussed in the literature

[46]. However, when totally ligand-free gold and silver,

NPs were first laser-synthesized in the presence of electro-

lytes, stabilization occurred in the presence of NaCl

[102,103]. More extensive studies with different electrolytes

at varying salinities revealed that these effects are anion-

specific, occurring only with chaotropic anions (Cl2, Br2,

I2, SCN2), whereas kosmotropic anions (F2, SO4
22) did not

induce a stabilizing effect. For NO3
2, the findings in the litera-

ture are inconsistent. While generally a destabilizing effect is

reported for gold [95,103], at lower ionic strengths [101] and

for silver [102], however, stabilization was found. It is

believed that this ion adsorption significantly alters the

NP’s nanoenvironment, as the ions transfer their charges to

the NP surface and hence increase electrostatic stabilization

(figure 3a). These findings seem to indicate that Hofmeister

effects, thoroughly described in the preceding paragraph,

may also appear on curved gold interfaces. A Hofmeister

series of anions for this system could be deferred, by suc-

cessfully correlating the stability of gold colloids to the

polarizability of the anions present during synthesis [101]

(figure 3b). Interestingly, these effects already occur in highly

diluted electrolytes in a micromolar to millimolar concentration

range [31,101,102]. Specific accumulation of chaotropic anions

in the nanoenvironment of NPs does not only affect colloidal

stability, it also interferes with the growth mechanism of

ligand-free NPs. As a result, these ions induce a size quenching

effect during NP growth which was reported for gold

[31,97,103] and silver NPs [102,104–106]. This means that in a

micromolar concentration regime increasing ionic strengths

significantly reduce NP size and their NP size distribution.

It was recently proposed that size reduction in highly diluted

electrolytes is directly related to the NP surface area, which

can be electrostatically stabilized by the available anions [31].

A summary of the different anions and their stabilizing and

size quenching effects on ligand-free gold and silver NPs is

summarized in table 1. Table 1 clearly shows the suitability of

anions for size quenching of ligand-free nanoparticles. Con-

secutively, comments are provided when ambiguous effects

were reported for different ions. For example, for HCl, different

stabilizing effects were found dependent on the used ionic

strength (concentration) and for gold and silver nanoparticles

(material). Additionally, table 1 provides literature for a more

detailed study, sorted by the metals (Au, Ag) studied.

3.2. pH effects
The influence of pH on the nanoenvironment of ligand-free

colloidal metal (M) NPs is mostly due to oxidation of surface

atoms and a pH-dependent equilibrium between M–O2/

M–OH and M–OH/MOH2
þ species, respectively. This has
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Table 1. Specific effects of different ions on the stability and size quenching of ligand-free Au and Ag NPs. (Signs in brackets indicate limitations or ambivalent
effects found by different researchers including comments regarding possible reasons.)

ion stabilization size quenching reference

F2 — — Au [101]

Cl2 (þ)/(2)

concentration

(þ)/(2)

concentration

Au [31,83,95,101,103]

Ag [102,104 – 106]

Br2 þþ þ Au [31,101]

I2 (þþ) NP etching þ Au [95,101]

SCN2 þþ þ Au [101]

NO3
2 (2)/(þ)

concentration

(2)/(þ)

concentration

Au [95,101,103]

Ag [102]

SO4
22 — — Au [31,101]

PO4
32 þ þ Au [31]

NaH2PO4/ Na2HPO4 þ þ Au [31]

OH2 þ (þ)/(2)

concentration

Au [103]

HCl (2)/(þ)

concentration, material

(2)/(þ)

concentration, material

Au [103]

Ag [102]

S2O3
22 — — Ag [102]
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been quantitatively described in the case of SiO2 and Al2O3

surfaces by the site-binding model used for solid-state

based ion-sensitive sensors [107–111]. At low pH, the surface

can be charged positively by the adsorption of protons

(MOH2
þ), whereas it will be negatively charged at high pH

owing to depletion of protons (M–O2). The equilibrium

of the reaction M–O2 þ 2 Hþ $M–OH þ Hþ $MOH2
þ

is described by the law of mass action by the respective

pKa (¼2log(Ka)) values Ka1 ¼ c(M2O2) � c(Hþ)/c(M – OH)

and Ka2 ¼ c(M – OH) � c(Hþ)/c(MOH2
þ). Both equilibria

depend on pH (¼2log(c(Hþ)). In this way, the surface

charge and hence the electrostatic stability reaches a mini-

mum close to the isoelectric point (pI ) at pH ¼ pI [112].

