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Through the eyes of a bird: modelling
visually guided obstacle flight

Huai-Ti Lin†, Ivo G. Ros and Andrew A. Biewener

Department of Organismic and Evolutionary Biology, Harvard University, Concord Field Station,
100 Old Causeway Road, Bedford, MA 01730, USA

Various flight navigation strategies for birds have been identified at the large

spatial scales of migratory and homing behaviours. However, relatively little is

known about close-range obstacle negotiation through cluttered environments.

To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying

through an artificial forest of vertical poles. Interestingly, pigeons adjusted

their flight path only approximately 1.5 m from the forest entry, suggesting

a reactive mode of path planning. Combining flight trajectories with obstacle

pole positions, we reconstructed the visual experience of the pigeons through-

out obstacle flights. Assuming proportional–derivative control with a constant

delay, we searched the relevant parameter space of steering gains and visuo-

motor delays that best explained the observed steering. We found that a

pigeon’s steering resembles proportional control driven by the error angle

between the flight direction and the desired opening, or gap, between

obstacles. Using this pigeon steering controller, we simulated obstacle flights

and showed that pigeons do not simply steer to the nearest opening in the

direction of flight or destination. Pigeons bias their flight direction towards

larger visual gaps when making fast steering decisions. The proposed

behavioural modelling method converts the obstacle avoidance behaviour

into a (piecewise) target-aiming behaviour, which is better defined and under-

stood. This study demonstrates how such an approach decomposes open-loop

free-flight behaviours into components that can be independently evaluated.
1. Introduction
Animals moving in the natural environment need to routinely avoid obstacles on

route to a destination. This task becomes critically challenging when moving at

high speeds, such as in flight. Many flying animals have evolved impressive abil-

ities to avoid obstacle collisions [1]. For example, echolocating big brown bats

(Eptesicus fuscus) forage at night, avoiding obstacles while tracking flying insects,

whereas diurnal goshawks (Accipiter gentilis) chase aerial preys through dense

woodlands at high speed. Apart from these specialists, other flying birds and

bats must also routinely deal with obstacles. For example, sparrows and pigeons

have successfully colonized cities, which are highly three-dimensional environ-

ments, similar to their natural habitats [2]. These birds manoeuvre around

lampposts, buildings and vehicles with proficiency, relying on vision to navigate

through their environment. Here, we examine guidance strategies that pigeons

(Columba livia) use to successfully navigate cluttered environments using a

combined experimental and modelling approach.

Limitations of the visual system necessarily affect any visually guided loco-

motion. Similar to other birds at risk of aerial predators, pigeons have a wide

more than 3008 panoramic field of view for predator detection. The associated

retinotopic trade-off limits a pigeon’s binocular field to approximately 208
[3–5]. Binocular stereoscopic depth perception has been demonstrated in falcons,

owls and pigeons, but only in close-range discrimination tasks [6–8]. Hence,

binocular vision is unlikely to provide depth sensing for flight. A pigeon’s

broad panoramic visual field also reduces the overall visual acuity: pigeons can

resolve up to 12 sinusoidal cycles/degree within their lateral visual field, which

declines towards their frontal view, much less than predatory eagles (approx.

140 cycles/degree) and humans (approx. 70 cycles/degree) [9]. Although high
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resolution is important for distant target tracking (which rap-

tors do routinely), it is not a requirement for flight control.

Most insect compound eyes have even worse visual acuity

(less than 4 cycles/degree) [10], yet flying insects have quite

robust flight control [11–15]. Finally, in order to perceive

rapid motion in flight, birds generally possess flicker fusion fre-

quencies above 100 Hz (pigeon: 116–146 Hz) [16]. Taken

together, these properties of pigeon vision suggest a more

reactive approach to obstacle negotiation. In contrast to a con-

ventional path-planning paradigm where sensory information

is used to construct an internal model of the world for evalu-

ation [17–19], we hypothesize that pigeons may react to

obstacles over short distances and time scales based on local

information and simple rules.

Such a view of visual guidance is shared by others in the

field. In particular, Warren and co-workers [20–23] termed

this ‘information-based control’, which they used to derive

various behavioural models for humans navigating in virtual

reality. These models treat goals as attractors and obstacles

as repellers. The superposition of attraction/repellence poten-

tial fields continuously shapes steering, causing the locomotor

trajectories to ‘emerge’ [23]. This potential field method

describes human goal-directed walking well [22] and also is

a classic approach in reactive robotic obstacle avoidance

[24–27]. However, the main limitation to this method (attrac-

tor–repeller) is the treatment of multiple goals and obstacles

[28]. For instance, if there are two goals affecting the agent

(robot, human or other animal), the model might predict an

average path that misses both targets. Similarly, an agent

approaching three obstacles might steer head-on to the

middle obstacle due to the average repellence from the two

side obstacles. This so-called ‘cancellation effect’, as recognized

by Fajen et al. [29], can be solved by differentiating the

‘valence’ of different obstacles and goals. Indeed, it seems con-

ceptually unlikely that a navigating agent would avoid all

obstacles simultaneously or steer towards an average goal

direction, in which no real goal exists. In practise, the agent

only needs to guide movement through one opening (or

gap) at a time. A natural alternative to the potential field

method is to always aim for a gap [30]. Although all available

gaps affect the gap selection process, once the choice is made

the actual steering should be unaffected by the other,

non-selected gaps. Here, we propose a new procedure for mod-

elling avian obstacle flight by introducing the gap-aiming

method with two underlying assumptions: (i) we treat obstacle

avoidance as a series of gap-aiming behaviours and (ii) we

assume that the agent steers towards one selected opening

(gap) at each instance and never attempts to simultaneously

aim for multiple openings. Under these assumptions, obstacle

flight becomes a piecewise target-aiming behaviour, in which

the selected gaps are the steering aims.

