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comparing bendamustine concentration–time profile follow-
ing monotherapy to that following combination therapy and 
comparing model-predicted Bayesian bendamustine clear-
ance in the presence and absence of rituximab. Analysis of 
the potential for bendamustine to affect rituximab systemic 
exposure included plotting observed minimum, median, 
and maximum serum rituximab concentrations at the end of 
rituximab infusion (EOI) and 24 h and 7 days post-infusion in 
patients receiving combination therapy versus concentrations 
reported in literature following rituximab monotherapy.
Results T he established population pharmacokinetic 
model following bendamustine monotherapy was evaluated 
to determine its applicability to combination therapy for 
the purpose of confirming lack of pharmacokinetic inter-
action. The model adequately described the bendamustine 
concentration–time profile following monotherapy and 
combination therapy in adults. There was no statistically 
significant difference in estimated bendamustine clearance 
either alone or in combination. Also, rituximab concentra-
tions from EOI to 24 h and 7 days demonstrated a pattern 
of decline similar to that seen in rituximab studies with-
out bendamustine, suggesting that bendamustine does not 
affect the rituximab clearance rate.
Conclusions N either bendamustine nor rituximab 
appears to affect systemic exposure of the other drug when 
coadministered.

Keywords  Bendamustine · Rituximab · Drug–drug 
interaction · Systemic exposure · Non-Hodgkin lymphoma

Introduction

Bendamustine is a novel alkylating agent indicated for 
the treatment of chronic lymphocytic leukemia (CLL) and 

Abstract 
Purpose  Bendamustine plus rituximab has been reported 
to be effective in treating lymphoid malignancies. This 
analysis investigated the potential for drug–drug interac-
tions between the drugs in patients with indolent non-
Hodgkin lymphoma or mantle cell lymphoma.
Methods  Data were derived from a bendamustine–ritux-
imab combination therapy study, a bendamustine mono-
therapy study, and published literature on rituximab mono-
therapy and combination therapy. Analysis of the potential for 
rituximab to affect bendamustine systemic exposure included 
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indolent B cell non-Hodgkin lymphoma (NHL) that has 
progressed during or within 6  months of treatment with 
rituximab or a rituximab-containing regimen [1–4]. Rituxi-
mab, a chimeric murine/human monoclonal IgG1 kappa 
antibody directed against the CD20 antigen, is indicated 
for the treatment of CLL and NHL [5–8]. Small molecule 
drugs, such as bendamustine, are increasingly being used 
in combination with biologics to treat various diseases 
[9–12], and such combinations may be especially benefi-
cial in patients with lymphoid malignancies [13]. Indeed, 
data from several clinical trials have shown that benda-
mustine plus rituximab is an effective therapy in indolent 
NHL, with overall response rates ranging from 69–93 % [3, 
14–16].

The mechanisms of action of bendamustine and rituxi-
mab are substantially different, and the two drugs com-
bined have the potential to act synergistically to induce 
apoptosis [17]. Bendamustine is a bifunctional mechlore-
thamine derivative containing a purine-like benzimidazole 
ring [4, 18]. After administration, bendamustine is rapidly 
and irreversibly distributed and broken down via multiple 
pathways, primarily hydrolysis, with the cytochrome P450 
(CYP) 1A2 oxidative pathway playing a minor role in its 
metabolism. Rituximab binds specifically to the CD20 
antigen, a hydrophobic transmembrane protein [8], and is 
metabolized to peptides and amino acids that can be recy-
cled in the body or excreted in the urine [19]. Oxidative 
metabolizing enzymes, such as CYPs, are not believed to 
be involved in rituximab elimination [20].

Biologics are typically unable to affect the pharma-
cokinetics of small molecules through direct effects, such 
as those pertaining to the induction or inhibition of CYP 
enzymes [19], but do have the potential to affect the dis-
position of small molecules through indirect effects, pro-
duced via alteration of the levels of cytokines or cytokine 
modulators that can affect CYP enzyme activity [20–24]. 
A biologic is unlikely to have an indirect effect on the 
pharmacokinetics of bendamustine, however, for two rea-
sons: (1) Bendamustine is primarily metabolized via rapid 
hydrolysis and (2) The only CYP enzyme known to metab-
olize bendamustine plays only a minor role in its metabolic 
elimination. Metabolism of biologics can be specific (i.e., 
breakdown can occur via binding to a specific receptor) or 
nonspecific (i.e., breakdown can occur via hydrolysis by a 
protease). Small molecules can interfere with the metabo-
lism of biologics by affecting the protease-mediated hydro-
lytic pathways [25]. Data are scarce on the pharmacoki-
netics of rituximab when administered as a component of 
different regimens [26] and on factors affecting individual 
exposure [20, 27].

