
rsif.royalsocietypublishing.org
Research
Cite this article: Nguyen H, Fauci L.

2014 Hydrodynamics of diatom chains

and semiflexible fibres. J. R. Soc. Interface 11:

20140314.

http://dx.doi.org/10.1098/rsif.2014.0314
Received: 27 March 2014

Accepted: 4 April 2014
Subject Areas:
biomathematics

Keywords:
biofluid dynamics, fluid – structure interactions,

diatom chains, flexible fibres
Author for correspondence:
Hoa Nguyen

e-mail: hnguyen5@trinity.edu
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsif.2014.0314 or

via http://rsif.royalsocietypublishing.org.
& 2014 The Author(s) Published by the Royal Society. All rights reserved.
Hydrodynamics of diatom chains
and semiflexible fibres

Hoa Nguyen1 and Lisa Fauci2

1Department of Mathematics, Trinity University, One Trinity Place, San Antonio, TX 78212, USA
2Department of Mathematics, Tulane University, 6823 St Charles Avenue, New Orleans, LA 70118, USA

Diatoms are non-motile, unicellular phytoplankton that have the ability to

form colonies in the form of chains. Depending upon the species of diatoms

and the linking structures that hold the cells together, these chains can be

quite stiff or very flexible. Recently, the bending rigidities of some species

of diatom chains have been quantified. In an effort to understand the

role of flexibility in nutrient uptake and aggregate formation, we begin by

developing a three-dimensional model of the coupled elastic–hydrodynamic

system of a diatom chain moving in an incompressible fluid. We find that

simple beam theory does a good job of describing diatom chain deformation

in a parabolic flow when its ends are tethered, but does not tell the whole

story of chain deformations when they are subjected to compressive stresses

in shear. While motivated by the fluid dynamics of diatom chains, our com-

putational model of semiflexible fibres illustrates features that apply widely

to other systems. The use of an adaptive immersed boundary framework

allows us to capture complicated buckling and recovery dynamics of long,

semiflexible fibres in shear.
1. Introduction
Flexible, elastic fibres that either move around in a fluid or move a fluid around

are ubiquitous in nature and biology. In mammals, cilia are excellent examples

of actuated elastic fibres that are responsible for mucus clearance in the respir-

atory tract and promote ovum transport in the oviduct [1]. Biological polymers

such as DNA and actin filaments or synthetic polymers such as nylon are

examples of passive elastic fibres that may bend or buckle in a moving fluid

[2–5]. In order to predict the dynamics of a semiflexible fibre moving in a

viscous, incompressible fluid, its mechanical properties must be known.

Here, we focus on the intriguing flexible fibres that are formed by some

types of diatoms, non-motile phytoplankton. Phytoplankton account for

approximately 40% of the primary marine production as well as one-fourth

of the oxygen production on the Earth. The local flow environment around

phytoplankton affects processes such as nutrient uptake and predator–prey

interactions [6,7]. While diatoms are unicellular, some types have evolved the

ability to form colonies in the form of chains using a variety of linking struc-

tures that hold the cells together (figure 1) [8]. Figure 1a,b shows micrographs

of Lithodesmium undulatum and Guinardia delicatula. While these chains appear

to be fairly stiff, figure 1c shows images of Thalassiosira sp., which appear

to be much more flexible. Does flexibility enhance or hinder nutrient tran-

sport and acquisition by diatom chains in a dynamic flow environment? This

question was addressed by Musielak et al. [9] using a computational fluid

dynamic model in two dimensions. It was found that stiffer chains enjoy

enhanced nutrient uptake in a patchy environment, perhaps because they

bend less and sweep out a larger volume of fluid than more flexible chains.

The correspondence between the mechanical properties of the model diatom

chains in [9] and real diatom chains could not be directly assessed because,

at that time, no laboratory measurements of bending rigidity or flexural

stiffness of diatom chains were available. However, recently, Young et al. [8]

performed experiments that quantified the flexural stiffness of different types

of diatom chains by measuring their deflections under flow when held across
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Figure 1. Light (left) and scanning electron (right) micrographs of (a) L. undulatum and (b) G. delicatula, courtesy of A. Young and L. Karp-Boss, University of
Maine. (c) Images of Thalassiosira sp. adapted from [8]. (Online version in colour.)
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a capillary tip. A simple beam theory was applied to approxi-

mate the flexural stiffness given the measured deflections and

imposed volumetric flow rate. Here, we describe the calibration

of these laboratory experiments [8] with the development of a

full three-dimensional computational model of an inhomo-

geneous elastic chain. Having verified that the computational

elastic structure has captured elastic properties of true diatom

chains, we examine the dynamics of these chains in shear flow.

While motivated by the fluid dynamics of diatom chains,

our three-dimensional computational model of semiflexible

fibres illustrates features that apply widely to other systems.