In this study, we examine short-range guidance of pigeons

flying through randomized sets of vertical obstacles. Under

our proposed framework, the pigeon must first identify rel-

evant obstacles and then select a suitable gap aim. A general

strategy for gap selection may be decomposed into two con-

current and possibly competing objectives [31]: maximizing

clearance between obstacles and minimizing required steering

(i.e. change in path trajectory). Whereas a bird should select

the largest gap to maximize clearance, it should simul-

taneously select the gap most aligned with its flight direction

in order to minimize steering. We refer to this decision process

as the guidance rule. Once the desired flight direction is
chosen, the bird must implement the steering that changes

the flight path. A steering controller that dictates the motor

behaviours and ultimately the flight dynamics is needed to

accomplish the required steering. Sensory and biomechanical

delays exist for any motor controller. Here, we formulate

the steering controller by simply combining the delays and

steering dynamics into a generic proportional–derivative

(PD) controller with a constant visuomotor delay.

We strategically simplified the sensory task by presenting

the pigeons with a vertical pole array of relatively short depth

(figure 1), minimizing the birds’ depth perception challenge

and inducing steering cues only about the yaw axis. The

scale of the flight corridor also minimized the global naviga-

tion challenge for the pigeon. The direction along the corridor

is practically the direction of the destination (figure 1a). Using

PD control theory [32], we established a steering controller

assuming that the pigeon steers to one gap at a time. We sub-

sequently reproduced pigeon flight trajectories using several

different guidance rules, each based on the same, established

steering controller, with varying levels of perception noise. In

particular, we ask whether pigeons prioritize clearance over

steering minimization during the obstacle flights.
2. Material and methods
2.1. Animal training and the obstacle course
Seven wild-caught adult pigeons (C. livia) were trained to fly

through an indoor corridor without obstacles. The four birds

that flew most consistently between the perches were selected

for experiments.

To study path planning and manoeuvring flight in a cluttered

environment, we challenged pigeons to fly between two perches

(1.2 m high) through an indoor flight corridor (20 m long, 3 m

high, 3 m wide) with an obstacle field located 10 m from the take-

off perch (figure 1a). The obstacle field comprised a 3 � 3 m area

over which 15 poly(vinyl chloride) poles (3.81 cm outer diameter)

were erected vertically in predetermined random distributions. In

order to maintain the overall obstacle density while introducing

random variations, random pole distributions were based on a stan-

dard grid, in which each pole had an equal probability of being

placed at one of five positions: at the centre position or at one of

four corner positions approximately 25 cm from the centre position

(figure 1b). For every obstacle flight, the poles were repositioned

according to this randomizing procedure, so that the pigeons

experienced a new obstacle distribution for each flight. Each

obstacle pole was digitized every flight to verify its placement.

The walls of the flight corridor were lined with translucent white

plastic sheeting to provide a homogeneous visual environment.

The front and rear borders of the obstacle field were guarded by

0.9 m high paper to ensure the pigeon flight paths remained

within a calibrated three-dimensional volume (figure 1e).

2.2. Pigeon flight tracking
Each pigeon carried two pairs of infrared, surface mount high-

intensity light-emitting diode (LED) markers (Vishay Intertechnol-

ogy, Inc., Malvern, PA, USA) for tracking purposes: one pair

defined the head vector and one pair defined the body vector

(figure 1c). These were securely strapped on the head and torso

along with a battery (overall weight: 16.5 g). We limited the

added components to less than 5% of the pigeon’s body mass to

minimize the effect on manoeuvring. Multiple views of the flight

trajectories were obtained by five synchronized Photron high-

speed cameras (three SA3; two PCI-1024, Photron USA, Inc., San

Diego, CA, USA) mounted on the ceiling, operating at 500 Hz.
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Figure 1. Obstacle avoidance flight corridor and motion tracking. (a) Pigeons were trained to fly between two perches located at either end of a 20 m indoor flight
corridor. An obstacle ‘pole forest’ was erected 10 m from the take-off perch to elicit obstacle negotiation. Five high-speed cameras captured the flight trajectories
(green section) throughout the entire obstacle forest, including 5 m of the approach. (b) Starting from a standard grid (red dots), for each flight obstacles were
randomly assigned one of five positions (the grid centre) or one of four orthogonal locations 25 cm from the grid centre (illustrated by red arrows). (c) Four 2.4 mm
LEDs were attached to each pigeon in combination with a small battery-pack (16.5 g total) to facilitate positional tracking of the head and body. (d ) Three-
dimensional flight trajectories were reconstructed from the high-speed videos. An example trajectory (green trace) is marked every 200 ms (blue circles). To
model steering through the obstacle field, we considered a section of the flight from 50 cm in front of the obstacle field to 20 cm before the pigeon left the
obstacle field (blue arrow). (e) Three-dimensional head positions and pole distributions were used to reconstruct the in-flight visual motion of obstacles with respect
to the pigeon’s head (and eyes). The modelling process assumed that pigeons always aimed towards visual centres of gaps.
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This provided a calibrated volume covering the obstacle field and

5 m of the flight corridor leading up to the obstacle field (figure

1a). Three-dimensional reconstruction of the marker trajectories

was achieved using DLTdv5 and EasyWand2 Matlab scripts [33].