Given clinical trial data demonstrating the benefits of 
bendamustine–rituximab combination therapy in patients 
with lymphoid malignancies, an investigation of the 

potential for drug–drug interactions is warranted. The pur-
pose of the current analysis was to determine whether there 
is evidence of a drug–drug interaction between bendamus-
tine and rituximab. The analysis dataset was based on data 
from two studies and the published rituximab literature. One 
of the studies is a multidose, multicenter, open-label, phase 
III study in adults with advanced indolent NHL or mantle 
cell lymphoma. The other study is a multicenter, open-label, 
single-agent, phase III investigation of the safety, efficacy, 
and pharmacokinetic profile of bendamustine (without con-
comitant rituximab) in adults with indolent NHL who were 
refractory to rituximab, which served as the basis for the 
bendamustine population pharmacokinetic model [18, 28].

Methods

Treatment regimens in the bendamustine–rituximab 
combination and bendamustine monotherapy studies

In the bendamustine–rituximab combination study, rituximab 
(375 mg/m2) was administered as an intravenous infusion on 
day 1 of each 28-day cycle for 6–8 treatment cycles; benda-
mustine (90  mg/m2) was administered as a 30-min intrave-
nous infusion following completion of the rituximab infusion 
on day 1 of each cycle and was repeated on day 2 of each 
cycle. In the monotherapy study, bendamustine (120 mg/m2) 
was administered as a 60-min intravenous infusion on days 1 
and 2 of 6 consecutive 21-day treatment cycles.

Population pharmacokinetic model for bendamustine 
monotherapy

Previously, a population pharmacokinetic model for ben-
damustine (without concomitant rituximab) was developed 
using data from a phase III study in adults with indolent 
NHL who were refractory to rituximab [18, 28]. The data 
in this bendamustine monotherapy study included 100 
patients. The patient population was primarily male (65 %) 
and Caucasian (88  %), with median body surface area of 
2.0  m2 (range, 1.3–2.7  m2). Patient demographics and 
characteristics were generally similar to those in the ben-
damustine–rituximab combination study (Table 1). A sub-
set of 80 patients were included in the model development 
dataset: 78 patients with bendamustine concentrations (12 
had a complete pharmacokinetic profile collected on day 1 
of cycle 1, and 66 had sparse pharmacokinetic samplings 
performed at predefined sample times) and two patients 
with metabolite concentrations only. Pharmacokinetic sam-
ples from the other 22 patients were excluded because they 
were not assayed within the validated stability period.

Following administration of bendamustine, the decline 
from peak plasma concentration occurred in a triphasic 
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manner: the curve was characterized by a very rapid dis-
tribution phase, an intermediate phase, and a slower ter-
minal phase. The population pharmacokinetic model that 
best described the bendamustine data was a 3-compart-
ment, open model with zero-order input and first-order 
elimination [18]. The fixed effect parameter estimates were 
31.7 L /h for clearance, 14.1 L  for central volume of dis-
tribution (Vc), 0.920 L  for peripheral volume of distribu-
tion 1 (Vp1), and 25.2 L for peripheral volume of distribu-
tion 2 (Vp2). Bendamustine is rapidly eliminated from the 
plasma as shown by the estimated half-life of the first phase 
of decline in the concentration–time curve (t1/2α), second 
phase (t1/2β), and terminal phase (t1/2γ), which were 0.29, 
0.7, and 110 h, respectively. The area under the concentra-
tion–time curve (AUC) of the terminal phase accounted for 
<1 % of the total AUC; therefore, the t1/2 of the β phase was 
considered to represent the bendamustine elimination half-
life. Additionally, the predicted concentration at 12 h (C12) 
after the first dose was 0.272 ng/mL, and the ratio of C12 to 
Cmax had a mean value of 0.00004.