This effect was frequently observed for metal oxide NPs
such as ZnO [113,114], TiO2 [115] and Al2O3 [116], where

larger NPs owing to agglomeration were predominantly

formed close to the pI value of the respective NP species.

It is important to note that with metal oxides, e.g. for

Al2O3, different hydroxide species may form. Dependent on

the pH, the NPs were equilibrated, and hence different pI
values may be found [117] The pI values of exemplary NP

species are shown in table 2. As the presence of surface

hydroxide is obvious in metal oxides, they are also found

in the case of gold NPs obtained from physical synthesis

routes such as laser ablation in liquid. X-ray photoelectron

spectroscopy measurements confirmed that these NPs

possess partially oxidized surfaces (3.3–6.6% of Auþ and

Au3þ) [101,120]. Fourier transform infrared spectroscopy



Table 2. Charge equilibrium in the nanoenvironment ( pH at the isoelectric
points ( pI)) of exemplary ligand-free colloidal NPs.

NP species isoelectric point ( pI ) reference

TiO2 6 [115]

ZnO 9 [113]

Al2O3 8.6 (acidic equilibration)

5.3 (alkaline equilibration)

[117]

AuPt (7) indirect method [118]

Au 2 – 2.5 (4.5) [95,103,119]
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Figure 4. Ion effects on the isoelectric points of gold NPs. Zeta-potential z of
ligand-free NPs at different pH values for the determination of the isoelectric
point, as adapted from [95,103,119] as well as unpublished data (2013).
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plotted versus the ionic strength I of the solution. As comparison the pH of
the NaOH and HCl stock solutions was monitored as well (dashed lines).
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measurements verified the presence of Au–O bonds on the

surface [103]. An indirect verification of a pI value in

ligand-free noble metal systems was recently found for

Au50Pt50–alloy NPs which were laser-ablated at different

pHs. Here, a steep increase in NP size owing to agglomera-

tion processes was found at pH , 7 [118]. A titration of

ligand-free gold NPs in order to determine the pI value

was performed for NPs obtained from gas-phase synthesis

[95] and laser ablation in liquid [103,119] by monitoring the

zeta-potential at different pH values. In all cases, stabilization

was found for more alkaline pH. The results from three

different references and recently obtained experimental data

are summarized in figure 4. In our experiments, totally

additive-free gold NPs were titrated with HCl, fitted with a

fourth-order polynomial, whereas linear extrapolation was

used in order to determine the pI value. Note that Thompson

et al. [95] originally measured the electrophoretic moti-

lity, which was transferred to the zeta-potential for better

comparability, applying Smoluchowski’s equation [77].

These data clearly show that additive-free gold NPs

possess an isoelectric point at pH ¼ 2.5. These findings

slightly deviate from pI-values reported in the literature

by Thompson et al. [95] (pI ¼ 2) and Sylvestre et al. [103]

(pI ¼ 2.2). These differences may be due to high concen-

trations of chloride (100 and 10 mM) present during their

experiments, whereas in the additive-free sample chloride,

solutions with three orders of magnitude lower salinities

(93 mM) were applied. As it was described in the preceding

paragraph, chloride may specifically adsorb on gold NP sur-

faces, which increases the negative surface charge of the NPs.
Naturally, in these samples, more protons are necessary for

charge compensation, and the isoelectric point is reached at

a more acidic pH. Completely different results were obtained

by Petersen et al. [119] where a pI of 4.5 was found. These

deviations may be due to the fact that a system of

CH3COOH/NH3 was used for pH adjustment. On the one

hand, this approach eliminates ion effects but on the other

hand, another organic ligand is added and a CH3COO2/

CH3COOH buffer system is formed, influencing the sol-

ution’s pH. This high diversity of findings clearly illustrates

that to further examine the influence of varying pH on the

nanoenvironment of ligand-free gold NPs, additional ion

effects need to be minimized and hence the ionic strength

has to be reduced. To this end, we recently prepared NPs

by pulsed laser ablation in liquid in the presence of NaOH

and HCl at concentrations from 1 to 500 mM. In both cases,

a significant growth quenching causing size reduction of

the NPs was found compared with products synthesized in

water. In case of HCl, this is most likely due to the stabilizing

effect of Cl2, blocking the gold seed’s crystal growth prevent-

ing further growth. In the observed concentration regime, this

effect seems to compensate the destabilization by protons

reported for higher HCl concentrations [103]. For NaOH,

the deprotonation of surface Au–OH groups, and the

increased abundance of surface charges is the most probable

cause for reduced NP size and stabilization, which is in

accordance with data from literature [103]. The most interest-

ing effect, however, was observed when the pH of the stock

solution ( just diluted HCl or NaCl), and the NP-containing

solution was monitored during this experiment (figure 5).