To establish the birds’ indoor flight characteristics, eight

flights per bird were recorded without obstacles (32 flights

total). Following this, a total of 64 obstacle flights were recorded

for novel obstacle distributions from the four birds, after training

the birds with five to eight obstacle flights. The 32 initial flights

without obstacles were used to establish a behavioural reference.

From the 64 obstacle flights, we used eight flights per bird from

the first three pigeons to tune the steering controller (24 flights).

The remainder of the flights from the first three pigeons and 10

obstacle flights from the fourth pigeon were used to test the
guidance strategy simulations (10 obstacle flights per bird).

These data allocations allowed us to demonstrate the universality

of the PD controller, as well as test for the robustness of the

guidance rules simulations.

2.3. Data processing and flight path analysis
Pigeons’ body and head positions were computed from sampled

500 Hz three-dimensional marker data. Because we were only

interested in the body trajectory and the visual experience deter-

mined by the body velocity vector (the flight direction), head and

body orientations were not computed for this study. Specifically,

we used the rear head marker to compute in-flight visual infor-

mation (i.e. obstacle angular position, angular velocities and



−100 0 100
lateral (cm)

1.00 1.05 1.10
0

20

40

60

80

100

normalized path length

(a) (b) (c)

(e) ( f )

(d )

%
 f

lig
ht

s

0 30 60

87%

90
total steering (°)

0 2 4 6 8 10

10

20

30

40

50

average speed (m s–1)

%
 f

lig
ht

s

5 6 7 8 9 10
mean wingbeat
frequency (Hz)

−100 0 100
−300

−200

−100

0

100

200

300

lateral (cm)

fo
rw

ar
d 

 (
cm

)

Figure 2. Characteristics of pigeon obstacle flight. (a) The pigeons flew straight, close to the corridor midline in the absence of obstacles (light grey traces). When
challenged with obstacles (dark grey traces), flight trajectories diverged within the obstacle field. (b) Steering was first observed 1.5 m in advance of obstacles,
determined when the standard deviation (dark grey dash lines) and the limit (dark grey solid lines) exceeded control trajectories (light grey dash lines and solid
lines). (c) Flight trajectories without obstacles were extremely straight over the 6 m calibrated section of the flight corridor, with a normalized path length of
1.00 þ 0.002. Obstacle flights were slightly longer, with a normalized path length of 1.03+ 0.025. The path length was normalized to the straight-line reference.
(d ) Control flights normally contained less than 58 of total steering; whereas obstacle flights involved total steering summing up to approximately 808. However,
87% of obstacle flights contained less than 608 of total steering (thick arrow). (e) Flight speed was reduced 44.5% from 6.95+ 0.64 m s21 to 3.86+ 0.52 m s21,
and wingbeat frequency ( f ) increased by approximately 21% from 6.58+ 0.63 Hz to 7.95+ 0.59 Hz when pigeons flew through the obstacles.
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distance), and the rear body marker (close to the estimated body

centre of mass) to derive the pigeon trajectory. The visual input

data were down-sampled to 100 Hz (or 10 ms time-steps) to

approximate a pigeon’s flicker fusion frequency of 116–146 Hz

[16]. t ¼ 0 was defined when the pigeon’s rear body marker

crossed the entry line of the obstacle field. In order to generate

continuous steering dynamics, we evaluated steering using the

same 10 ms time-step for all modelling procedures.
3. Experimental results
Without obstacles, the four pigeons flew in straight lines near the

central axis of the corridor (figure 2a, light grey paths). When ran-

domly distributed obstacles were introduced, pigeons deviated

from the centre straight path to avoid obstacles, by initiating

manoeuvres approximately 1.5 m before the obstacle field

(figure 2b, dark grey paths). Occasional head turns were

observed during obstacle flights. However, previous work

suggests that head turns are more relevant to visual stabilization

than targeting during obstacle avoidance [34].

Despite pronounced manoeuvres, pigeon obstacle flight

paths were only up to 8% longer than straight-line paths

(figure 2c). Summed changes in flight direction over a

flight, or total steering, ranged from 108 to 808 for obsta-

cle flights (figure 2d ). Eighty-seven per cent of these

obstacle flights contained less than 608 of steering. Pigeons

generally re-aligned their flight direction with the corridor

central axis, which suggests a maximum of 308 steering to

either left or right. The pigeons flew by obstacles with a clear-

ance of 15.6+ 5 cm (referenced to the bird’s body midline),

with a minimum of 9.3 cm. Given that a pigeon’s torso is

approximately 10 cm wide, this represents a surprisingly

tight clearance for obstacle avoidance.
Cruising speeds of pigeons exceed 10 m s21 in open space

