
rsif.royalsocietypublishing.org
Research
Cite this article: Peña-Miller R, Fuentes-

Hernandez A, Reding C, Gudelj I, Beardmore R.

2014 Testing the optimality properties of a

dual antibiotic treatment in a two-locus,

two-allele model. J. R. Soc. Interface 11:

20131035.

http://dx.doi.org/10.1098/rsif.2013.1035
Received: 7 November 2013

Accepted: 15 April 2014
Subject Areas:
biomathematics

Keywords:
antibiotic resistance evolution,

multidrug combinations, population genetics
Author for correspondence:
Robert Beardmore

e-mail: r.e.beardmore@exeter.ac.uk
& 2014 The Author(s) Published by the Royal Society. All rights reserved.
Testing the optimality properties of a
dual antibiotic treatment in a two-locus,
two-allele model

Rafael Peña-Miller1, Ayari Fuentes-Hernandez1, Carlos Reding2, Ivana Gudelj2

and Robert Beardmore2
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Mathematically speaking, it is self-evident that the optimal control of complex,

dynamical systems with many interacting components cannot be achieved

with ‘non-responsive’ control strategies that are constant through time.

Although there are notable exceptions, this is usually how we design treat-

ments with antimicrobial drugs when we give the same dose and the same

antibiotic combination each day. Here, we use a frequency- and density-

dependent pharmacogenetics mathematical model based on a standard,

two-locus, two-allele representation of how bacteria resist antibiotics to

probe the question of whether optimal antibiotic treatments might, in fact,

be constant through time. The model describes the ecological and evolutionary

dynamics of different sub-populations of the bacterium Escherichia coli that

compete for a single limiting resource in a two-drug environment. We use in
vitro evolutionary experiments to calibrate and test the model and show that

antibiotic environments can support dynamically changing and hetero-

geneous population structures. We then demonstrate, theoretically and

empirically, that the best treatment strategies should adapt through time

and constant strategies are not optimal.
1. Introduction
The discovery of antibiotics provided medics with a tool of unprecedented

potency in the battle against bacterial pathogens [1]. However, we are now

engaged in an arms race where bacteria seem to be, at least for the moment,

firmly in the ascendancy and new ideas for deploying antibiotics are needed.

Bacteria have evolved resistance to every antibiotic in clinical use [2], and the

correlation between drug usage and resistance evolution [3] suggests our atti-

tudes towards antimicrobials are, at least in part, responsible for our problems.

Antibiotics have been misused [4] and overprescribed [5], and problems in the

economic model due to resistance have lead the pharmaceutical industry to

abandon their antimicrobial discovery programmes [6,7].

However, simply finding more antibiotic small molecules will not provide a

sustainable solution to these issues. The timeline from antibiotic discovery to

drug-resistant clinical isolate is of the order of a decade, or two [3], so unless

we have a library of drug usage protocols successful both at clearing bacterial

infections and at preserving their efficacy, any novel antimicrobial substance

would be predestined to eventual failure.

Finding long-lasting solutions to antibiotic resistance is an exceptionally dif-

ficult problem, well-beyond the scope of a theoretical study such as this, but we

contend that theoretical frameworks exploiting the theory of dynamical sys-

tems, control and optimization might be developed that provide insight and

contribute much to the design of rational drug deployment strategies.

With this in mind, we ask the question: what if treatment fails to achieve

inhibitory doses everywhere at all times and resistance develops? What principles

might there then be behind optimal dosing strategies? Seeking answers, we pose

a pharmacogenetics theoretical model of an experimental microcosm (with
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parameter values calibrated using in vitro experimental data)

and use it to illustrate a very simple control engineering prin-

ciple: the optimal treatment is contingent upon treatment

duration and, as a result, the treatment may need to be adapted

through time.
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1.1. Optimal antibiotic treatments
An optimal antibiotic deployment strategy is often seen as

having two features to reconcile: (i) the dose and (ii) the

duration of treatment, both are a matter of some controversy.

First, there is no consensus on the optimal length of treat-

ment. It has been reported that the number of pills per patient

favours odd over even numbers, the reason behind this

statistical anomaly is an unwritten rule, whereby treatment

duration has to be ‘5 or 7 days, or multiples thereof’ [8].

There is no agreement on the precise length of treatment

but medical textbooks emphasize that therapies should

favour treatments of longer duration and that the premature

interruption of treatment promotes the evolution of drug

resistance [9]. This stems from the idea that overdosing

with antibiotics is, at worse, therapeutically neutral and no

harm results from taking drugs for prolonged periods. How-

ever, mounting clinical [10], experimental [11] and theoretical

[12] evidence suggests that short-course therapy can be as

effective without imposing selective pressures that favour

resistant mutants. These issues have been debated openly in

the literature with ensuing disagreement between different

communities [13–15]. More recently, the study of Martinez

et al. [11] is clear in emphasizing treatments ‘as brief as

clinically appropriate’.

With respect to the optimal dose, current practice indi-

cates that high doses of antibiotics are more effective at

suppressing drug-resistant bacteria (discussed in [16]). One

argument states that by minimizing population size, we

also minimize the probability of occurrence of a de novo gen-

etic mutation conferring drug resistance upon bacteria. This

is the ‘hit early, hit hard’ strategy documented as early as

1913, several years before the discovery of penicillin [17].

But high drug concentrations are known to produce side-

effects and doses cannot be indiscriminately increased [18].

Not only are high antibiotic dosages toxic [9,19], they can dis-

rupt the ecological stability of the commensal microbiota,

allowing pathogens to colonize the host [20]. A strategy for

increasing drug potency while decreasing drug concentration

is the use of multidrug cocktails [21]. Synergistic antibiotics,

whereby the combined effect of two drugs is greater than

expected given the efficiency of either on their own, have

been actively sought for decades [22].