It was found that the pH of both NP-containing solutions

synthesized in the presence of HCl and NaOH remained

stable at around 6.5 up to a concentration of 30 mM, leading

to a significant deviation from pH values found in the

stock solution. For higher concentrations, the pH significantly

deviated from the value of 6.5, though the measured values

were still considerably different from the stock solutions.

These findings seem to indicate that ligand-free gold NPs

work as a buffer in highly diluted electrolytes, totally stabiliz-

ing the pH at 6.5 up to a proton surplus, as well as a proton

deficiency of 30 mM. Apparently, the nanoenvironment of the
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gold NPs accumulates protons from acidic solutions and emits

protons to an alkaline environment probably by changing the

Au–O2/Au–OH ratio, significantly affecting the pH of the

bulk solution. This fundamental effect, that the NPs themselves

and their nanoenvironment work as a buffer system, signifi-

cantly affecting the bulk solution, is often neglected when

working with NPs. The underlying concept is illustrated in

figure 6. As a result, in 1 ml of the examined gold NP solution

with an average NP core radius rc of 4 nm and a mass concen-

tration of 100 mg ml21, there are roughly 2.2 � 1017 gold surface

atoms present, which can accumulate and emit about 30 nmol

of Hþ, which is equal to 1.8 � 1016 Hþ ions. Consequently,

about 8% of the surface atoms take part in this buffering reac-

tion, which is in good accordance with the literature stating

that up to 6.6% of the gold surface is oxidized [101,120] and

hence may carry an Au–OH or AuO2 group. In conclusion, a

buffer capacity of 0.77 nmol (Hþ)/cm2(gold NP surface) is

reached, which is very low compared with conventional buf-

fers, though this comparison only considers pure continuum

states of the environment. By contrast, the observed buffer

effect is directly caused by the Gouy–Chapman layer in the

nanoscopic vicinity of the NPs. Hence, such effects might be

relevant in highly pH-sensitive reactions at low concentrations.
4. Effects of ion-induced nanoenvironments on
the stability and the nanoenvironment of
ligand-coated nanoparticles

While the concepts as described above for ligand-free metal

NPs, in general, are true also for ligand-coated NPs, the situ-

ation becomes more complex. This is due to the hybrid nature

of ligand-coated NPs, which besides the inorganic core also

comprise an organic (ligand-)coating [21]. Now, ions in sol-

ution will be in equilibrium with several entities, not only

with the originally bare NP surface of the inorganic core
but also with the ligand shell, which itself can comprise

different parts. In the important case of carboxylic acids

as ligands, there will be the pH-dependent equilibrium

2COO2 þ Hþ $2COOH with Ka ¼ c(2COO2) � c(Hþ)/

c(2COOH). In the case of complex carboxylic acids several

pKa values can exist, which can be determined by titration

experiments [121]. In case the pH is smaller than the pKa

value, the NP surface is losing its charge and predominantly

comprises 2COOH groups, as pKa2 pH ¼ 2log(c
(2COO2)/c(2COOH)). Thus, the NPs lose their colloidal

stability and start to agglomerate. At alkaline solution

pH� pKa; the NP’s surface on the other hand is saturated

with negative charge c(2COO2) and the NPs are colloidal

stable. The situation can change with other ligands, for

example with positively charged ones [122]. In the case of

amino terminated ligands 2NH2 þ Hþ $ 2NH3
þ, the NPs

are charged at low, acidic pH (2NH3
þ, pH� pKa), as

pKa–pH ¼ 2log(c(2NH2)/c(2NH3
þ). In the case of high

pH� pKa; the NPs are uncharged (2NH2) and thus will

lose their colloidal stability. Consequently, as described

before for ligand-free NPs also in the case of ligand-coated

NPs, the local pH can (though not automatically) determine

the surface charge of the NPs, whereby the dependence is

given by the nature of the ligand. In contrast to ligand-free

NPs, ligand-coated NPs can be also made with ligands com-

prising a permanent charge (e.g. ammonium salts, which are

fully dissociated and thus permanently charged), which then

have a pH-independent surface charge [53]. Most important,

these NPs can be stabilized also with macromolecular

ligands, such as PEG, which provides colloidal stability via

steric repulsion. In this way, ligands on the NP surface intro-

duce higher flexibility in achieving (pH-independent)