Creation of the bendamustine–rituximab combination 
analysis dataset

The analysis dataset was based on the following sources: 
(1) Data pertaining to bendamustine and rituximab in the 
bendamustine–rituximab combination therapy study, (2) 
data from the bendamustine monotherapy study, and (3) 
rituximab data from the published literature in which ritux-
imab was administered without bendamustine. Bendamus-
tine and rituximab samples with concentrations less than 

the lower limit of quantitation were excluded from analyses 
of the bendamustine–rituximab combination therapy study.

Pharmacokinetic sampling data in the bendamustine–
rituximab combination study

In the bendamustine–rituximab combination study, blood 
was drawn for measurement of plasma bendamustine con-
centrations for all patients (n =  49) during cycle 1 at the 
following times: on day 1 prior to infusion, at end of infu-
sion (EOI), and at 0.25 and 0.5 h after EOI; and on day 2 
prior to infusion, at EOI, and at 1 h after EOI. Following a 
protocol amendment, newly enrolled patients (n = 21) had 
additional blood samples collected on day 2 at 0.25, 0.5, 
3, and 5 h after EOI. Plasma concentrations of bendamus-
tine were determined by validated high-performance liquid 
chromatography with tandem mass spectrometry methodol-
ogy; the lower limit of quantitation was 0.10 ng/mL.

Following the previously mentioned protocol amend-
ment, blood was drawn from newly enrolled patients for 
measurement of serum rituximab concentrations during 
cycle 1 at the following times: in the absence of benda-
mustine (on day 1 prior to rituximab infusion and at EOI) 
and in the presence of bendamustine (on day 2 prior to 
the second bendamustine infusion, at any time during the 
visit on days 7 and 14, and prior to the rituximab infu-
sion on day 28). Serum concentrations of rituximab were 
determined using a method based on the Meso Scale Dis-
covery platform [data on file]; the quantitation range was 
1.00–20.00 mcg/mL.

Rituximab data from the published literature

The medical literature was searched for studies that 
included: (1) use of a rituximab infusion of 375  mg/m2; 
(2) pharmacokinetic sampling after the first dose of rituxi-
mab; (3) at least 1 sampling time that corresponded with 
the sampling times from the bendamustine–rituximab com-
bination study (EOI, 24 h, 7, 14, or 28 days); and (4) sum-
mary statistics of concentrations or a graph of the observed 
concentrations versus time since dose.

Four publications met the above criteria and were used 
in a graphical analysis of rituximab [29–32]. The mini-
mum, median, and maximum rituximab concentrations fol-
lowing the first dose reported in six populations from the 
four publications were entered and stored in a database for 
use in this analysis.

Methods for evaluating the effect of rituximab 
on bendamustine

The potential for rituximab to affect systemic exposure of 
bendamustine was analyzed using observed data from the 

Table 1   Summary of patient characteristics

Patient characteristic Bendamustine– 
rituximab combination  
(n = 49)

Bendamustine 
monotherapy [18] 
(n = 80)

Age (years)

 Median 64 57.5

 Minimum, maximum 37, 84 31, 84

Body surface area (m2)

 Median 2.00 2.0

 Minimum, maximum 1.4, 2.6 1.3, 2.7

Sex, n (%)

 Male 31 (63.3) 50 (62.5)

 Female 18 (36.7) 30 (37.5)

Race, n (%)

 Caucasian 45 (91.8) 71 (88.8)

 Black – 5 (6.3)

 Asian 1 (2.0) 1 (1.3)

 Hispanic – 1 (1.3)

 Other 3 (6.1) 2 (2.5)
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bendamustine–rituximab combination study (bendamustine 
administered in the presence of rituximab), and the above 
described population pharmacokinetic model developed 
using data collected in the absence of rituximab.

The analysis included a 3-step sequence. First, an evalu-
ation using a procedure similar to the visual predictive 
check (VPC) [33] was performed to determine whether the 
population pharmacokinetic model developed using benda-
mustine concentrations in patients receiving monotherapy 
was applicable to bendamustine concentrations collected 
in patients receiving bendamustine–rituximab combination 
therapy. Second, boxplots were generated of model-pre-
dicted Bayesian clearance values in patients who received 
bendamustine in the presence of rituximab (combination 
therapy study) and in patients who received bendamustine 
in the absence of rituximab (monotherapy study). Third, a 
statistical test for differences in the log-transformed model-
predicted Bayesian bendamustine clearance values in the 
presence and absence of rituximab was performed using 
the Wilcoxon’s signed rank test (α = 0.05).