[35]. In our 20 m indoor flight corridor, however, pigeons

only achieved an average speed of 6.95+ 0.64 m s21

(figure 2e). When obstacles were introduced, pigeons reduced

their average flight speed to 3.86+ 0.52 m s21 and increased

their wingbeat frequency from 6.58+0.63 Hz during straight

corridor flights (figure 2f ) to 7.95+0.59 Hz when negotiating

obstacles, a typical wingbeat frequency for manoeuvring

flights [36]. This higher frequency likely satisfied the

additional power demand of slower flight and increased

manoeuvrability by providing more opportunity for chan-

ging flight direction. Without obstacles, the four pigeons

maintained flight altitude at 88.1+3.3 cm, 111.1+4.8 cm,

63.5+ 2.3 cm and 78.0+1.9 cm, respectively. Manoeuvring

through the obstacles, the four pigeons flew at similar heights

but displayed more altitude fluctuation (75.8+ 42.5 cm;

103.7+41.8 cm; 106.1+ 45.6 cm; 110.7+ 39.4 cm). However,

given that the flight negotiation task was to steer around ver-

tical obstacles, we ignored these altitude fluctuations and

analysed only the horizontal components of the flight trajec-

tories for developing and evaluating the following guidance

modelling work.
4. Pigeon obstacle flight model
According to our framework, we consider obstacle avoidance

behaviour as two levels of control: the steering controller,

which directly produces the flight trajectories, is embedded

within an outer guidance rule loop that determines the gap

selection and thus steering direction (figure 3a). In the follow-

ing sub-sections, we introduce each component and the

underlying assumptions of the model.
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4.1. The attention zone
To limit the parameter space, we first considered only 308 on

either side of the pigeon’s flight direction as obstacles to

which the pigeon must attend. As most flights (87%) exhibited

less than 608 total turning (approx. 308 left or right) (figure 2d),

we assumed that pigeons only considered steering within that

608 zone centred about their flight direction (figure 3b, solid

lines). We estimated the effective range of this ‘attention

zone’ by considering the typical response time of the loom-

ing-sensitive neurons of 0.48 s [37] in the pigeon’s tectofugal

pathway [38]. For the free-flight indoor flight speed

(6.95 m s21) of the pigeons in our study, 0.48 s converts into

a detection range of 3.34 m. Because the obstacle array was

only 3 m in depth, we assumed that the pigeon could practi-

cally attend to all obstacles within the specified 608 attention

zone, once it arrived at the obstacle forest.
4.2. Gap-aiming behaviour and side-wall avoidance
There is some established evidence regarding gap-aiming

behaviours in birds, especially in the context of flying

through tight spaces. Budgerigars balance contra-lateral opti-

cal flow when choosing a flight path through narrow spaces
[39]. This is consistent with aiming at the angular centre

between two poles when flying through a gap. Thus, we rep-

resented potential steering aims by the angular centres (and

not the geometric centre) of available gaps (figure 3b,

dashed lines). This assumption discretized the steering aims

into a handful of gap choices. In addition, the flight corridor

had side-walls with homogeneous visual texture, which the

pigeon clearly could see (as observed during training). In

order to impose this boundary constraint in the guidance

model, we represented the side-walls as two dense arrays

of vertical obstacle poles spaced 20 cm apart (figure 3b).

These virtual obstacles created extremely small visual gaps

that the model pigeons would never attempt to fly through.

4.3. Steering controller approximation
To test and compare gap selection strategies, we first

identified a steering controller that captured the steering

dynamics of the pigeons under the experimental conditions.

We incorporated visuomotor delay in this phenomenological

model. Even though such delay is sometimes negligible in

low-speed locomotion such as human walking [23], or track-

ing a distant target such as prey interception by raptors [40],

it is likely to be non-trivial for a pigeon in flight through a
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relatively densely cluttered environment. According to the

convention in flight guidance [41], we identified the pigeon’s

flight direction angular velocity _upigeon as the control variable

and constructed a simple PD controller with a visuomotor

delay td and three constant steering gains (figure 3c): the pro-

portional gain for the steering aim KP, the derivative gain for

the steering aim KD and the stabilizing gain for self-motion

KS. This steering controller is given by

_upigeon(t) ¼ KP � u(t� td)þ KD � _u(t� td)þ KS � _upigeon(t� td),

(4:1)

where t is time and upigeon is the flight direction. u is the

angular deviation from the steering aim uaim given by

u ¼ upigeon � uaim: (4:2)

Similar controllers (frequently implemented without the

derivative terms) have been applied to houseflies [42], blow-

flies [43], bats [44] and tiger beetles [45]. However, these

controllers were developed in the context of pursuit or

flight stabilization, in which the animal has a clear steering

aim (uaim). In the context of obstacle negotiation, however,

both the controller parameters and steering aim need to be

determined. Consequently, here we first determine the steer-

ing controller parameters with a PD controller tuning

procedure and subsequently test between several potential

guidance rules by means of simulations.
4.4. Proportional – derivative controller tuning
Unlike in a conventional controller tuning process, our par-

ameters for the steering controller were determined without

a priori knowledge of the steering aims. Instead, our controller

tuning relied on a fitting procedure using all possible candi-

date gaps. In essence, we tested every possible combination

of gain-delay on every possible gap steering aim. This was

done by first imposing a specific set of controller parameters

(three gains and one delay) for one particular flight. Gap

angular centres that fell within the attention zone (+308 of

current flight direction) were identified as candidate gaps.

At each time step (10 ms), the angular centres of all candidate

gaps were determined. The specific set of gains and delays

were then applied to each candidate gap angular centre to

predict the necessary steering angular velocity, which was

in turn compared with the observed pigeon angular velocity.