colloidal stability, in particular via permanently charged

ligands and/or ligands providing steric repulsion. As for

ligand-free NPs, besides the charge directly associated with

the NP surface (now here in particular to the ligand shell),

also ligand-coated NPs comprise a diffusive cloud of charge
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by attracted counter ions according to the Gouy–Chapman

model. Thus, in a similar way, the use of charged NPs pro-

duces changes in the concentration of charged species in a

solution. For negatively charged NP surfaces (e.g. COO–

stabilized NPs), there is a local depletion of negatively

charged analytes (i.e. anions such as OH– or Cl2), and a

local accumulation of positively charged analytes (i.e. cations

such as Naþ or Hþ; figure 7a, [55]). Please note that these

effects are absolutely non-specific and only depend on charge

and valency of the ions. There will be a screening effect by oppo-

sitely charged ions, but in case several different ions are present

all of them contribute. In the case in which Naþ ions are present,

less Hþ is attracted to the surface of negatively charged NPs [55].

The opposite scenario will occur in the case in which positively

charged NPs are involved [55,56]. Coming back to our main

statement, this means that the local ion concentration close to

the NP surface will be different from the bulk concentration

(figure 7b), i.e. NPs influence their environment. This fact has

severe effects on sensing with NPs, which will be discussed

later. In the same way, this screening effect owing to the adsorp-

tion of counter-ions, together with the pH-dependent surface

charge of the ligand shell, determines the colloidal stability of

the NPs, i.e. the nanoenvironment affects the physico-chemical

properties of the NP surface.

Unfortunately, a detailed theoretical description of the ion

distribution around ligand-coated NPs is not as straight for-

ward as for ligand-free NPs. This is due to their hybrid

nature. Already, the question where the NP surface begins

cannot be clearly answered [21]. The ligand shell, in general,

is not homogeneous. A practical system for example can com-

prise hydrophobic surfactant molecules, surrounded by an

amphiphilic polymer, with an additional shell of PEG [57].

This ligand shell is not completely rigid, i.e. one cannot

exactly determine where the transition from one layer to the

next layer (e.g. the polymer PEG interface) is located. Even

the final hydrodynamic radii rh underlie much larger distri-

butions than the original core radius rc. Thus, models

describing the different parts of the ligand shell would

need to consider distributions of respective different layers.

Fortunately, distributions are not as smeared out as one

may expect, as for example indicated by fluorescence resonance

energy transfer measurements which revealed a relatively

narrow distribution of fluorophores attached to the polymer

shell around fluorescent NPs [123]. Different layers of the
ligand shell can also interact in different manners with ions.

Long PEG chains, for example, chelate ions such as Naþ or

Kþ, and thus change the surface charge of the NPs [124].

All these effects make theoretical predictions about the

quantitative ion distribution around ligand-coated NPs com-

plicated. The starting point of such theoretical descriptions

very often uses the Poisson–Boltzmann equation. It can be

solved within numerical or analytical approximations as was

shown for a charged hard sphere within an electrolyte solution

in various studies [125–130]. More accurate models assume a

permeable soft shell, e.g. consisting of a polyelectrolyte layer,

around the hard sphere to approximate a potential ligand

shell, although the detailed conformation of that shell is not

considered [131–133]. More recent approaches are based on

Monte Carlo simulations and the classical density functional

theory (DFT). These allow for the consideration of the intrinsic

ion volume and moreover for the treatment of the solvent mol-

ecules as the third fraction of individual components instead of

a dielectric continuum [134,135]. The DFT moreover offers the

possibility to consider volume displacement effects by poten-

tial ligands such as PEG attached to the NP surface [136–138].

From an experimental approach, ion-sensitive fluorophores

attached to NPs are a feasible strategy to probe ion concen-

trations close to NP surfaces. Such fluorophores change their

emission, usually the intensity of emission, dependent on the

concentration of the respective ion. However, most convenient

are ion-sensitive fluorophores with ratiometric detection

schemes, in which not absolute intensities need to be detected,

but the intensities of the emissions at two different wave-

lengths are compared [56,139]. This can be achieved either by

fluorophores with two emission peaks [140] or by combining

an ion-sensitive fluorophore which emits at one wavelength

with a reference fluorophore which emits at another wave-

length [56,141,142]. Thus, in order to determine the ion

concentration profile around NPs, ion-sensitive fluorophores

(and the reference fluorophores) need to be immobilized at

different distances R to the NP surface. This can be con-

veniently done by using molecular spacers such as DNA

[143–145] or PEG [55–57]. In order to obtain spacers providing

controlled distances R, the trick lies in saturating the NP sur-

face. In this way, the spacers are stretched (instead of forming

statistical coils) and thus have defined conformation [146].