Methods for evaluating the effect of bendamustine 
on rituximab

The potential for bendamustine to affect systemic expo-
sure of rituximab was evaluated using observed rituximab 
data from the bendamustine–rituximab combination study 
and rituximab data from the published literature in which 
rituximab was administered without bendamustine. The 
observed minimum, median, and maximum serum rituxi-
mab concentrations from the bendamustine–rituximab 
combination study and four publications describing data in 
six populations were plotted for scheduled pharmacokinetic 
sample times at the end of the rituximab infusion, 24  h 
post-infusion, and 7 days post-infusion.

General statistical methods

All data preparations and presentations were performed 
using validated SAS software, version 9.2 (SAS Institute). 
Analyses conducted for the population pharmacokinetic 
model development and model simulations were conducted 
using NONMEM, version 6, level 2.0 (ICON Development 
Solutions).

Results

Description of bendamustine–rituximab combination 
pharmacokinetic data and the patient population

The source data in the bendamustine–rituximab combination 
study included 324 bendamustine pharmacokinetic sample 

records from 52 patients and 126 rituximab pharmacokinetic 
sample records from 21 patients. After exclusions and impu-
tations, the final analysis dataset included 243 bendamustine 
sample records from 49 patients and 77 rituximab sample 
records from 19 patients. Fifty bendamustine samples and 34 
rituximab samples were excluded because of concentrations 
less than the lower limit of quantitation.

The patient population in the bendamustine–rituximab 
combination study was primarily male (63 %) and Cauca-
sian (92 %). Median body surface area was 2.0 m2 (range, 
1.4–2.6 m2). In general, patient demographics and charac-
teristics were similar to those in the bendamustine mono-
therapy study (Table 1).

The effect of rituximab on bendamustine pharmacokinetics

The population pharmacokinetic model previously devel-
oped was used to simulate 500 bendamustine concentra-
tion–time profiles following administration of bendamus-
tine monotherapy, assuming the same bendamustine dosing 
regimens and sampling times for patients as those in the 
bendamustine–rituximab combination study.

The median, 10th, and 90th percentiles of the simulated 
concentrations by scheduled sample time bins were cal-
culated, and the median, 10th, and 90th percentiles of the 
observed concentrations in the bendamustine–rituximab 
combination study were also calculated. A plot was then 
generated to show the percentiles of the simulated mono-
therapy profiles overlaid with the observed concentrations 
of the combination therapy. Based upon VPC methods, the 
median, 10th, and 90th percentiles of the observed combi-
nation therapy and simulated monotherapy data should be 
similar.

The VPC plot showed that the median, 10th, and 90th 
percentiles of the observed and simulated data were very 
similar (Fig.  1). Percentages of the observed bendamus-
tine concentrations in patients receiving bendamustine–
rituximab combination therapy that were below the 10th 
percentile and above the 90th percentile of the simulated 
concentrations for monotherapy were calculated. Overall, 
26 samples (11  %) were below the 10th percentile, and 
41 samples (17  %) were above the 90th percentile. Ide-
ally, 10 % of the observed concentrations would be above 
the 90th percentile of the simulated concentrations, and 
10  % of the observed concentrations would be below the 
10th percentile of the simulated concentrations. The per-
centage of samples above the 90th percentile (i.e., 17  %) 
were higher than expected; however, many of the samples 
were obtained from one patient whose observed bendamus-
tine concentrations were higher than those of the remain-
ing population. Given the small number of subjects in the 
combination therapy study (n = 49) and the similarities in 
the median, 10th, and 90th percentiles, the findings suggest 
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that the previously developed population pharmacokinetic 
model is applicable to the bendamustine–rituximab combi-
nation therapy data.

In addition to comparisons of concentration data, indi-
vidual Bayesian estimates of bendamustine clearance in 
the presence and absence of rituximab were also analyzed 
(Table 2). The 25th–75th percentile range of Bayesian ben-
damustine clearance estimates indicated a slightly larger 
degree of variability between subjects; however, median 
bendamustine clearance values were similar at 32.9 versus 

31.8 L/h in the presence and absence of rituximab, respec-
tively (Fig. 2). The 2-sided Wilcoxon’s signed rank test of 
the log-transformed clearance values did not show a sta-
tistically significant difference between the two groups 
(P  >  0.93), suggesting that rituximab does not affect the 
pharmacokinetics of bendamustine.