We picked the candidate gap that gave the minimum devi-

ation for that time step and proceeded to the next time

step. The average deviation over the entire trajectory

became a fitting index for this set of controller parameters.

We repeated this process for every possible combination of

the four controller parameters within the relevant ranges

(21 delays, 21 proportional gains, 21 derivative gains and

21 stabilization gain values; yielding 194 481 sets in total).

To tune the controller that governs turning, time steps in

which there was no appreciable steering (less than 108 s21)

were excluded, covering manoeuvring sections from 0.5 m

before entering the forest to 0.2 m before exiting the forest.

This tuning process resulted in a four-dimensional map of

the PD controller fit in the parameter space for each flight

and the weighted average (weighted flights by the time

steps with steering) across trails gave the animal specific

map. From this map, we could extract the controller par-

ameters that best described the pigeon’s steering (see

Modelling results for details).
4.5. Guidance rule simulations
To study guidance rules, we used the determined steering

controller (derived from pooled data from three pigeons) to

simulate pigeon flights based on different guidance rules.

The complete set of rules used by pigeons for obstacle

flight guidance likely includes many behavioural variables

and their interactions. Here, we merely ask which of the

following two navigation objectives is more important: max-

imizing clearance or minimizing steering. We tested three

simple rules for gap selection: (i) choosing the gap most

aligned with the flight direction, (ii) choosing the gap

most aligned with the destination direction or (iii) choosing

the gap with the largest visual size (figure 4a).

A simple way to test these different guidance rules is to

apply the steering controller (with the parameters from

table 1) with each rule and simulate the pigeon’s flight

paths given only the initial conditions (position, flight direc-

tion and speed). In each time step, the guidance rule

determined the steering aim, which was subsequently

implemented by the steering controller that determined

the steering angular velocity as described in equation

(4.1). The flight speed was assumed constant at the average

speed of the particular flight being simulated. The simu-

lations produced some trajectories that closely matched

the actual pigeon obstacle flights (figure 4d, blue trace).

Others led to different navigation paths (figure 4d, green

trace). Based on the modelled pigeon flight trajectories,

we quantified the model match to observed flight paths

by evaluating the poles which the model pigeon ‘correctly’

passed by on the observed side. We then quantified

the percentage of flights that each guidance rule pre-

dicted (termed predictive power) from simulations of a

separate set of 40 pigeon obstacle flights. For clarity, we

define one simulation set as the ensemble of these 40 flights

simulated under the same condition, such as a particu-

lar guidance rule. Each simulation set thus produced a

predictive power value.

4.6. Obstacle repellence model as a reference
For comparison, we reconstructed a more conventional

obstacle repellence model in relation to the gap-aiming para-

digm proposed here. In order to do so, we established an

obstacle repellence function similar to [23], which can fit

into our PD controller (equation (4.1))

ai ¼ (upigeon � ui) �
uth

upigeon � ui
� Rth

Ri
, (4:3)

where ai is the desired steering aim relative to the obstacle to

avoid, ui is the angular location of a particular obstacle

and Ri is the distance from this obstacle. We only considered

this repellent function when the obstacle was within

the avoidance attention zone thresholds (figure 4b). This

avoidance attention zone had the same angular threshold

(uth ¼+308) as the gap-aiming model. We empirically

varied the range threshold Rth (from 1.5 to 0.25 m) in the

guidance rule simulation and found the best range to be

0.5 m. If an obstacle was located at 308 to either side of

and 0.5 m away from the model pigeon, ai became upigeon2

ui and the steering aim became the pigeon’s flight direction

(no steering). As the obstacle distance and angle decrea-

sed, ai increased rapidly and drove the steering aim

away from the obstacle(s). We summed the contributions
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Figure 4. Pigeons bias their flight paths towards largest gaps. (a) Based on the gap-aiming paradigm, we proposed three potential guidance rules: (1) steer to the gap
closest to the destination direction (red), (2) steer to the gap in the existing flight direction (magenta) or (3) steer to the largest visual gap (blue). (b) To establish a
reference for our gap-aiming paradigm, we reconstructed a conventional obstacle repellence model with a variable range attention zone (marked by dashed lines), in which
the repellent effects from all obstacles within that threshold range and angle were summed. (c) To provide the simulations with more realistic sensory information, we
incorporated sensory uncertainty by assuming a Gaussian distribution centred at each obstacle position for the model to sample from. The standard deviation of this
Gaussian distribution was varied to test each steering strategy across a range of noise levels. (d ) We simulated 40 pigeon flights (not used for steering controller
tuning) given only the initial conditions (i.e. body position, flight direction, entry speed) 0.5 m before the obstacle field. Some simulations recapitulated the observed
flight trajectories (blue trace) and some did not (green trace). We quantified the percentage of flight trajectory matches for each guidance rule in each simulation set
(40 flights). To examine the effect of sensory uncertainty, we ran each simulation set 100 times under each sensory uncertainty condition. (e) We varied the threshold
range of the obstacle repellence model and found that a threshold of 0.5 m yielded the greatest mean predictive power of 58% with zero noise (solid blue line). The
corresponding maximum predictive power (blue dashed line) reached 64% at 68 sensory uncertainty. The obstacle repellence model’s predictive power was lower when
reacting to the obstacles too late (less than 0.25 m) or too early (less than 1 m). (f ) The gap-aiming navigational paradigm requires that pigeons always aim to a gap
between two obstacles. In this set of simulations, the modelled pigeon randomly aims to a gap over a given angular size threshold. As the threshold increases, the
predictive power increases for sensory uncertainty ranging from 0 to 208, signifying the importance of gap size in the decision-making process. (g) Maintaining the
gap size threshold at 58, we ran simulations using the three basic guidance rules described in (a). The destination gap rule and flight direction gap rule both under-
performed compared with random gap selection as in (f ). The maximum predictive power of those simulations where the model pigeons aimed for the largest visual gap,
however, approached 80% around a noise level of 68, outperforming the alternative gap selection rules, random gap selection (f ) and the obstacle repellence model (e).
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from all obstacles within the attention zone to find the

steering aim

uaim ¼
X

(ui þ ai): (4:4)