Namely, we show that using a three-dimensional adaptive

immersed boundary framework [10] allows us to capture

complicated buckling and recovery of long, flexible fibres in

shear flow. Moreover, we argue that the dynamics of complex

elastic fibres cannot always be predicted by assuming that

they are homogeneous, linear beams. In the following sec-

tions, we will describe the structure of the computational

diatom chain and the computational experiments that were

performed to mirror the laboratory experiments in [8]. We

will then examine how the orbits of these semiflexible fibres

in shear flow depend upon their elastic properties and the

connectivity properties of the network of points and springs

that build them.
2. Calibration of experiments and computations
2.1. Construction of elastic diatom chain
Motivated by the structure of L. undulatum (figure 1a), we

construct an elastic model of a diatom chain by creating a

network of nodes and springs. The nodes are placed regu-

larly on the surface of the cylindrical fibre, equally spaced

around cross sections that are orthogonal to the centreline

of the cylinder. We will consider three types of structures

based upon the specified connectivity of the nodes. In the

surface-spring type, we specify that linear springs connect clo-

sest points on the surface to each other and to next-to-closest

points on the surface. The full-spring type not only has linear

springs connecting nodes on the surface as in the surface-
spring type but also has additional nodes placed along the

centreline that are connected by internal springs to the sur-

face nodes on the corresponding cross section (spokes). The

diatom-chain type comprises an alternating sequence of each

of the previous types, with the full-spring structure modelling

the valve or cellular part of a single diatom and the surface-
spring structure modelling the cell-connection between two

diatoms in the chain. Figure 2 shows a schematic of the

node-connectivity that builds the diatom chain. Figure 3

shows the long fibre that is the computational diatom
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Figure 2. A schematic that shows the node – spring connectivity structure that is used to build a model diatom chain. (Online version in colour.)

Figure 3. The computational diatom chain structure. The zoomed-in portion
shows the alternating valve and cell structures. The valve structures that con-
nect the diatom cells do not have internal spokes. (Online version in colour.)
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chain, with the ‘zoomed-in’ portion showing the connectivity

structure of two adjacent diatoms.

Assume that xk and xl are two nodes of the diatom chain

that are connected by a linkage or spring of rest length Dskl.

The force at xk due to this spring is

f(xk) ¼ tkl(k xl � xk k �Dskl)
(xl � xk)

k xl � xk k
: (2:1)

There is an equal and opposite force due to this spring at the

node xl. Here, tkl (kg s22) is the stiffness constant of the linear

spring and Dskl (m) is its resting length. This resting length is

taken to be the distance between the nodes xl and xk when the

fibre is initialized as the straight cylinder shown in figure 3.

The total elastic energy E (kg m2 s22) in this node–spring

system is given by

E(x1, x2, . . . , xN) ¼
X

springs

tkl

2
(jjxl � xkjj � Dskl)

2, (2:2)

where N is the total number of nodes. Note that E¼ 0 when the

model diatom chain is in its straight, equilibrium configuration.

For prescribed stiffness constants tkl, we can estimate the

macroscopic bending modulus of the model diatom chain

using the non-hydrodynamic approach outlined by Lim &
Peskin [11]. The cylindrical structure is bent at a constant cur-

vature b and the total potential energy E stored in all of the

springs is calculated using equation (2.2). Assuming that

the node–spring structure approximates a homogeneous

elastic beam, the stored energy in the bent structure is related

to curvature by

E ¼ 1
2Ab2L, (2:3)

where L is the length of the chain and A ¼ EI is its flexural

stiffness or bending rigidity. Here, E is the Young’s modulus

and I is the chain’s second moment of area. Note that A
has units of N m2; and a quadratic relationship between the

total energy E and b is noted. A least-squares fit is used to

determine the macroscopic bending rigidity A.

Alternatively, one may use the above procedure to

determine spring stiffness constants tkl that will result in a pre-

scribed macroscopic bending rigidity A. This is the approach

that we will take in building the computational fibres to

match the bending rigidities measured for diatom chains in

[8]. For simplicity, in the model diatom chains discussed

herein, we choose the same spring stiffness tkl¼ S0 for each of

the linkages in the structure.

In order to further characterize the material properties of

these computational fibres, we pinned one end of the fibre

down and imposed a series of fixed strains to the fibre by

extending the other end and fixing it so that the extended

fibre was up to twice its equilibrium length. We then found

the minimum energy configuration of the spring–node struc-

ture in the strained configuration. We found that the energy

in the strained systems was a quadratic function of the strain.

Therefore, the overall structures are neither strain-hardening

nor strain-softening, but Hookean, like the individual spring

elements that comprise them.
2.2. Estimating flexural rigidity of diatom chains
Young et al. [8] discuss their procedure to calculate flexural

rigidities of four distinct types of chain-forming diatoms. The

overall strategy was to measure the bending of the chains in

response to an applied force. Individual diatom chains were

suspended across the rim of a hollow glass capillary tube

submerged in a seawater-filled Petri dish. Chains were then

exposed to a constant hydrodynamic force that bent the

chain into the tube (figure 4a). The volumetric flow rate of
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Figure 4. (a) A chain of G. delicatula placed across the rim of the capillary
tube (courtesy of A. Young and L. Karp-Boss, University of Maine). (b) A com-
putational chain placed in a channel subject to an imposed flow. (Online
version in colour.)