Some have questioned whether aggressive chemothera-

pies are an appropriate strategy to prevent resistance

[23,24]. These studies have shown that if the initial phase

of treatment is unsuccessful at clearing the pathogen, then

surviving drug-resistant genotypes may thrive in an environ-

ment in which many of the drug-susceptible competitors

have been eliminated. It has also been shown that synergis-

tic combinations can accelerate the evolution of antibiotic

resistance [25] and, as a result, it was suggested that ‘antag-

onistic’ drug interactions, seemingly neglected in clinical

practice, might slow resistance evolution [26]. In practise,

drugs are used even when their synergy is not proved,

for example the anti-MRSA combination vancomycin and

rifampicin [27,28].
2. A mathematical abstraction
Seeking to understand how mathematics can address questions

in antibiotic optimality, we begin with an abstract framework

applicable to many mathematical models. From the mathema-

tician’s perspective, what we are about to say is self-evident:

the optimal control of an adaptive system is unlikely to be

realized with control strategies that are constant through time.

To demonstrate more precisely what we mean by this,

consider a smooth dynamical law, f, subject to controls, u
and v, so that the mathematical model class we analyse has

the following form:

d

dt
x ¼ T � f(x, u, v), x(0) ¼ x0, (2:1)

where x(t) ¼ x(t; u, v) [ Rn is a state variable, u(t),
v(t) [ [0, 1] , R are controls and T . 0 is a fixed terminal

time for antibiotic treatment; u and v represent the dosages

of two different antibiotics whose optimal combination we

wish to find. Thus, given fixed dosages u0 . 0 and v0 . 0,

we let u [ [0, 1] denote the relative drug dose, we define an

objective functional, J, by

J(u; T) ¼def
ð1

0

(w, x(t; uu0, (1� u)v0))dt, (2:2)

where w [ Rn is a weight vector. Here, and throughout,

( � , � ) denotes Euclidean inner product.

For each u0, v0 and T . 0, under mild restrictions on f, like

smoothness, there is an uopt(T ) that satisfies

J(uopt(T); T) ¼ min
0�u�1

J(u; T), (2:3)

where the minimum here is taken over a compact subset of

the reals: finding the optimal relative drug dose here is a

finite-dimensional optimization problem and the existence

of a minimizing value of u is therefore guaranteed.

For u and v to represent antibiotic drugs, we should also

assume the following properties:

w,
@f
@u

(x, u, v)

� �
, 0 and w,

@f
@v

(x, u, v)

� �
, 0,

whenever u � 0 and v � 0. In other words, increasing the

dose of both drugs will reduce the growth of the microbial

population in the components of the weight vector, w.

Definition 2.1 (synergy). Define the ‘interaction function’

i(u) ¼def
(w, f(x0, uu0, (1� u)v0)),

and suppose the basal drug concentrations, u0 and v0, are cali-

brated to have equal inhibitory effect: i(0) ¼ i(1). Strict drug

synergy is said to hold in (1) when i is convex: i00 (u) . 0 for

all u [ (0, 1). We define the most synergistic combination,

usyn[ (0, 1), to be the value of u for which the minimum of

i(u) occurs.

For completeness, we also include the following definition.

Definition 2.2 (antagonism). Suppose that the basal drug con-

centrations u0 and v0 are calibrated to equal inhibitory effect:

i(0) ¼ i(1). Strict drug antagonism is said to hold in (1) when

the function i(u) is concave: i00 (u) , 0 for all u [ (0, 1).

Figure 1 illustrates synergy and antagonism that relates these

two theoretical definitions to how synergy and antagonism are
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Figure 1. The drug interaction profile, i(u), is related to empirical ‘checkerboards’ that are illustrated in (a,c). In the latter, the concentration of both drugs (called
‘D’ and ‘E’) is given on the x- and y-axes, bacterial growth inhibition (or population density or some other fitness measure) is then plotted on the z-axis. The contour
of all concentrations that reduce this measure by half is an isobole here denoted IC50, and figures (a,c) show two checkerboard plots viewed from above. Basal
concentrations of both drugs that achieve the same inhibitory effect in this illustration are D50 and E50, u then parametrizes the equidosage line between these two
values. The fitness measure evaluated along this line is shown in (b,d ) and we define the degree of interaction based on this curve, this is i(u). We say the
interaction is synergistic when the drug proportion that minimizes i(u) satisfies 0 , u , 1 as in (b), we denote the resulting value by usyn. In (d ), we observe
usyn¼0 or usyn¼1, in this case the drugs are said to be antagonistic as i(u) is maximized by a drug combination. Adapted from [24]. (Online version in colour.)
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seen in empirical datasets known as ‘checkerboards’. In prac-

tise, the weight w would be chosen so that i(u) represents the

dependence of total population density on the relative drug

proportion, u.