The effect of bendamustine on rituximab pharmacokinetics

In the four published studies used to investigate the effect 
of bendamustine on rituximab, the six comparator popula-
tions that reported rituximab concentrations included: (1) 
22 patients with follicular lymphoma in complete or par-
tial response after standard cyclophosphamide, doxoru-
bicin, vincristine, and prednisone chemotherapy [29]; (2) 
14 patients with various autoimmune disorders [29]; (3) 4 
patients with amyloidosis [29]; (4) 137 patients with recur-
rent (up to four relapses) or refractory low-grade NHL 
[30]; (5) 10 patients with relapsed or resistant follicular or 
mantle cell lymphoma [31]; and (6) 7 patients with follicu-
lar NHL [32].

In the absence of bendamustine, the median observed 
serum rituximab concentration at EOI in the bendamus-
tine–rituximab combination study was about 54  mcg/mL 
(24  %) lower than the weighted average of the median 
concentrations reported in the six comparator populations 
(Fig.  3). Rituximab concentrations observed in the pres-
ence of bendamustine at 24  h and 7  days post-EOI were 
also lower than those reported in the literature (by about 
45  mcg/mL [30  %] and about 35  mcg/mL [53  %]). The 
degree to which rituximab concentrations were lower was 
similar in the end-of-rituximab infusion sample (prior to 
bendamustine administration) and in the 24-h post-infusion 
sample (after the first infusion of bendamustine); however, 
at 7  days post-infusion, a larger difference in rituximab 
concentrations was noted. The general pattern of decline 
of rituximab concentrations observed in the bendamustine–
rituximab combination study, from EOI to 24 h and 7 days, 
was similar to that seen in rituximab studies without ben-
damustine (six comparator groups), suggesting that benda-
mustine does not affect the rate of clearance of rituximab.

Adverse event profile

In the bendamustine monotherapy study, the most com-
mon adverse events of all grades among the 100 treated 
patients included anemia (n  =  94 [94  %]), thrombocyto-
penia (n  =  88 [88  %]), neutropenia (83 [83  %]), nausea 
(77 [77 %]), infection (69 [69 %]), and fatigue (64 [64 %]) 
[28]. Reversible myelosuppression, gastrointestinal toxic-
ity, and infection were the major toxicities associated with 
bendamustine [28]. In the bendamustine–rituximab combi-
nation study, the most common adverse events of all grades 
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were nausea (n  =  38 [72  %]), fatigue (n  =  27 [51  %]), 
constipation (n  =  22 [42  %]), neutropenia or infusion-
related reaction (n  =  19 [36  %] each), vomiting or diar-
rhea (n =  16 [30 %] each), pyrexia or insomnia (n =  12 
[23  %] each), and thrombocytopenia, decreased appetite, 
or cough (n  =  11 [21  %] each). Among adverse events 
associated with treatment, the most common were nausea 
(n =  32), fatigue (n =  20), neutropenia (n =  18), consti-
pation or vomiting (n =  14 each), and thrombocytopenia 
or diarrhea (n = 11 each). Adverse events observed in both 
studies were generally consistent with the known adverse 
event profile of bendamustine [4, 28].

Discussion

Few studies have been conducted primarily to investigate 
the metabolic mechanisms associated with drug–drug 

interactions between monoclonal antibodies and small mol-
ecules [11, 20]. Nonetheless, several potential mechanisms 
of drug interactions have been proposed. One hypothesis is 
that a drug interaction could be caused by modulated activ-
ity between the monoclonal antibody and Fcγ receptors 

Table 2   Model-predicted 
Bayesian bendamustine 
clearance in the presence  
and absence of rituximab

% CV percent coefficient of 
variation, n number of patients, 
SD standard deviation
a  Wilcoxon’s signed rank test 
P > 0.93

Dosing regimen Statistic Clearance (L/h) Log-transformed 
clearancea

Bendamustine–rituximab  
combination (n = 49)

Mean (SD) 32.1 (12.8) 3.33 (0.672)

% CV 39.9 % 20.2 %

Median 32.9 3.50

Minimum, maximum (0.9, 58.5) (−0.097, 4.07)

Bendamustine monotherapy 
(n = 78)

Mean (SD) 33.0 (10.10) 3.45 (0.305)