Table 1. Chain diameters and average flexural stiffnesses of different diatom
chain types measured by A. Young and L. Karp-Boss at the University of
Maine (2011, personal communication). These data come from a subset of
those experiments reported in [8]. The third column shows the associated
stiffness constants used for the springs of the computational diatom chain
so that the bend modulus of the model computed using equation (2.3)
matches column 2.

diatom
chain type

chain diam.
(m)

flex stiff
(N m2)

stiff
constant
(N m21)

L. undulatum 3.24 � 1025 1.93 � 10213 6.00

S. turris 2.37 � 1025 1.23 � 10213 7.00

L. annulata 3.08 � 1025 6.30 � 10215 2.44 � 1021

G. delicatula 1.547 � 1025 5.73 � 10217 7.44 � 1023
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the imposed flow was measurable, along with the chain dimen-

sions and the resulting chain deflection. Assuming that the

diatom chains in these experiments are governed by small-

deflection beam theory, the flexural stiffness (bending rigidity)

may be calculated as [12]

A ¼ EI ¼ 5f L4

384y
, (2:4)

where f is the force per unit length at the point of maximum

deflection of the chain, y is the maximum deflection of the

chain and L is the length of the straight chain. In order to

directly apply equation (2.4), an estimate of the force f was

needed. Young et al. [8] used the relationship,

fdrag ¼ Cdru2r, (2:5)

that relates the drag force on a cylindrical fibre to its radius r,

the velocity at the point of maximum deflection u, the density

of the seawater r and a drag coefficient Cd. This drag coefficient

Cd was estimated using an empirical formula based upon the

Reynolds number of the flow. We refer the reader to [8] for

details. In order to validate this procedure, the flexural stiffness

for nylon was also estimated and it compared favourably

with previously reported values. Table 1 shows the estimated

flexural stiffnesses calculated in a subset of the experiments

reported in [8] and provided to us by Young and Karp-Boss

during the course of these experiments. Note that the range

of measured flexural stiffnesses for different chain types

varies over four orders of magnitude. The stiffest diatom

chain, L. undulatum, has tightly fused, silica-based connections,

whereas G. delicatula, the most flexible diatom chain measured

has a single silica spine connection. Moreover, some types such

as Thalassiosira sp. were too flexible for the experimental pro-

cedure to yield an estimate of the bending rigidity (figure 1c).

Table 1 also shows spring stiffnesses chosen for the model

diatom chain so that it’s bending rigidity based upon comput-

ing the total energy in a bent configuration (equation (2.3))

matches the measured bending rigidity. For instance, consider

a model of a L. undulatum chain that comprised 12 diatoms,

with each valve of length 60 mm, and a cell-connection portion

of 7.2 mm at each end, for a total length of 0.9 mm. This is

discretized using 504 cross sections, with 30 nodes around

each hexagonal cross section, and one node along the
centreline. The portion of this diatom chain that corresponds

to the valve has springs connecting the centreline to the surface.

By choosing the spring constant S0 ¼ 6.00 N m21, we assert

that the overall bending rigidity of the model diatom

chain comprised these 12 diatoms and discretized as stated is

A ¼ 1.93 � 10213 N m2.

2.3. Coupling of elastic diatom chain with fluid
We choose an immersed boundary framework to model the

interaction of the diatom chain with a viscous, incompressible

fluid [13,14]. The system is governed by the three-dimensional

Navier–Stokes equations

r
@u

@t
þ u � ru

� �
¼ �rpþ mDuþ F(x, t), (2:6)

r � u ¼ 0, (2:7)

F(x, t) ¼
X

j

ð
Gj

fj(s, t)d(x� Xj(s, t)) ds (2:8)

and
@Xj(s, t)
@t

¼ u(Xj(s, t), t)

¼
ð
V

u(x, t)d(x� Xj(s, t)) dx, (2:9)

where r is the fluid density, u is the fluid velocity, Xj denotes

the Lagrangian coordinates of the jth longitudinal filament Gj

comprising the cylindrical diatom chain (either along its sur-

face or its centreline), p denotes pressure, m is the dynamic

viscosity and V denotes the fluid domain. Note that the

forces fj defined on the filaments Gj are precisely sums of

the spring forces in equation (2.1). The Eulerian elastic force

density F on the fluid is a Dirac delta-function layer of

force that is supported at the material points of the neutrally

buoyant diatom chain. Away from these points, the force of

the fibre on the fluid is zero.