Suppose that the two drugs in (2.1) are synergistic and

proceed by Taylor expanding the functional J with respect

to T. If we write solutions of (2.1) as x ¼ x(t;u, T ), then

x(t; u, T) ¼ x0 þ tT � f0(u)þ t2T2

2
L0(u)[ f0(u)]þO(T3),

where f0(u) ¼def f(x0, uu0, (1� u)v0) and L0(u) ¼def
dxf(x0, uu0,

(1� u)v0) we find

J(u; T) ¼
ð1

0

w, x0 þ tT � f0 þ
t2T2

2
L0[ f0]þO(T3)

� �
dt

¼ (w, x0)þ T
2

(w, f0(u))þ T2

6
(w, L0(u)[ f0(u)])þO(T3)

¼ (w, x0)þ T
2

i(u)þ T2

6
b(u)þO(T3)

¼ (w, x0)þ T
2

i(u)þ T
3

b(u)þO(T2)

� �
,

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(2:4)

where b(u) ¼def
(w, L0(u)[ f0(u)]): We now define j(u, T) ¼def i(u)þ

(T/3)b(u)þO(T2) so that J(u, T) ¼ (w, x0)þ (T/2)j(u, T), the

minima of J and j therefore coincide.
From the strict drug synergy property, the minimum of

j(u, 0) occurs when u ¼ usyn [ (0, 1). Moreover, at the mini-

mum of j, there results (@j/@u)(u, T) ¼ 0, provided T is

small enough. As (@2j/@u2)(usyn, 0) ¼ i00(usyn) . 0 which is a

non-zero quantity by the assumption of strict drug synergy,

we may solve (@j/@u)(u, T) ¼ 0 for u as a function of T by

applying the implicit function theorem. At this solution,

u ¼ uopt(T ), say, and it follows by definition that uopt(0) ¼

usyn. Hence, because (@j/@u)(uopt(T), T) ; 0,

i0(uopt(T))þ T
3

b0(uopt(T))þO(T2) ; 0,

and, differentiating with respect to T, we establish

(uopt)
0(T) i00(uopt(T))þ T

3
b00(uopt(T))

� �
þ

b0(uopt(T))

3þO(T) ; 0
:

On setting T ¼ 0, it follows that

uopt(T) ¼ usyn �
b0(usyn)

3 � i00(usyn)

� �zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{divergence rate:r

T þO(T2),

because (uopt)
0(0)i00(usyn)þ b0(usyn)/3 ¼ 0:

In other words, when we compare with the strategy of

optimal drug synergy with the optimal combination, with

respect to a wide range of possible measures, provided the

genericity condition (db/du)(usyn) = 0 is satisfied, these two

concepts are only close for a period of time that depends
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Figure 2. Schematic illustration of a batch-transfer experiment. A small
population of bacteria is inoculated and cultured under essential resource
limitation for N units of time. Then, a fraction h of the population is trans-
ferred to a new flask containing fresh medium and antibiotics and the
process is repeated for several days. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20131035

4
explicitly upon the reciprocal of the strength of synergy of

the drug.

2.1. Comments
There are many optimality criteria we could have chosen in

(2.3). If we were to let T . 0 be free and then define

J (u, v, T) ¼def
(w, x(t; u, v, T)),

noting that x now depends on T explicitly, one could

determine an optimal control (u*, v*, T*) for which

J (u�, v�, T�) ¼ inf
u(t)�0, v(t)�0, T�0

J (u, v, T):

This has a larger space of admissible controls than (2.3) and it

also includes the terminal time T as an unknown. One could

argue that this new functional represents the essential prop-

erty of what we desire in an optimal antibiotic combination

treatment: it determines both the optimal dosages and the

terminal time at which to stop treatment.

However, the purpose of continuing to use J as the objec-

tive functional here is to yield a set of theoretical predictions

that can be tested empirically by reducing the optimal combi-

nation question to a one-dimensional problem on the

‘equidosage line’. The latter is a line in the two-drug plane

of concentrations that is determined by the dosages

(u, v) ¼ (uu0, (1� u)v0), where 0 � u � 1.
3. An evolutionary experiment
Antibiotic dose–response profiles are usually determined

using disc diffusion susceptibility testing [29] or by taking

fixed-time (a.k.a endpoint) density measurements in liquid

media [30]. Here, we employ the latter because we can use

shaken microtitre plate readers to quantify the dynamics

of bacterial population densities through time and, based

on observed growth kinetics, thereafter determine drug

susceptibility at different antibiotic dosages.

In the following, we use a standard batch-transfer exper-

imental protocol (see appendix A) to treat bacteria. This is

often used to study adaptation to antibiotic environments

[24,25], whereby a shaken environment with liquid growth

medium is inoculated with bacteria that are cultured in an

array of wells for a fixed period of time. Population densities

are measured continually for 24 h at which time a fixed

volume is sampled from the flask and transferred to a new

well containing fresh growth medium and antibiotics. The

repetition of this process defines the batch-transfer protocol.

In the remainder, we have two antibiotics at concen-

trations denoted by D(t) and E(t) at time t. We use B(t) ¼
(B(1)(t), . . ., B(n)(t)) for the vector containing the density of n
bacterial phenotypes differing in their dose–response profiles

and S(t) will denote the concentration of an essential but

limiting carbon source supplied to the bacteria.

Each experiment consists of N transfers. If each transfer

has a duration of T hours, with t [ [0, T ], the state of the

system at any time is

xi(t) ¼
def

(Bi(t), Si(t), Di(t), Ei(t)),

where a subscript has been placed on B to denote the pheno-

typic densities each day and so i ¼ f1, 2, . . ., N þ 1g. The

initial density of bacteria after transfer i is a small proportion

of the terminal state of the previous day and, as illustrated in
figure 2, if 0 , h� 1 denotes this proportion then the initial

condition of transfer i . 1 will satisfy

Bi(0) ¼ h � Bi�1(T),

where B1(0) ¼ (B0, 0, :::, 0) is the density vector of the bacteria

on the first day. In practise, B0 will represent around 105 cells

per millilitre in any one of our experimental protocols that are

described later.