% CV 30.6 % 8.8 %

Median 31.8 3.46

Minimum, maximum (13.1, 70.6) (2.58, 4.26)
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on effector cells or by the simultaneous effect of the small 
molecule drug on Fcγ receptor expression [21]. For exam-
ple, the downregulation of FcγRI on monocytes induced by 
methotrexate has been reported in patients with rheumatoid 
arthritis [21, 24]; such activity could potentially affect the 
action of a concomitantly administered monoclonal anti-
body. Another hypothesis is that a monoclonal antibody 
could affect the metabolism of a concomitantly adminis-
tered small molecule drug via cytokine-induced CYP3A4 
inhibition [22, 23]. Finally, the disposition of some small 
molecule drugs could also potentially be affected by 
changes in drug transport proteins due to treatment with a 
monoclonal antibody [20].

Although the pharmacokinetic characteristics of rituxi-
mab and bendamustine do not support a scientific ration-
ale for a drug–drug interaction, the pharmacokinetics of 
coadministered rituximab and bendamustine have not 
been investigated previously, aside from a 2011 pilot 
study conducted in Japan. This small (n = 9) study sug-
gested that rituximab does not affect the pharmacokinetic 
profile of bendamustine [34]. In the current analysis, data 
from the phase III bendamustine–rituximab combination 
study, in which bendamustine was coadministered with 
rituximab, and the previously developed population phar-
macokinetic model based on data from the phase III ben-
damustine monotherapy study [18] were used to compare 
the pharmacokinetics of bendamustine in the presence and 
absence of rituximab. The analysis showed similar benda-
mustine concentration–time profiles as well as Bayesian 
bendamustine clearance estimates (with no statistically 
significant difference) in the presence and absence of 
rituximab.

Findings from published studies measuring the serum 
concentrations of rituximab (in the absence of bendamus-
tine) at specific time points after infusion show a pattern 
that is the same as the one reported in the current benda-
mustine–rituximab combination study (i.e., similar pattern 
of decline for serum concentration of rituximab over time). 
Rituximab concentrations in the presence and absence of 
bendamustine in the current analysis were found to be con-
sistently lower than those reported in the literature, with 
a similar difference in concentration at EOI of rituximab 
(prior to bendamustine administration) and 24 h post-infu-
sion (following the first infusion of bendamustine), and a 
larger difference in concentration at 7  days post-infusion; 
however, all of the disparities could potentially be due to 
differences in the duration of the rituximab infusion or 
assay methodology/sensitivity.

The current analysis has several limitations, including 
the lack of a direct measurement of the effect of bendamus-
tine on the pharmacokinetic profile of rituximab. In addi-
tion, since within-study comparisons were not possible, 
supplementation with cross-study comparisons or literature 

searches was necessary. The sparse sampling strategy used 
in the bendamustine–rituximab combination study also 
made it necessary to use a Bayesian prediction approach 
to generate individual predicted bendamustine clearance 
values. There are inherent constraints in the investigation 
of drug–drug interactions in patients with cancer; however, 
the methodology used in this analysis may provide a help-
ful tactic in this setting.

Conclusions

Bendamustine in combination with rituximab has been 
reported to be an effective therapy in patients with lym-
phoid malignancies, yet data are lacking on the potential 
for pharmacokinetic interactions to occur between the two 
drugs. The current analysis, which used data from two 
studies and the published literature to determine whether 
there is evidence of a drug–drug interaction between 
bendamustine and rituximab, generated several key find-
ings. First, the previously developed population phar-
macokinetic model for bendamustine, which adequately 
described the concentration–time profile in adults follow-
ing the administration of monotherapy, was also shown 
to adequately describe the concentration–time profile for 
bendamustine following the administration of combi-
nation therapy. Second, model-predicted bendamustine 
clearance was not statistically different when adminis-
tered alone or in combination with rituximab, thereby 
suggesting that rituximab does not affect the pharmacoki-
netics of bendamustine. Finally, in the current analysis, 
the general pattern of decline in serum concentrations of 
rituximab after infusion mirrored that in published stud-
ies, although rituximab concentrations in the presence and 
absence of bendamustine were consistently lower than 
those reported in the literature. However, the degree of 
difference between the study and literature data suggest 
that the differing results were due to differences between 
studies in techniques rather than reflective of drug–drug 
interaction between bendamustine and concurrent treat-
ment. Based on this analysis, therefore, neither benda-
mustine nor rituximab seems to affect the systemic expo-
sure of the other drug when administered as combination 
therapy.
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