Traditionally, the immersed boundary method uses a

Cartesian background grid to keep track of Eulerian fluid

quantities such as velocity and pressure, whereas the material

points of the immersed structure are treated in a Lagrangian

manner. Grid-based, discretized versions of the Dirac delta

function are used to communicate force on the immersed struc-

ture to the background grid and to interpolate fluid velocities

on the grid to the immersed structure [14]. Here, we use an

adaptive and parallel implementation of the immersed bound-

ary method, IBAMR (Griffith et al. [10]), that dynamically



Table 2. Maximum deflection and drag measured by the laboratory experiments of A. Young and L. Karp-Boss at the University of Maine (2011, personal
communication). These data come from a subset of those experiments reported in [8]. Also shown are corresponding maximum deflection and drag force
resulting from our coupled three-dimensional fluid/fibre model.

species (lab) max. defl. (m) (comp) max. defl. (m) (lab) drag (N m21) (comp) drag (N m21)

Lithodesmium 4.0 � 1025 1.3 � 1025 8.8 � 1025 3.8 � 1025

S. turris 4.4 � 1025 2.8 � 1025 1.8 � 1024 7.4 � 1025

L. annulata 6.4 � 1025 5.4 � 1025 4.2 � 1025 1.9 � 1025

Guinardia 6.2 � 1025 2.9 � 1025 6.4 � 1028 8.5 � 1028
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refines the Cartesian mesh to its finest level around the

immersed structure as it moves throughout the fluid domain.

Adaptivity allows the use of a large computational domain

V, because a coarse mesh may be used away from the

immersed boundary, while details of the fluid–structure inter-

action near the immersed boundary are captured by a fine

mesh. In particular, a cell-centred, second-order projection

method on a hierarchical structured grid is used to solve the

incompressible Navier–Stokes equations. The viscous terms

are treated implicitly, and a second-order Godunov method

for the explicit treatment of the advective term is employed.

A second-order Runge–Kutta method is used to update the

system in time (see [10] for implementation details).

To simulate the experiments done in the laboratory, we

immerse the diatom chain models in a background parabolic

flow (figure 4b). We set r ¼ 103 kg m23 and m ¼ 1023 Pa s.

Note that the spring stiffnesses were chosen as in table 1 to

give an overall bending rigidity that was measured for each

diatom chain type. Cross-sectional diameters of the chains

were calibrated for each of the types, but the same overall con-

nectivity structures as shown in figure 3 were used in each

case. Tethering forces to keep the cross sections at the ends of

the chains fixed near the no-slip boundary were used. In

addition, the parameters for the parabolic flow were chosen to

match the volumetric flow rates as in the laboratory set-up.

The diatom chain, whose equilibrium configuration is a straight

cylinder, is initially placed vertically, but is bent by the imposed

parabolic flow. Soon the coupled fluid-chain system reaches a

steady state. As in the laboratory experiments, we are able to

measure the maximum displacement of the chain. However,

unlike the laboratory experiments, we can directly measure

(rather than estimate) the drag force at the point of maximum

displacement. The maximum displacement and the drag force

based upon laboratory experiments are shown in table 2 along

with the corresponding computational measurements of both.

Here, we see that the computational measurements

of maximum displacement and drag force agree with those

estimated using laboratory experiments to well within an

order of magnitude for all diatom chain types. While neither

the true diatom chains nor the spring–node computational

models of the diatom chain are homogeneous beams, the

use of small-deflection beam theory allows us to quantify an

effective macroscopic bending rigidity of the chain.

Similar computational experiments were performed for

model chains that were made up of only surface-spring connec-

tions and full-spring connections. When compared to the more

heterogeneous diatom chain model, one would guess that the

surface-spring chain model obtained by removing all of the

spoke connections in the valve portions would result in a struc-

ture with a smaller macroscopic bending rigidity. Similarly, a
full-spring chain model obtained by adding spoke connections

at every cross section would presumably have a larger macro-

scopic bending rigidity. In fact, this is the case. For instance, for

a model of G. delicatula of length 0.9 mm and bending rigidity

A ¼ 5.73 � 10217 N m2, the corresponding surface-spring

structure has a bending rigidity of A ¼ 5.65 � 10217 N m2,

and the corresponding full-spring structure has a bending

rigidity of A ¼ 5.89 � 10217 N m2. When these three structures

were subjected to the imposed parabolic flow, their maximum

deflections and drag forces at the point of maximum deflection

were basically identical. By contrast, we will see below that

these three structures do not behave similarly when subjec-

ted to a shear flow, where compressive stresses give rise to

buckling behaviour.
3. Semiflexible fibres in shear flow
The seminal assessment of Munk & Riley [15] indicates that