The population dynamics of the bacteria competing in this

environment can be written as a single differential equation

d

dt
xi ¼ F(xi, Di, Ei), (3:1a)

where F is a model-specific mapping described in §3.3 and the

initial condition

xi(0) ¼ (Bi(0), Si(0), Di(0), Ei(0))

¼ (h � Bi�1(T), S0, D0, E0) (3:1b)

applies each day where x1(0) ¼ (B1(0), S0, D0, E0): Here, S0 is

a fixed parameter denoting the initial concentration of the lim-

iting resource each day, D0 and E0 are also fixed and represent

the basal concentrations of antibiotic supplied.
3.1. Modelling the action of bacteriostatic antibiotics
The bacteriostatic antibiotics we use suppress the bacterial

growth rate by inhibiting protein synthesis and we represent

the action of the drug by viewing it as a suppressor of bio-

mass synthesis. So, suppose each cell ingests the essential

resource from the environment as a process following

Monod kinetics:

u(S) ¼ VmaxS
K þ S

, (3:2)

where Vmax represents the maximal resource uptake rate and

K is a half-saturation constant.

The growth rate of each bacterium depends on the con-

centration of antibiotic present in the environment, so we

assume the above uptake function is modulated by an anti-

biotic-dependent coefficient c(D) that converts units of the

limiting resource to biomass and describes the efficiency of

cell production per unit resource in the presence of antibiotic.

Thus, the per-cell, per-unit time growth rate can be written as

G(S, D) ¼ u(S) � c(D): We will write c(D) as a product of the

cell conversion rate in a drug-free environment, c, and a

dimensionless inhibition coefficient that depends on the

concentration of antibiotics

G(S, D) ¼ c u(S)g(D): (3:3)
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Forms for g(D) can be derived using standard enzymatics

[31] and if we suppose that the antibiotic suppresses growth

due to a competitive inhibition process, then the following

expression is consistent [31] with antibiotic-target binding

data for rifampicin-like drugs:

g(D) ¼def
1� k1D

1þ k2D
, (3:4)

where k1 and k2 are parameters characterizing susceptibility

to the antibiotic.

3.2. Multidrug interactions in a model cell
To extend the rationale of §3.1, assume two antibiotics

are present in the environment at concentrations D and E.

Again, bacterial growth is modelled as a Monod term

multiplied by a growth inhibition coefficient, g(D, E),

so G(S, D, E) ¼ c u(S)g(D, E), where c is a conversion

rate and u(S) is the resource uptake function defined in

equation (3.2).

Now, g(D, E) is a function, whereby g(D, 0) ¼ gD(D) and

g(0, E) ¼ gE(E), and gD(D) and gE(E) are inhibition functions

describing the action of each antibiotic deployed alone.

The shape of the contours of g(D, E) determines the anti-

biotic interaction [32]. In particular, we use two bacteriostatic

antibiotics of different functional classes with a known syner-

gistic interaction [24,25]: erythromycin (E), a macrolide that

binds to the 50S ribosomal RNA subunit and doxycycline
(D), a tetracycline that binds to the 30S ribosomal RNA sub-

unit. As these drugs have non-overlapping targets, we model

their interaction as non-exclusive competitive inhibitors

[33] and the growth inhibition coefficient for a multidrug

combination of D and E is

g(D, E) ¼def 1

1þ kdDþ keEþ kmD E
, (3:5)

where kd, ke and km are positive constants. Note that km con-

trols the strength of synergy and if it is zero, the drug

interaction is additive.

Assuming cell yield (defined as the maximal cells produ-

ced per essential resource) is the same for four genotypes

(drug-susceptible wild-type, D-resistant, E-resistant and

DE-resistant), the growth rate and antibiotic susceptibility pat-

terns for different bacterial strains will be characterized in

terms of a vector of parameters, (V�max, K�, k�e , k�d, k�m), where

the asterisk is a placeholder for the genotype under consider-

ation. For instance, we will denote an antibiotic-susceptible
bacterial wild-type with the superscript s and its growth rate

will be written as

Gs(S, D, E) ¼ c
Vs

maxS
Ks þ S

� �
1

1þ ks
dDþ ks

eEþ ks
mD E

� �
:

By contrast, a multidrug-resistant mutant (represented by a

superscript m) would have, by definition, a higher growth

rate than susceptible bacteria at high concentrations of anti-

biotics. Thus, if the growth rate of a multidrug-resistant

mutant is given by the function

Gm(S, D, E) ¼ c
Vm

maxS
Km þ S

� �
1

1þ km
d Dþ km

e Eþ km
mD E

� �
,

then, to represent greater resistance, there must exist a critical

drug combination (D*, E*) for which

Gm(S, D, E) . Gs(S, D, E) for all D � D� and E � E�:

Antibiotic resistant cells often encounter a reduction in fit-

ness in an antibiotic-free environment, a so-called fitness cost
of resistance [34]. In our framework, this can be realized by

imposing a lower resource uptake rate and, therefore, a

lower growth rate in an antibiotic-free environment

Gm(S, 0, 0) , Gs(S, 0, 0):

As an illustration, figure 3 contains the contour plots of

growth functions, G*(S, D, E), at fixed resource concentrations

but at different drug doses for susceptible, single-drug-resistant

and multidrug-resistant bacterial genotypes; there are four such

functions Gs, Gd, Ge and Gm, one for each genotype. Note how

the contour lines are concave in all four cases and, therefore,

the drug interaction is synergistic for each genotype.
3.3. Resistance mutations
Susceptible bacteria can acquire resistance through the hori-

zontal transfer of mobile genetic elements [35], through

single point mutations in drug targets [36] or through the

amplification of genomic regions containing resistance

genes [37]. Seeking to understand how target modification

affects the optimality properties of antibiotic combinations,

we model resistance adaptation by allelic changes in two

independent genetic loci.