We used this model to establish a baseline comparison with

respect to our gap-aiming simulations.
4.7. Sensory uncertainty
Deterministic behaviour models with exact inputs often

fail to capture real-world decision processes, which involve

tolerating sensory uncertainties. For instance, the pigeon

might choose either of two gaps with similar qualities in real-

life due to sensory uncertainty, but the model will always
choose the slightly better one consistently. To address this dis-

crepancy, we introduced random noise into the sensory

information of guidance rule simulations, following the

approach of Warren & Fajen [23]. For our application, we

assumed a Gaussian distribution of the obstacle angular pos-

ition centring at the actual angular position of each obstacle

(figure 4c). At each modelling time step, we randomly sampled

from this Gaussian distribution as the sensory input of each

obstacle position. We varied the standard deviation of this

Gaussian distribution from 08 (no sensory noise) to 308 (suffi-

cient noise that obstacle locations are virtually unknown) at

18 increments to determine whether the introduction of noise

resolved this modelling discrepancy. To obtain statistics for

the effect of sensory noise, we ran each sensory noise condition
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Figure 5. Steering controller tuning. Tuning was based on the average deviation between model-predicted and observed flight directions, determined every 10 ms
time step for the best steering aim, for all possible combinations of gains and delay, and for all obstacle flights. To make the flight controller independent of the
guidance rule, the tuning process assumed that the pigeon always aimed to one of the available gaps without imposing an a priori rule on gap selection, but
instead selected the gap that resulted in the best fit with the observed flight path. The proportional controller was broadly tuned with a minimum deviation band
centred about a gain of approximately 4 s21 (column 1). For the derivative control, however, a visuomotor delay of approximately 130 ms was strongly selected but
with a broadly tuned derivative gain (column 2). We implemented steering inertia as a stabilizing term. The stabilization gain is, by definition, negative and is
generally quite small (column 3). We extracted the controller parameters that provided the best fit to the observed data; these are presented in table 1 (see text for
details). We then demonstrated that pigeon obstacle flights can be modelled as aiming to a gap by regressing the observed angular rate of change of flight direction
against that predicted by the best fitting controller parameters. The steering controller predicted the observed steering extremely well (R2 ¼ 0.97 for all four cases;
column 4), under the paradigm of gap aiming. (Online version in colour.)
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100 times for each simulation set. From these 100 simulation

sets, we extracted the mean and maximum predictive power

(figure 4e–g).
5. Modelling results
The steering controller tuning process generated a four-

dimensional steering deviation map in the parameter space.

We found the minimum deviation in this map and generated

heat maps for two parameters at a time in order to examine

the gradient around this minimum in the four-dimensional

parameter space (figure 5). The proportional controller was
broadly tuned with the gain centred at approximately 4 s21

that varied only slightly across different delays (figure 5,

column 1). By contrast, the derivative term showed much

less variation with respect to visuomotor delay, being centred

at approximately 130 ms (figure 5, column 2). The stabilizing

gain (negative by definition) showed a small contribution to

the steering (figure 5, column 3).

To extract parameter values from the controller tuning

maps, we first recognized the pronounced visuomotor delay

selection in the derivative controller map. We averaged the

delay values across the range of derivative gains reported in

table 1. From this delay value, we found the corresponding

proportional gain (figure 5, column 1) for each pigeon



Table 1. Steering controller tuning results for pigeon obstacle flights.

visuomotor delay (ms) proportional gain (s21) derivative gain stabilizing gain controller fit (R2)

pigeon 1 161+ 8.8 4.31 irrelevant ,1 0.97

pigeon 2 159+ 6.3 4.56 irrelevant ,0.5 0.97

pigeon 3 120+ 5.7 4.95 irrelevant ,0.5 0.97

pooled 134+ 5.0 4.74 irrelevant ,0.5 0.97
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individually and for the three-pigeon-pooled dataset. This

analysis showed that the controller was dominated by the

proportional term, with negligible derivative gain and small sta-

bilizing gain (table 1). These PD controller parameters were then

used in the steering simulations. We could also evaluate the

steering controller tuning by re-running the tuning procedure

with these near-optimal controller parameters. As before, the

steering aim could be any gap that gave the most consistent fit

given these parameters. We plotted the observed flight angular

velocity of individual pigeons against the model-predicted

angular velocity derived for each pigeon. The resulting

regressions showed extremely strong fits (R2 ¼ 0.97 for all

cases; figure 5, column 4). The pooled data for all three pigeons

showed similar fits for controller tuning and predictive

performance as for the individual data (figure 5, row 4).