when the size of phytoplankton is more than 10 or so micro-

metres, ambient fluid motion can enhance fluxes of solutes

to or from cells. Lazier & Mann [16] have also suggested

that because phytoplankton are typically smaller than the

Kolmogorov length scale in the ocean, phytoplankton experi-

ence turbulence as a linear shear. For this reason, the fluid

dynamics of diatom chains driven by linear shear flows is impor-

tant to the study of nutrient delivery to phytoplankton. While

recent work suggests that more complex background flows

around phytoplankton, such as dissipative vortices, should be

considered [17]; here, we focus on the behaviour of diatom

chains in shear flow. In a steady shear flow, chains tend to

align with their long axis parallel to the flow and tumble period-

ically [18]. These orbits are reminiscent of the rotational orbits of

an ellipsoid in shear, whose analysis appears in the classic work

of Jeffery [19]. Jeffery showed that the rotational period T of a

spheroid in Stokes flow with an imposed shear rate k was a

function of the spheroid’s aspect ratio ar (major axis/minor axis)

T ¼ 2p

k
ar þ

1

ar

� �
: (3:1)

Karp-Boss & Jumars [18] studied the motion of two types of

chain-forming diatoms, Skeletonema costatum and Thalassiosira,

and compared the observed rotational periods to that predicted

by Jeffery’s theory for a spheroid of the same aspect ratio. They

observed that rotational periods of the elongated chains fell

well below those predicted by the theory for the corresponding

spheroid and that the more flexible chains typically rotated

faster than more rigid ones of the same aspect ratio.

The study of semiflexible fibres in shear flows certainly pre-

dates the above-mentioned investigation of diatom chains in
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Figure 5. One rotational period of a diatom-chain structure of non-dimensional length Lc ¼ 1 in an imposed shear flow. The fibre length is 14.43 times its
diameter. The Reynolds number Re ¼ 0.06 and the effective flow forcing �m ¼ 1:15� 103. (Online version in colour.)
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shear. For instance, the classical work of Forgacs & Mason [4]

characterized the qualitative shape deformations of flexible

fibres in shear by tracking the orbits of pulp, Dacron and

elastomer fibres. Springy rotations, snake rotations and coil for-

mations were observed for fibres of different lengths. As in the

diatom chain experiments [18], more flexible fibres were found

to have shorter rotational periods than stiffer fibres with the

same aspect ratio. Forgacs and Mason also noted that for a

given fluid viscosity and shear rate, a critical fibre length existed

beyond which the threadlike particle bent. The deformation

increased with the fibre length. In the past decades, this fibre

buckling has been analysed using slender body hydrodynamics

[20–22], bead models of the fibre that neglect hydrodynamic

interaction of fibre segments [23] and computational models

that couple the fluid equations with the fibre forces [24–26].

Below we will examine buckling in our fibre models, but

first we will introduce the non-dimensional parameters that

govern this elastic-hydrodynamic system.

3.1. Reynolds number and effective flow forcing
The Reyolds number that governs the dynamics of the cylind-

rical fibre in a background shear flow measures the relative

importance of inertial forces to viscous forces. To define

the Reynolds number, we use the fibre length L and the

characteristic velocity kL, where k is the shear rate (s21)

Re ¼ rkL2

m
: (3:2)
The other governing dimensionless parameter measures the

relative importance of fluid forces to elastic forces

�m ¼ 8pmkL4

A
: (3:3)

This dimensionless parameter is referred to in [22] as the effec-

tive viscosity, but here we refer to �m as the effective flow

forcing. Here, A is the flexural stiffness or bending rigidity of

the fibre. We can see the appearance of the non-dimensional

bending rigidity when we consider the local slender body

model of a filament in flow that gives a local relation bet-

ween the velocity of the filament centreline and the force the

filament exerts on the fluid

8pm
dx

dt

� �
¼ c(I þ xsxs)f: (3:4)

Here, x(s, t) is the position of the fibre’s centreline, xs is the

tangent vector to the centreline and c � ln e21, where e is

the ratio of the filament’s radius to its length. If equation (3.4)

is non-dimensionalized using the filament’s length L as a

characteristic length, the velocity kL as a characteristic velocity

and A/L3 as a characteristic force per unit length, the effective

flow forcing emerges. Note that the effective flow forcing �m that

is felt by a fibre increases as the fluid viscosity increases,

increases as the length of the fibre increases, increases as the

shear rate increases, but decreases as it becomes stiffer (as its

bending rigidity increases).
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Typical shear rates experienced by phytoplankton in the

ocean are estimated to be 0.01 s21 � k � 1 s21 and typical

lengths of diatom chains are estimated to be 0.25 mm � L �
4 mm [7]. For a fluid with the density and viscosity of seawater,

and the types of diatom chains whose bending rigidities are

shown in table 1, the resulting Reynolds numbers and effective

flow forcing experienced are in the range

6:25� 10�4 � Re � 16 and

5:00� 10�4 � �m � 1:1� 105: (3:5)

The upperbound for effective flow forcing, for example,

would be achieved by a G. delicatula that is 4 mm long,

exposed to a shear rate of 1 s21. It is possible that more flex-

ible diatom chain types such as Thalassiosira sp., whose

bending rigidity could not be measured using the aspiration

technique in [8], experience effective flow forcings that are

orders of magnitude more.