Susceptible genotypes evolve resistance due to point

mutations occurring at rate e . 0 (per cell per division) in an

‘E-resistance’ locus and a ‘D-resistance’ locus. The accumu-

lation of two mutations confers multidrug resistance. The
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mutation structure on these loci can be described by a

mutational matrix

Me ¼
def

(1� e)I þ eM:

Here, I is the identity matrix, e the rate of mutation and M is a

stochastic matrix whose entries, mij, control the rate at which

bacterial type j mutates into bacterial type i.
If 1 denotes a vector of ones of the appropriate dimension,

then the mutational matrix is stochastic

1TMe ¼ 1 and 1TM ¼ 1:

We assume M (and therefore Me) is irreducible in the

sense that for each pair (i,j ), there is a number p ¼ p(i, j )

such that the (i,j )th entry of Mp is non-zero.

Our model will be completed when we describe the map-

ping, F, in (3.1a) that defines the ecological setting for the

above genetics. We are modelling the densities of four differ-

ent genotypes: a susceptible wild-type at density Bs
i , Bd

i and Be
i

are resistant mutants to drugs D and E, respectively, and Bm
i

is the multidrug-resistant mutant. We then define a vector

that contains the densities of each strain,

Bi(t) ¼
def

(Bs
i (t), Be

i (t), Bd
i (t), Bm

i (t)),

and the dynamics (at transfer i) of this two-allele, two-locus

model can be written as

d

dt
Bi ¼Me(G(S, D, E) � Bi), (3:6a)

d

dt
S ¼ �(u(S), Bi), (3:6b)

d

dt
D ¼ �dD � (Bs

i þ Bd
i þ Be

i þ Bm
i ) (3:6c)
and

d

dt
E ¼ �eE � (Bs

i þ Bd
i þ Be

i þ Bm
i ): (3:6d)

Here, G(S, D, E) is the vector (Gs, Gd, Ge, Gm) and the dot in

(3.6a) denote pointwise multiplication. The parameters d and

e are binding constants of each antibiotic to each bacterial

genotype and the parentheses in (3.6b) denote the standard

Euclidean inner product.

Figure 4 illustrates a simulation of equation (3.1), as defined

by equation (3.6), where the transfer occurs every 12 h and

an ED-combination treatment has been used. As the number

of transfers increases, the multidrug-resistant ED-genotype

(shown in red) outcompetes the other genotypes and we see

expected behaviour in that this genotype sweeps through the

population as it adapts to the presence of both drugs. For com-

parison, figure 4b shows experimental data obtained for

Escherichia coli adapting to a multidrug environment that con-

tains 7 mg ml21 erythromycin and 0.3 mg ml21 of doxycycline

where total population density is shown for each transfer.
4. Preliminary results
4.1. Population heterogeneities and non-monotonic

dose – response
Antimicrobial susceptibility tests can be difficult to standar-

dize [38], but they are widely used to determine important

quantitative pharmacodynamic parameters characterizing the

inhibitory relationship between antibiotic and bacteria [39].

For bacteriostatic antibiotics, a dose–response curve that show-

ing densities at a given timepoint at a series of increasing

dosages characterizes the effect of the drug. An important fea-

ture of this is the so-called minimum inhibitory concentration.

This is the lowest drug dosage at which a 99.9% reduction in
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bacterial density can be achieved at that timepoint by the use

of the drug. By the very nature of antibiotics, we expect

dose–response data to be monotonic decreasing.

We therefore evaluated the effect of resistance adaptation

on the dose–response curve with the following experiment.

A clonal population of E. coli bacteria (several different strains

were used) was inoculated into a 96-well microtitre plate con-

taining different concentrations of a single bacteriostatic

antibiotic, in this case erythromycin, at a concentration E
measured in mg ml21. After 24 h, following the batch-transfer

protocol, we transferred a small volume from each well

into an identical plate but with fresh growth medium and

antibiotics. We repeated this procedure for 5 days (see

appendix A for more detailed experimental methods).

Figure 5b illustrates the population densities at the end of

each day in this protocol (density here is the optical density of

the population measured at a 600 nm wavelength).

The first day’s dose–response curve has the common charac-

teristic to these datasets: first a plateau, then a sharp drop as the

dose increases. By the second day, there appears to be a small

protuberance at intermediate drug concentrations. As the exper-

iment proceeds, this protuberance is more pronounced,

eventually producing a non-monotonic dose–response curve.

This phenomenon is related to the Eagle effect that was first

described in 1948 where non-monotonic dose–response

relationships were noted at low cell densities [40].

Equations (3.6a–d) provide a mechanistic explanation of

the observed non-monotonicity in the dose–response curve.

Simulations of the model (implemented without doxycycline,

so that D(t) ; 0) shown in figure 5a illustrate how intermedi-

ate drug concentrations support coexistence between the

susceptible strain (the grey area) and the E-resistant strain

(the green area; E for erythromycin). By contrast, the fitness

cost paid by the resistant cells at low antibiotic concentrations

is large enough that this environment selects the suscepti-

ble bacteria, while at high drug doses only the resistant

phenotype is able to persist. While this is not the same obser-

vation as that made by originally by Eagle in 1948, it might be

appropriate to call this phenomenon an ‘adaptive Eagle

effect’ as it only appears after the initial population has

adapted to the presence of the drug.
It is noteworthy that this unusual behaviour of an adap-

tive dose–response profile can be captured by such simple

genetical and ecological assumptions, this gives us some con-

fidence that the model is able to capture features that might

not be evident from verbal reasoning alone.
4.2. Multidrug interactions are dynamic
The standard test used to determine the degree of interaction

of a pair of antibiotics is a two-dimensional dose–response

surface known as a checkerboard [41]. The horizontal axes

are the dosages of the drugs and the vertical, z-axis represents

the density of the bacterial population measured experimen-

tally at some time. Based on the shape of the lines of equal

inhibitory effect in the checkerboard that are known as iso-

boles, one characterizes the interaction between the two

drugs as follows [22]: if the isoboles are convex the interaction

is synergistic, if they are concave the drugs are antagonistic.