The guidance rule simulations produced interesting

predictive power tuning curves with respect to sensory uncer-

tainty (figure 4e–g). For clarity, we present the smoothed data

for both the mean predictive power (thick solid traces) and

maximum predictive power (dashed traces). The behaviour

of the simulation was similar for the three pigeons on which

the steering controller tuning was based, as well as for the

fourth pigeon. Thus, we considered the pooled steering

controller parameters generic to pigeon flight under the exper-

imental conditions. The conventional obstacle avoidance

paradigm produced a best mean predictive power of 58% at a

threshold reaction range of 0.5 m (figure 4e). As the sensory

uncertainty increased, the predictive power decreased steadily.

The maximum predictive power never exceeded 65%. With

inappropriate reaction range (e.g. 1 m), the mean predictive

power started below 30% and approached 40% with increasing

sensory uncertainty. A comparable set of simulations using the

gap-aiming paradigm would be a random gap selection model

with a minimum gap size threshold (figure 4f). The best mean

predictive power for the random gap model with a 58 threshold

averaged close to 60% at zero sensory uncertainty and exhibited

a maximum of approximately 70%. The predictive power

dropped quickly with increasing sensory uncertainty. Simu-

lations with different gap size threshold values all converged

to a predictive power of approximately 44% at maximum

sensory uncertainty.

Instead of randomly selecting gaps above a certain size

threshold, we individually applied the three different gap

selection rules (figure 4a) as previously described. At zero

sensory uncertainty, the flight direction aim strategy pre-

dicted 32.5% of the flights, whereas the destination aim

strategy predicted 42.4% (figure 4g), showing that these

gap selection rules perform worse than random gap selec-

tion. The maximum predictive power of these two gap

selection rules approached 44%, similar to that observed

for random gap selection (figure 4f ). By contrast, the largest

gap strategy predicted 70% of the flights accurately. With
increasing sensory uncertainty, the maximum predictive

power approached 80% (at approx. 68 noise). The largest

gap selection strategy (figure 4g) therefore performed sig-

nificantly better than any of the other strategies (including

those for obstacle avoidance; figure 4e).
6. Discussion
6.1. Flight trajectory planning versus reactive navigation
We observe that pigeons can negotiate through a forest-like

vertical obstacle field with less than 60 cm typical gap spa-

cing at near 100% proficiency. Despite prior training and

repeated trials recorded to negotiate the obstacle field, the

pigeons showed no evidence of manoeuvring until 1.5 m

before the obstacle field (figure 2a,b) and tolerated frequent

wing–obstacle collisions. We did find that pigeons fly

slower and use higher wingbeat frequencies during obstacle

flights, compared with unobstructed flights (figure 2e).

These flight changes likely reflect the demand for enhanced

manoeuvrability to steer between obstacles. In general,

flight paths through obstacle fields were only 8% longer

than straight paths, and 87% of these flights exhibited

less than 608 of total steering (figure 2d ).

The lack of steering could be an energetic strategy or a con-

sequence of the bird’s relatively fast entry speed. However,

once in close range of the obstacles, pigeons showed deliberate

steering. Pigeons also timed their wingbeats or folded their

wings to avoid contact with nearby obstacles. The closest

flyby relative to the bird’s midline body axis was measured

at 9.3 cm (providing approx. 4.3 cm clearance from the

obstacle to the side of the body). These observations suggest

that, under our experimental conditions, obstacle flight is a

reactive behaviour that relies on local information, rather

than following a pre-planned trajectory.

6.2. Proportional versus derivative control
The steering controller tuning showed that obstacle nego-

tiation is best described as proportional control with a

constant delay. The visuomotor delay of approximately

130 ms (table 1) was comparable to, yet slightly greater

than, the delay measured for the pigeon’s peak flight

muscle activity after the firing onset of looming-sensitive

cells [38]. The visual angular velocities of obstacles did not

seem to affect this control. This is an interesting and some-

what unexpected result given that most flying animals use

angular velocity-based optical flow to assess their flight

states, such as ground speed and drift [46–48]. However,

during flights through the obstacle ‘forests’ employed in

our experiments, the angular drifts of obstacles were fast

and highly nonlinear. Consequently, our results suggest
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that pigeons focus on the angular positions of the obstacles,

rather than their angular velocities induced by the bird’s

self-motion. This feature distinguishes obstacle flights from

normal cruising flight, particularly at altitude, when most

optical flow arises from distant visual features.

6.3. The effect of sensory noise
An effective obstacle negotiation strategy must tolerate some

sensory noise. In principle, the increase of sensory uncer-

tainty should reduce the mean predictive power (figure 4f,
blue trace). However, in the case of a weak or poor guidance

rule, increasing the sensory uncertainty allows the model

to occasionally obtain correct steering aims by chance.

This leads to an increase of mean predictive power with sen-

sory uncertainty (figure 4f, magenta trace). When the

sensory uncertainty increases dramatically, the model loses

any knowledge of obstacle position, leading all guidance

rules to converge to a baseline predictive power that rep-

resents random steering. These simulated flight trajectories

are generally straight because it is equally probable to

steer left or right. As a result, the baseline predictive

power is slightly below 50% (almost half of the flights

match the observed trajectories, which were generally

fairly straight). Interestingly, in the case of the largest

visual gap strategy, the maximum predictive power actually

increases with a sensory uncertainty of up to 68, after which

predictive power decreases as expected. Closer inspection

reveals that the increase in predictive power at low sensory

uncertainty is associated with instances of choice degener-

acy. Specifically, when two gaps are close in visual size,

the model lacking sensory uncertainty always aims for the

slightly larger gap. However, this may not be the actual

choice of the pigeon due to the naturally present sensory

uncertainty. These instances are captured by the maximum

predictive power. Based on this, our simulations indicate

that pigeon obstacle negotiation can be best described by a

largest visual gap-aiming strategy (given the obstacle field

is short) with a sensory uncertainty of approximately 68.