Figure 7. Three chain types subjected to the same shear. Diatom-chain type
(black, A ¼ 5.73 � 10217 N m2), surface-spring (red, A ¼ 5.65 �
10217 N m2) and full-spring type (blue, A ¼ 5.89 � 10217 N m2).
Although the macroscopic bending rigidity of these chains differs by less
than 5%, their orbits are very different.
3.2. Diatoms in shear
We will now examine the results of numerical experiments

where we subject our computational chains to a background

shear flow. The connectivity of these chains will be either

full-spring, surface-spring or that of the alternating diatom

chain structure.

First, we will consider a diatom chain of non-dimensional

length Lc ¼ 1 whose structure is shown in figure 3. Here, Lc is

the length of the entire chain, and, in this case, the chain com-

prised three connected diatom cells. The aspect ratio of the

chain (length/diameter) is 14.43. The three-dimensional com-

putational domain is a square box of dimensions MLc �
MLc �MLc, where M ¼ 67 in the following simulations. The

background shear flow is achieved by specifying velocity

boundary conditions at the upper and lower planes bounding

the domain. Note that the use of an adaptive mesh allows us

to use this large computational domain, while still resolving

the fluid grid around the diatom chain. Here, we chose

Reynolds number Re ¼ 0.06 and an effective flow forcing of

�m ¼ 1.15 � 103. This effective flow forcing would correspond

to a Lauderia annulata whose length is approximately 2.4 mm

in a shear flow of k ¼ 1 s21, or a G. delicatula whose length is

approximately 1.27 mm in the same flow. We note that here
we are computing at a Reynolds number somewhat smaller

than that experienced by chains of these lengths, at the

given shear, in seawater.

Figure 5 shows successive snapshots of this diatom chain

as it goes through a complete orbit. Note that at time t* ¼ 0

(upper left frame), the initial position is slightly perturbed

from the horizontal. The imposed shear flow is evident by

the velocity vectors depicted on the dynamic, adaptive

mesh. The centreline of this mostly rigid fibre remains in a

plane due to symmetry. Figure 6 tracks the evolution of the

angle that the fibre makes with the horizontal as a function

of the non-dimensional time t* ¼ kt. As is typical of Jeffery

orbits, the diatom chain spends most of its time aligned

with the flow in a horizontal position, interspersed with

quick flipping events. Using Jeffery’s theory (equation (3.1))

for an ellipse of aspect ratio ar ¼ 14.43, the approximate

rotational period would be t* ¼ 91.1. Using a slender body
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approximation, Cox [27] determined an effective aspect ratio

âr ¼ 1:24ar/
ffiffiffiffiffiffiffiffiffiffiffi
ln ar

p
to be used in Jeffery’s formula for a rigid

slender cylinder of aspect ratio ar. This effective aspect ratio

(âr ¼ 10.95) would result in an approximate rotational

period of t* ¼ 69.38. Figure 6 shows that the rotational

period of our computational fibre is approximately t* ¼ 47.

We note two main reasons for the difference between

the computed rotational period and that predicted by the

theory. Firstly, the aspect ratio of this diatom chain does

not fall well within the range valid for slender body approxi-

mation. Recently, Zhang et al. [28] discussed the applicability

of the slender body approximation [27] to fibres with smaller

aspect ratios. Secondly, this fibre is not perfectly rigid.

For thin, rod-like structures, the rotational period is domi-

nated by the time that the rod stays in the horizontal

position, aligned with the flow. For even a modest amount

of flexibility, that horizontal position is disturbed, causing

an early onset flipping event. Figure 6 also shows the evol-

ution of the ratio of the end-to-end distance of the fibre to

its equilibrium length. This ratio would be identically one

for a rigid cylinder. Note that the computational fibre under-

went both compression and extension from is equilibrium

length, and, although no significant deformation is evident

in figure 5, the end-to-end length of the fibre does vary by

as much as 5% of its equilibrium. Flexibility was noted by

Forgacs & Mason to give rise to rotational periods that

were shorter than those of a rigid fibre with the same

aspect ratio [4]. We also remark that we have validated the

computational method used here for an ellipsoid rotating in

shear flow by comparing the resulting rotational dynamics

with that predicted by Jeffery in [29].

The related surface-spring and full-spring structures of

non-dimensional length Lc ¼ 1, as discussed above, have
macroscopic bending rigidities that fall within 5% of this

diatom chain structure. Although not shown here, we subjected

these other structures to the same shear and observed dynamics

that were basically indistinguishable from the diatom chain

dynamics shown in figure 5. There was little evidence of defor-

mation, even for the structure with links only between surface

nodes (surface-spring).