We performed a checkerboard experiment (using 256 differ-

ent drug combinations with 11 replicates, see appendix A)

using erythromycin (E) and doxycycline (D), drugs with an

established synergy [25]. As expected, the isoboles exhibited

the characteristic of a synergistic interaction as can be seen in

the bottom-left panel of figure 6a). We then took samples of bac-

teria from this experiment containing a highly synergistic

combination (E0 ¼ 4.8 mg ml21, D0 ¼ 0.08 mg ml21) and used

these to inoculate a new batch-transfer experiment. After four

daily transfers, we used the resulting evolved bacterial popu-

lations to determine another checkerboard, the purpose of

which was to determine how the adaptation to a synergistic

environment would be manifested within the isoboles of the

dose–response surface.

Figure 6 shows that the checkerboard has shifted in the

sense that higher densities are produced at higher drug con-

centrations, consistent with drug-resistance adaptation.

However, the data in figure 6 are too coarse to allow a con-

clusive analysis on whether the synergy that was present

on day 1 still remains 4 days later. It is probably unwise to

scrutinize the subtleties of this surface too closely in terms

of how it relates to the nature of the drug interactions, the

data being as sparse as it is. In order to address our question,
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we use a different analysis technique that gives more precise

information on the drugs’ interaction.
4.3. A two-locus, two-allele smile – frown transition
Our definition of synergy and antagonism is stated in

terms of two possible instances of the function i(u) in defi-

nitions 2.1 and 2.2. In these definitions, a convex form for

i(u) corresponds to synergy, a concave i(u) corresponds to

antagonism. However, a phenomenon can arise, whereby

synergism is lost and in [24] this was termed the

‘smile–frown transition’.

In this transition, a short-term synergy is replaced by an

antagonism in the data because the most potent combinations

select most for drug-resistant genotypes. As a result,
population density data are ‘inverted’ and the characteristic,

convex U-shape of synergy gives way to a near-concave

W-shaped pattern that represents an antagonism. The popu-

lation density data in figure 7a,b, respectively, show this

transition both in data and in an instance of the population

genetics model presented above.

The relevance of this observation, made of population-

level data, can be understood in the context of the ‘search

for synergy’ [22] if we re-visit the growth functions, G*(S,

D, E), used in equation (3.6). According to that model, the

function u 7! G(S, uD, (1� u)E) is convex (i.e. synergistic)

for all S, D and E (figure 3) and yet the population-level out-

come that results from simulating this model need not respect

that synergy because of a population structure that arises

during treatment (figures 6 and 7). One could interpret this
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by stating that single-cell synergy does not imply an

‘evolutionarily robust population synergy’.

Informally, the changing drug interaction pattern in

figure 7 could be seen as two conjoined copies of the data

from figure 5 in the sense that the smile–frown transition is

due to two emerging, non-monotone dose–response profiles

laid contiguously, side by side.
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4.4. The optimal drug combinations can depend upon
treatment duration

The subtle, frequency- and density-dependent effects that pro-

duce non-monotone dose–responses and the smile–frown

transition suggest that what dose and combinations are opti-

mal for a treatment that lasts 1 day might be different from a

treatment that lasts longer.

To address this, we need to define what we mean by an

optimal treatment: an optimal drug combination needs an objec-

tive. In our context, we could use a criterion that measures the

inhibitory effect of an antibiotic using, perhaps, only on the

total density of bacteria found at the end of the experiment.

Or else, we could measure the totality of bacterial cells pro-

duced by each treatment. These measures, however, only

account for bacterial yield and could therefore completely

fail to capture the reduction of growth rate induced by a

bacteriostatic antibiotic.

Indeed, two experiments can have similar final bacterial

densities but with very different growth dynamics to achieve

those densities.

To overcome this, we use an optimality measure of treat-

ment success that incorporates the total observed bacterial

density in an experiment of N days in an objective functional

and we will refer to this as the cumulative area under the curve
(AUC), A, defined as follows:

A(N; D, E) ¼def
XN

i¼1

ð24h

0

Bi(t; D, E)dt: (4:1)

Experimentally, this quantity can be approximated by

measuring bacterial density continually and then applying

a numerical integration rule over the empirically determined

daily growth curves. In our experiments, this is done every

20 min thus producing a timeseries of population densities

each day, labelled i, that depends on the drugs used, (D, E).

The population density timeseries is therefore written as

Bi(t; D, E).

We normalize this measure with respect to a drug-free

control population and so compute AUC inhibition, a dimen-

sionless performance index we refer to in the remainder as I

I (N; D, E) ¼def
1�A(N; D, E)

A(N; 0, 0)
: (4:2)

This objective functional takes values in the interval [0,1]

and if I (N; D, E) ¼ 1, the antibiotics have completely

inhibited bacterial growth, if I (N; D, E) ¼ 0 the drugs have

no effect.

To make a comparison between the efficacy of different

drug cocktails a fair one, we perform the following calibration.

We determine ‘basal’ concentrations of erythromycin and

doxycycline from their single-drug dose–response curves so

that each drugs’ monotherapy achieves equal inhibitory effect

on growth at 24 h. So, if we denote by E0 and D0, those basal

concentrations, respectively, we then represent fixed-dose
combinations of the two drugs by a dimensionless drug pro-

portion coefficient, u. Each drug combination used to treat

bacteria experimentally therefore lies on the equidosage line

(uD0, (1 2 u)E0), where 0 � u � 1.