The confirmation of only a few spacer molecules per NP is in

general not known. In the case of flexible spacers, they might
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be partly wrapped around the NP surface, or they might be

dangling in solution [146]. However, in the case the NP surface

is saturated with attached spacer molecules, they all will adopt

similar geometry and thus lead to defined distances R. Fluoro-

phores can be linked to the end of the spacer molecules

[147,148], and by using spacers with different molecular

weight the average distance between fluorophores and the

NP surface can be tuned [143,149,150]. This principle has

been applied to sense local Hþ [55,57] and Cl2 [56] concen-

trations. According to figures 7 and 8 for negatively charged

NPs, higher Hþ and lower Cl2 concentrations were found

close to the NP surface when compared with bulk. Thus, the

response curves of the ion-sensitive fluorescence readout are

shifted in the case the fluorophores are attached close to the

NP surface. In the case of long enough spacers, the fluoro-

phores are sufficiently far away from the NP surface, and

thus bulk readout is obtained. This implicates that for all NP-

based sensing applications one must consider that the actual

environment of the NPs where the measurement takes place

is different from bulk, e.g. ion concentrations at the NP surface

are different from bulk values. While the fact that the local

environment around NPs is different from the bulk can be

seen as a potential drawback or source of complication in the

field of sensors based on NPs, it could also be employed for

improving the sensitivity. Here, we will suggest possible

ways of exploiting this effect. One advantage of getting a

higher concentration of an analyte (here in particular ions)

close to the NP surface is that the NP can act not only as

detector but also as preconcentration system. If the concen-

tration of an ion in the bulk solution is extremely low, it will

be hard to detect it. However, the sensitivity is increased if

the ions can be preconcentrated on the surface of the NP

playing with the charge density of the NP. Several articles

have already been reported showing this potential use. For

example, tetraalkylammonium bromide coated silver NPs

have been successfully applied as electrostatic affinity probes

to preconcentrate peptide mixtures in biological samples

[151]. In another example detection limits as low as nanomolar

concentrations were achieved using positively charged poly-L-

lysine-coated silver NPs [152]. Local concentration at the NP

surface hereby was achieved by the strong interaction of
these NPs with the anionic bilirubin molecules. In the case of

working with ion-sensitive fluorophores, the strategy would

be to locate the fluorophore on the NP surface (e.g. by integrat-

ing the fluorophore directly in the polymer shell) for measuring

the local concentration (of oppositely charged ions), which

would be much higher than the bulk concentration due to the

preconcentration effect. Using appropriate calibration curves

then could be used to calculate the preconcentration factor

achieved with the particular configuration in order to finally

determine the bulk concentration of the target ions.
5. Conclusion
The local environment of NPs has a profound interaction

with the surface of NPs, which induce that the physico-

chemical properties of both, the environment and the surface

can be mutually altered. The surface of NPs creates a special

local environment, with different properties compared with

the bulk. Owing to different repulsion/adsorption effects

local molecular concentrations around the NP, surface can

be quite different from bulk concentrations. This has strong

effects on NP-based sensors, as those probe concentrations

of the local environment, and not from the bulk. In the

other direction, the surface charge of NPs is determined

by the presence of ions in the local nanoenvironment. Via

reaction with ligands or even with the bare NP surface, this

regulates the surface charge of NPs and thus also their

colloidal stability. These effects may be particularly pro-

nounced when they are studied in highly pure ligand-free

systems. Here, next to continuum effects, ion-specific inter-

actions occur in the particle’s nanoenvironment which may

significantly alter particle properties such as stability and

may even affect the composition of the bulk phase.
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E, Nilsson H, Dawson KA, Linse S. 2007
Understanding the nanoparticle-protein corona
using methods to quantify exchange rates and
affinities of proteins for nanoparticles. Proc. Natl
Acad. Sci. USA 104, 2050 – 2055. (doi:10.1073/pnas.
0608582104)

27. Linse S, Cabaleiro-Lago C, Xue W-F, Lynch I,
Lindman S, Thulin E, Radford SE, Dawson KA. 2007
Nucleation of protein fibrillation by nanoparticles.
Proc. Natl Acad. Sci. USA 104, 8691 – 8696. (doi:10.
1073/pnas.0701250104)

28. Lynch I, Dawson KA. 2008 Protein – nanoparticle
interactions. Nano Today 3, 40 – 47. (doi:10.1016/
S1748-0132(08)70014-8)
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