Although similar orbits are observed for these relatively

short, rigid fibres with different spring connectivities

(diatom-chain, surface-spring and full-spring), this is no

longer the case when we increase the fibre length fourfold

(Lc ¼ 4). Increasing the length results in a Reynolds number

of Re ¼ 0.94 and an effective flow forcing of �m ¼ 2:95� 105.

The aspect ratio of these longer chains is ar ¼ 57.71. Figure 7

shows the positions and deformations of the three chain

types as they undergo a single orbit. As expected, the full-

spring (blue) and diatom-chain (black) deform less than the

chain with surface-springs (red). The dynamics of these three

chains in shear, when they are experiencing compressive

stresses, are very different. Such a difference did not appear

when the chains were subjected to the parabolic flow, as in

the aspiration experiments described above.

For even the full-spring fibre of length Lc ¼ 4 in figure 7

above, we note the onset of buckling. This did not happen at

the length Lc ¼ 1. Keeping all other parameters fixed, is there

a critical fibre length that will result in buckling? Consider

the dynamics of a surface-spring structure in shear that we

know did not buckle at Lc ¼ 1, but did at Lc ¼ 4. Changing

its length to Lc ¼ 1.33, and its aspect ratio to ar ¼ 19.24 with

all other parameters fixed results in a Reynolds number of

Re ¼ 0.104 and an effective flow forcing of �m ¼ 3:64� 103.

Figure 8 shows a series of snapshots of the fibre as it undergoes

a single orbit. At this larger value of effective flow forcing, the
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buckling due to compressive stresses is evident. Because this

fibre is built out of a network of nodes and springs, we can

measure the total amount of stored energy in the springs as

a function of non-dimensional time (figure 9a). We see local

peaks in stored energy at the instances where the fibre is 458
from the horizontal, when it is undergoing the maximal com-

pressive stress. While the energy in the springs does decrease

as the fibre rotates from this position, we see that the fibre

springs do not have enough time to get back to equilibrium,

and the magnitude of these peaks in energy increase during

successive periods. Figure 9b shows the evolution of the ratio

of the end-to-end distance of the fibre to its equilibrium

length, along with its rotational angle. Here, we see that the

end-to-end distance during buckling gets to as low as 70% of

the equilibrium length.

Qualitatively, our results compare well with those of

Tornberg & Shelley [22]. They demonstrated that buckling

occurs at a threshold value of effective flow forcing (effective

viscosity) about �m ¼ 2� 105, while our calculations show this

buckling occurs at about �m ¼ 3:64� 103. However, the aspect

ratio of their slender fibres was assumed to be ar ¼ 103, while

our fibre that first exhibited buckling had an aspect ratio

of ar ¼ 19.24. Therefore, the appropriate non-dimensional

quantity to compare would be

��m ¼ �m

ln(a2
r /e)

, (3:6)

which takes into account the aspect ratio [3,21]. The buckling

observed in [22] occurred at ��m ¼ 1:56� 104 and our simu-

lations show buckling at ��m ¼ 7.4 � 102. While these differ

by a factor of about 20, we do remark that the fibres of [22]

are perfectly inextensible, which is certainly not the case for

the computational fibres presented here.
Figure 11. Orbit of a surface-spring structure of non-dimensional length
Lc ¼ 16.67 in an imposed shear flow. The fibre length is 240.47 times its
diameter. The Reynolds number Re ¼ 1.67 � 10 and the effective flow
forcing �m ¼ 8.9� 107. (Online version in colour.)
3.3. Complex fibre orbits in shear
While our motivation for this research is to understand the local

flow environment around diatom chains and the resulting

implications on nutrient uptake, the computational model

developed here is applicable to fibre dynamics in flow where

the Reynolds numbers and effective flow forcings fall outside

the range relevant to diatom geometries and flow parameters.

Following the classic paper of Forgacs & Mason [4], we

sought to capture the coil dynamics of long semiflexible

fibres, which were only sketched by the authors (figure 10a).

It is noted that the deformation of the fibre, while it is aligned

with the flow direction, begins first with the bending of the

ends. More recently, experiments by Harasim et al. [2] on long

actin filaments reveal similar dynamics (figure 10b).

Using the same surface-spring structure and parameters as

in the simulation of figure 8, but with an increased non-

dimensional length of Lc ¼ 16.67 and aspect ratio of ar¼

240.46, we subject the fibre to a shear flow with Reynolds

number Re ¼ 1.67 � 101 and the effective flow forcing of

�m ¼ 8:9� 107. Figure 11 shows a sequence of snapshots of the

coil dynamics of this long, flexible fibre in shear as it undergoes

one rotation. Also shown are the adaptive meshes that capture

this complex coiling and recovery. We first note the correspon-

dence between the dynamics of this fibre and the sketch of [4]

shown in figure 10a. We also see, in the second and third

frame, that the bending of the ends is accompanied by complex

buckling in the centre of the fibre, as also seen in the actin poly-

mer micrographs of Harasim et al. [2] in figure 10b. In the course
of one period, the fibre is able to recover from its entangled coil,

but the ends remain bent (electronic supplementary material,

movie S1). Although only one period is shown here, this long

fibre continued to undergo a few more orbits going from a

coiled configuration back to an elongated configuration, but

the fibre did not recover from its coiled state. During this

complex motion, because of the slight asymmetry caused

by adaptive mesh generation, the centreline of the fibre does

not remain in the plane, and the bent ends have a

three-dimensional component to them (figure 10c).