6.4. Steering to a gap as a navigational objective
for obstacle negotiation

Modelling obstacle negotiation as avoiding individual

obstacles (e.g. [20–24]) has a major difficulty when more

than two obstacles must be considered at the same time

(high obstacle density), in which the summation of the

obstacle repulsion may lead to unreasonable guidance. This

problem can be avoided by limiting the avoidance attention

to a small region in the flight direction, as we demonstrate

here. However, in a dense obstacle field, in which multiple

obstacles must often be attended to, the superposition of

multiple repellent effects ultimately degrades the predictive

power of an obstacle avoidance model. As described here,

we instead treat obstacle negotiation as a gap-aiming behav-

iour. This allows us to transform the avoidance problem

(which can be challenging to define) to a guidance problem.

There are two major advantages to this alternative approach

for phenomenological modelling of animal guidance beha-

viours. First, the local minima of the steering potential field

due to superposition of conflicting obstacle repellence no

longer exist. The agent selects an opening at any given time

and, when there is no immediate need to steer, aims for the
destination. Second, having one steering aim at any given

time enables PD controller tuning and allows separation of

the fundamentally different guidance rule and the steering

controller. The guidance rule comprises decision criteria,

which dictate where the agent chooses to go, whereas the

steering controller represents the mechanics and skills that

allow the agent to implement the steering. This separation

allows for examination of different guidance rules for one

individual and for comparison of the same guidance rule in

different individuals. Different individuals may share the

same guidance rule but may have differing steering ability.

The gap-aiming method has additional benefits in prac-

tise. For example, the attention zone can incorporate steering

as well as the sensory constraints of an agent. Gap-aiming is

also fundamentally safe, because the agent always heads

towards a safe direction and not just turns away from poten-

tial obstacles. A very similar gap-aiming model has been

implemented on a robotic vehicle with great success [30].

In essence, we methodically decompose obstacle flight into

a well-defined target reference point and a controller, so

that we can apply what has been learned from studies of

target aiming/pursuit [21,49].
6.5. Modelling animal obstacle flights
Obstacle flight is perhaps more difficult to model than other

flight behaviours, such as fixation or optomotor responses,

largely because it requires the animal to make consecutive

decisions. Our study shows that a simple strategy of

aiming to the largest visual gap seems to capture the

pigeons’ obstacle flight behaviour. However, such a simple

strategy is likely only one of many decision criteria. Never-

theless, in the short obstacle field setting of our experiments,

this strategy dominated the steering behaviour. Most

decision processes by an animal involve the integration of

multiple behavioural parameters and sensory inputs.

Optimal control theories are powerful tools that can be

used to interpret animal behaviour in relation to motor con-

trol and trajectory planning [50]. In general, this approach

involves evaluating a cost function that contains all vari-

ables relevant to the behaviour and determining the

optimal output based on some weighting of these variables.

Modelling guidance, therefore, may well require construc-

tion of a decision function, in which most, if not all

possible decision criteria (e.g. obstacle identification, visual

gap size, destination direction, flight direction, steering

bias, as well as internal states of the animal) are included

(with different weights) to determine the steering decision.

A good example of such an approach is the ‘open space

algorithm’ previously proposed to describe the guidance

strategy used by echolocating bats to fly through an obstacle

field [51,52]. This algorithm divides 3608 into an arbitrary

number of steering directions and computes the desirability

of each direction based on a target direction and all detected

obstacles. Then, a so-called ‘winner-take-all’ process selects

the direction with maximum evaluation. This is similar to

our approach, in that the agent never steers to a summed

direction of all the steering directions considered but instead

only steers to a single ‘winner’ direction. Using such a fra-

mework to integrate multiple decision criteria might be

something worth pursuing in the future.

Another inherent challenge in studying obstacle flight is

the treatment of free-flight data. Owing to the difficulty in
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providing full in-flight sensory feedback, virtual reality does

not always work for complex flight behaviours. Interpreting

free-flight data is challenging because, although the behav-

ioural objective of avoiding obstacles is clear, the steering

aims are far less so. Additionally, under free-flight con-

ditions, animals generate sensory input via self-motion,

making it difficult to independently manipulate and evaluate

the visual stimuli experienced by the flying animal. Our

current study provides a new modelling procedure for

describing obstacle negotiation in a flying bird. It does so

by first extracting the steering controller from the observed

flight behaviour and then testing different guidance rules

by means of simulation–observation comparison. Such a fra-

mework was enabled by treating the obstacle negotiation as a

gap-aiming behaviour instead of an obstacle avoidance
behaviour. The results not only help identify the visuomotor

control properties of obstacle flight in birds, but also may

inspire simple ways to develop real-time controllers for

guiding flying robots through cluttered environments [53].

All pigeons were housed, trained and studied at the Concord Field
Station (Bedford, MA, USA) according to protocols approved by
Harvard University’s Institutional Animal Care and Use Committee.
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