The drug proportion u remains constant throughout the

experiment and, therefore, any bacterial population is initially

exposed to the same, fixed-dose multidrug concentrations

throughout the treatment. This assumption, however, does

not imply that the environmental drug concentration remains

constant at all times because concentrations decrease as drug

molecules enter the cell and bind to their targets. Antibiotic

molecules also degrade naturally over time in solution.

We now take u to be our control variable and define the

optimal drug proportion to be the combination that maximizes

the objective functional I in (4.2), a quantity we denote u*.

The optimal drug proportion is now determined by solving

the following one-dimensional optimization problem:

I (N; u�D0, (1� u�)E0) ¼ max
u[ [0,1]

I (N; uD0, (1� u)E0): (4:3)

Now, by definition of synergy, the short-term, N ¼ 1,

optimal drug combination for this synergistic drug pair

must correspond to the combination that maximizes the

synergistic effect. Thus, a near 50–50 combination treatment

should be optimal when N ¼ 1, this would be represented by

the optimal control residing at, or close to u* ¼ 1/2.

However, does this synergistic value for the optimum

remain so for a longer term experiment, when N . 1? We

expect that for each N � 1, there is an associated optimal

value, u*(N ) and by virtue of the synergy u*(1) � 1/2. We

now address the behaviour of this function as measured

experimentally using a batch-transfer protocol as N grows.

Figure 8 is a representation of an empirical and a theoretical

dataset, giving a comparison of the optimal combination

obtained experimentally (figure 8b) with the optimal combi-

nation computed using the two-locus, two-allele model

defined by equations (3.6a–d) (figure 8a). As expected from

the synergy, in both cases the optimal 1-day drug proportion

corresponds to the drug combination that maximizes synergy,

but the optimal drug proportion changes when we treat for

longer durations. For example, if we wanted a treatment lasting

5 days, it is then preferable according to our measure of success

to deploy a single drug instead of a two-drug cocktail.
5. Conclusion
We have shown that an optimal drug combination can depend

on the duration of the treatment (the parameter N above). So,

for each treatment of length N, there is control strategy (a.k.a.
relative drug combination) u*(N) that is optimal, moreover

u*(N) is not a constant function of N. This result is not surpris-

ing from a theoretical control perspective as complex, adaptive

systems are unlikely to be controlled optimally using constant,

non-responsive controls. Note that we have not determined the

optimal treatment, we have only demonstrated that the optimal

combination along the equidosage line depends on the length

of treatment.

Although this is a laboratory study data analysed using a

model inspired by drug target modification, there are other

ways in which bacteria resist antibiotics. Resistance to erythro-

mycin and doxycycline is also conferred by the product of an

operon acrRAB and the gene tolC that form an efflux pump
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spanning the inner membrane, periplasm and outer-membrane

in E. coli. Treating with these drugs is known to lead to genomic

duplication events where around 8% of the E. coli genome is

duplicated in which acrRAB is sited [24]. A contribution of

this study is to show that the smile–frown transition of the

previous study [24] can be realized theoretically by target

modification, not only by pump duplications.

Nevertheless, although we have not tested the idea

directly, our data indicate that actively changing the anti-

biotics used during treatment, or changing the way they are

combined, may be one path to explore further at higher

dosages. Mycobacterium tuberculosis is, in some sense, treated

in this way [42] but it might also be possible that other patho-

gens could be treated successfully with regimens that change

through time, but such sequential regimens are not common.

There is clinical evidence to show that sequential treatments

of Helicobacter pylori can outperform combination treatments

at the same dose [43,44], although not all trials have been

equally successful [45].

Clinicians are well in advance of our theory, having

trialled a range of strategies to combat resistance evolution.

The recent development of personalized, rapid-diagnosis
devices to determine the pathogen responsible for infection

with patient-specific, DNA-based testing so the most appro-

priate drug can be given as soon as possible [46,47] is one

such advance. For a review of the many protocols trialled

in practice, see [48]. However, there could be a role for

data-driven optimal control theory that can highlight new

strategies in the search for treatments that help combat

resistance.

Data accessibility. Data can be downloaded directly from http://people.
exeter.ac.uk/reb217/data.html or by sending a request by email to
the corresponding author.
Appendix A. Experimental methods
Escherichia coli K12 (strains AG100 and MC4100) were used

throughout and cell inoculations were taken from the same

colony of each strain for all the experiments conducted.

Experimental populations were cultured in M9 medium

at 308C with the following concentrations: part A: 350 g l21

K2HPO4, 100 g l21 KH2HPO4; part B: 29.4 g l21 trisodium

citrate, 50 g l21(NH4)2SO4, 5 g l21MgSO4. Parts A and B

http://people.exeter.ac.uk/reb217/data.html
http://people.exeter.ac.uk/reb217/data.html
http://people.exeter.ac.uk/reb217/data.html


Table 1. Parameter values for E. coli strain AG100.

parameter description value

S0 glucose supply 2000 mg ml21

D0 basal concentration of drug D 0.3 mg ml21

E0 basal concentration of drug E 7 mg ml21

V i
max maximal carbon uptake rate V s

max ¼ 8:6	 10�6, V e
max ¼ 8:5	 10�6

of bacterial type i (mg cell21 h21) V d
max ¼ 8:58	 10�6, V m

max ¼ 8:5915	 10�6

K bacterial half-saturation constant 0.0527 mg ml21

c resource conversion 2.18	104 cell mg21

d drug D binding rate 1.469	1029 mg cell21

e drug E binding rate 1.44	1029 mg cell21

ks
� inhibition of Bs (ml mg21, ml mg21, (ml mg21)2, resp.) ks

e ¼ 0:03002, ks
d ¼ 0:6097, ks

m ¼ 0:8080

ke
� inhibition of Be (ml mg21, ml mg21, (ml mg21)2, resp.) ke

e ¼ 0:004351, ke
d ¼ 0:5097, ke

m ¼ 0:2512

kd
� inhibition of Bd (ml mg21, ml mg21, (ml mg21)2, resp.) kd

e ¼ 0:015097, kd
d ¼ 0:2418, kd

m ¼ 0:23596

km
� inhibition of Bm (ml mg21, ml mg21, (ml mg21)2, resp.) km

e ¼ 0:0015097, km
d ¼ 0:0590, km

m ¼ 0:02581

e rate of point mutations 1024 per locus per cell per division

h dilution parameter 1% of biomass

Table 2. Parameter values for E. coli strain MC4100.