Lindstrom & Uesaka [24] presented a fluid dynamic

model of long, flexible fibres in shear that could exhibit

coiled dynamics. However, it was proposed that such
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coiled motion could only be achieved when the fibre was

endowed with an intrinsic, non-zero curvature. However,

the complex coil dynamics we present above assumed an

equilibrium configuration of a straight cylinder.

A convenient order parameter that measures the extent of

buckling of a fibre is 1 2 Ree/Lc [3], where Lc is the equilibrium

length of the straight fibre, and Ree is the actual end-to-end dis-

tance in its evolving configuration. We summarize the results

of the previous simulations in figure 12 by choosing the mini-

mum value of end-to-end distance achieved within the first

period of rotation of the fibre to compute the order parameter

and plot that versus the effective flow forcing �m corresponding

to the simulation. The diamonds indicate surface-spring fibres,

the dots indicate diatom-chain structures and the squares

indicate full-spring structures.

Figure 13 demonstrates that this computational model can

also capture the closed loop dynamics that are also described

for an elastomer filament by Forgacs & Mason [4] (electronic

supplementary material, movie S2). We note that the dynamics

depicted here are fully three-dimensional.

We also note the interesting dynamics of a non-uniform

chain where the first third of its length has full-spring connec-

tions while the remaining two-thirds just has surface-spring

connections. Figure 14 shows a few snapshots of this fibre as it

undergoes rotation and deformation (electronic supplementary

material, movie S3).
4. Discussion
Here, we have studied the elastohydrodynamics of semiflexible

fibres in a moving fluid. In particular, our motivation is to

understand the local flow environment of phytoplankton and

its role in nutrient uptake and aggregate formation. Of particu-

lar interest are the diverse species of chain-forming diatoms

[18]. Only recently has there been success in quantifying the

flexural rigidities of some types of these diatom chains [8].

While some species were too flexible for the experimental

method to yield a rigidity estimate, the bending rigidities

of those species measured varied over four orders of magni-

tude. We have developed a three-dimensional computational

model, based upon an immersed boundary framework

[14], that couples an inhomogeneous elastic chain to an

incompressible fluid. The elastic properties of the node–

spring network comprising the computational fibre were

chosen to match the macroscopic bending rigidities of the

diatom chains measured in [8].

The computational model presented here does not treat the

diatom chain as a simple beam, nor does it make the assump-

tions of slender body theory. Nevertheless, we have found

that simple beam theory does a good job of describing the

deformation of the inhomogeneous fibre when it is subjected

to a parabolic flow. However, we found that although compu-

tational fibres with different connectivity (surface-spring and

full-spring) have nearly equal macroscopic bending rigidities,
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when subjected to a shear flow with large enough effective flow

forcing, their shape evolutions vary dramatically.

Our computational model also suggests that for the species

of diatoms whose flexural rigidities were quantified in [8],

L. undulatum and Stephanopyxis turris would not exhibit buck-

ling in shear flows typically encountered in the ocean, but

L. annulata and G. delicatula chains of more than 1–2 mm

could. While the bending rigidity of more flexible species
such as Thalassiosira was not quantified, their deformation in

shear was reported in [18]. There it was conjectured that the

flexibility of these chains may allow them to resist breakage

when subjected to shear.

In order to gain more insight into the role of flexibility in

diatom chains, we plan to extend this computational model in

several directions. Firstly, as in the earlier two-dimensional

studies of nutrient acquisition by diatom chains [9], the
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advection, diffusion and consumption of a chemical species

around the diatom chain will be incorporated. This may readily

be done since the velocity field is available at grid nodes in the

entire domain. To demonstrate the future development of this

model, we show the evolution of a bolus of nutrient that is

diffusing and being advected by the diatom-shear system

in figure 15. Just as this adaptive method [10] allows the

computational model to resolve complicated fluid–structure

interactions around the diatom chain, the resolution of nutrient

dynamics will be achieved by adding grid-adaptivity that tags

spatial regions with large nutrient gradients for refinement.

(This has not been done in figure 15.) Secondly, assessing the

effects of turbulence on phytoplankton solely by analysing

simple shear flow has recently been questioned [17]. There it

was suggested that dissipative vortices, such as a Burgers
vortex, may better represent the local turbulent environment

felt by diatom chains. Although here we focused upon

diatom chain orbits when subjected to simple, steady shear

flow, a richer set of fully three-dimensional background flows

will be examined.
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