parameter description value

S0 glucose supply 2000 mg ml21

D0 basal concentration of drug D 0.15 mg ml21

E0 basal concentration of drug E 9 mg ml21

V i
max maximal carbon uptake rate V s

max ¼ 2:778	 10�6, V e
max ¼ 2:289	 10�6

of bacterial type i (mg cell21 h21) V d
max ¼ 2:2839	 10�6, V m

max ¼ 2:389	 10�6

K bacterial half-saturation constant 0.0527 mg ml21

c resource to biomass conversion 2.851	104 cell mg21

d drug D binding rate 1.469	1029 mg cell21

e drug E binding rate 1.44	1029 mg cell21

ks
� inhibition of Bs (ml mg21, ml mg21, (ml mg21)2, resp.) ks

e ¼ 0:03453, ks
d ¼ 2:3802, ks

m ¼ 3:0928

ke
� inhibition of Be (ml mg21, ml mg21, (ml mg21)2, resp.) ke

e ¼ 0:02134, ke
d ¼ 1:8802, ke

m ¼ 0:0241

kd
� inhibition of Bd (ml mg21, ml mg21, (ml mg21)2, resp.) kd

e ¼ 0:02484, kd
d ¼ 0:19512, kd

m ¼ 0:331

km
� inhibition of Bm (ml mg21, ml mg21, (ml mg21)2, resp.) km

e ¼ 0:01462, km
d ¼ 0:41657, km

m ¼ 0:0028

e rate of point mutations 1024 per locus per cell per division

h dilution parameter 1% of biomass
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were 50	 stock solutions in deionized water, sterilized by

autoclaving. For M9 minimal medium, they were diluted in

water accordingly with 0.2% glucose and 0.1% casamino

acid added as nutrients.

The antibiotics used are erythromycin and doxycycline

(both Sigma-Aldrich). Liquid stocks were prepared from

powder at 50 mg ml21 in ethanol for erythromycin and at

5 mg ml21 in deionized water for doxycycline (afterwards

filter sterilized) and frozen at 2208C. All dilutions were pre-

pared in M9 growth medium and stored in the fridge at

approximately 58C.

Batch-transfer experiments were conducted in 96-well

microtitre plates with 150 ml liquid volume, each plate was
inoculated and transferred using a 96-well replicator. Optical

density measurements were taken at 600 nm in a shaken

Biotek plate reader.

Data in figure 4b: this illustrates the data produced by one

such batch-transfer experiment, here conducted at the drug

concentration stated in the figure legend.

Data in figure 5b: preliminary experiments were per-

formed in the same device to determine dose–response

relationships for erythromycin and doxycycline, the former

is shown in figure 5 (day 1 data). These wells were then

transferred to fresh plates for 5 consecutive days.

Data in figure 8b: basal concentrations of both drugs

were chosen from the preliminary experiment to achieve



rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20131035

12
50% inhibition at 24 h (E50 ¼ 9 mg ml21 for erythromycin and

D50 ¼ 0.15 mg ml21 for doxycycline). Batch transfers we con-

ducted at each of the following combinations:

(uD50, (1� u)E50) ¼ 0

15
D50,

15

15
E50

� �
,

1

15
D50,

14

15
E50

� �
, :::,

15

15
D50,

0

15
E50

� �
:

When u � 1/2, these combination treatments correspond

to over 90% inhibition of the bacterial population density

relative to a control in which no drug is used [24].

Two controls were included: (i) M9 without antibiotics

and without inoculation as a reference for density measure-

ments and (ii) M9 (with glucose) without antibiotics but

with inoculation to serve as the uninhibited growth reference.

All treatments and controls were replicated 19 times, all

plates were pipetted simultaneously.

Each one of the prepared microtitre plates was stored at 48C
until used. To control against drug degradation, a further plate

was prepared and stored with the other plates for the duration

of the 5-day experiment. At the end of the experiment, this

plate was inoculated with an overnight culture of the original

colony and measured for 24 h. Both on day 1 and when

using this control plate, doxycycline and erythromycin

caused a reduction of the AUC with no observed significant
differences between these plates. This is consistent with main-

tenance of the efficacy of the drugs while in cold storage.
Appendix B. Optical density versus live
cell counts
In order to demonstrate that measuring optical density at

600 nm in our shaken plate reading devices corresponds to

counting live cells densities, we refer to the electronic sup-

plementary material, figure S23, of [24]. This shows a linear

correlation between the so-called colony forming units

(CFU) and optical density (OD600).

CFUs measure bacterial population densities by diluting

a large bacterial population grown in liquid medium a number

of times until single colonies can be determined when culturing

those dilutions on agar plates, whence the name. So, ‘bacterial

population density’ can be measured equivalently in CFUs per

millilitre or in units of OD600 according to the electronic sup-

plementary material, figure S23, of [24] which shows a linear

correlation between both cell density measures.
Appendix C. Model parameters
Tables 1 and 2.
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