
Research Article
Cloud Based Metalearning System for Predictive Modeling of
Biomedical Data

Milan VukiTeviT, Sandro RadovanoviT, Miloš MilovanoviT, and Miroslav MinoviT

Faculty of Organizational Sciences, University of Belgrade, Jove Ilića 154, 11000 Belgrade, Serbia
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Rapid growth and storage of biomedical data enabled many opportunities for predictive modeling and improvement of healthcare
processes. On the other side analysis of such large amounts of data is a difficult and computationally intensive task for most existing
data mining algorithms. This problem is addressed by proposing a cloud based system that integrates metalearning framework for
ranking and selection of best predictive algorithms for data at hand and open source big data technologies for analysis of biomedical
data.

1. Introduction

Data mining can be defined as the process of finding
previously unknown patterns and trends in databases and
using that information to build predictive models [1]. Due
to increasing amount of data generated in healthcare systems
(medical records, gene expression data, medical image data,
etc.), analysis became too complex and voluminous for
traditional methods and this is why data mining is becoming
increasingly important [2].

In the last decade datamining techniques (like clustering,
classification, or association) were successfully applied on
different medical and biomedical problems like prediction
of heart attacks [3], diagnostics based on gene expression
microarray data [4], classification of Parkinson’s disease [5],
identification of liver cancer signature [6], and so forth.

Special area of medical data mining is biomedical data
mining that seeks to connect phenotypic data to biomarker
profiles and therapeutic treatments, with the goal of creating
predictive models of disease detection, progression, and
therapeutic response.This area includesmining genomic data
(and data from other high-throughput technologies such as
DNA sequencing and RNA expression), text mining of the
biological literature, medical records, and so forth, and image
mining across a number of modalities, including X-rays,
functional MRI, and new types of scanning microscopes [7].

Even though many algorithms were specially designed
for application in this area [8], the exponential increase of
genomic data brought by the advent of the third generation
sequencing (NGS) technologies and the dramatic drop in
sequencing cost have posed many challenges in terms of data
transfer, storage, computation, and analysis of big biomedical
data [2, 7, 9, 10]. These authors emphasize the lack of
computing power and storage space, as a major hurdle in
achieving research goals. They propose cloud computing as a
servicemodel sharing a pool of configurable resources, which
is a suitable workbench to address these challenges (Figure 1).

One of the “soft” approaches for reducing the need for
computer power for data analysis is introduction of met-
alearning systems for selection and ranking of the best suited
algorithms for different problems (datasets). These systems
store historical experimental records (descriptions of datasets
and algorithm performances) and, based on these records,
evolve models for prediction of algorithm performances on
a new dataset. By using these systems, analyst does not
have to evaluate large number of algorithms on a big data
(only ones with the best predicted performance) and this
way saves computational and time resources. Even though
specialized metalearning systems are developed for many
application areas like electricity load forecasting [11], gold
market forecasting [12], choosingmetaheuristic optimization
algorithm for traveling salesman problem [13], and so forth,
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Figure 1: Projected growth ofDNAsequence data in the 21st century
[7].

there are not many researches that utilize metalearning
in medicine [14] and in this paper we will propose such
approach. Similar efforts have been made in the field of
continuous improvement of business performance with big
data [15], which lets users analyze business performance in
distributed environments with a short response time, which
can be analogous with biomedical systems.

Researchers in this area suggest that the main problem
of exponential data growth is to provide adequate com-
puting infrastructure that has the possibility to assemble,
manage, and mine the enormous and rapidly growing data
[2, 7, 9, 10]. They emphasize that intersection point between
genome technology, cloud computing, and biological data
mining provides a launch pad for developing a globally
applicable cloud computing platform capable of supporting
a new paradigm of data intensive, cloud-enabled predictive
medicine.

In this paper we propose an extension of cloud based
systems [16, 17] with data and model driven services based
onmetalearning approach. Additionally, this system includes
open source data mining environments as a platform service
for users. System is based on open source technologies
and this is very important since they enable collaborative
collection of data and fast development of new algorithms
[18].

2. State of the Art

In this section a brief overview of cloud based healthcare
systems and metalearning systems which are correlated with
proposed system is discussed. Cloud systems emerged as a
technology breakthrough in the last decade and impacted
a wide range of business like SME [19], education [20], e-
government [21], data mining [22], and so forth.

Ahuja et al. [23] exhaustively reviewed usage and con-
sideration points in implementing cloud healthcare system.
They identified that themost important points are infrastruc-
ture and number of facilities. Infrastructure has great influ-
ence sincemost of the healthcare facilities and office locations
were built years ago and cannot use cloud systems. Number
of facilities is important on operation of health organization
and whether their IT infrastructure is distributed between
facilities or is in a single datacenter. Moving to the cloud
would help communication, application, and collaboration

between health organizations. Cloud computing reduces
operating costs, because the need for IT staff in each facility
is lower and overall IT budget is reduced.

The advantages of cloud computing and big data tech-
nologies, like Hadoop and related software, increased their
popularity in medicine and bioinformatics. Dai et al. [16]
identified four bioinformatics cloud services. Those are DaaS
(data as a service), SaaS (software as a service), PaaS (platform
as a service), and IaaS (infrastructure as a service). Bioinfor-
matics generates huge amount of raw data and they should
be available for data analysis through DaaS. Additionally, a
large diversity of software tools is necessary for data analysis
and SaaS is provided as an option in regarding this problem.
Platform as a service provides programmable platform for
development, testing, and deploying solutions online. IaaS
offers a complete computer infrastructure for bioinformatics
analysis.

Lack of support for complex and large scale healthcare
application of electronic medical records was identified by Li
et al. [24].Therefore, XML was used as a model for managing
medical data while Hadoop infrastructure and MapReduce
framework were used for data analysis. Their system, called
XBase, is doing various datamining tasks like classification of
heart valvular disease, detecting association rules, diagnosis
assistance, and treatment recommendation.

As Schatz et al. [25] stated, sequencing of DNA chain
is improving at a rate of about 5-fold per year, while
computer performance is doubling only every 18 or 24
months. Therefore, addressing the issue of designing data
analysis arises as a question. A practical solution for solving
this problem is to concentrate on developing methods that
make better use of multiple computers and processors,
where cloud computing emerges with promising results.They
stated that Hadoop/MapReduce technology is particularly
well suited, from genomic point of view, for analysis of
DNA sequence.TheCrossbow genotyping program leverages
Hadoop/MapReduce to launch many copies of the short read
in parallel leveraging of Hadoop/MapReduce and Crossbow
for greater results. In their benchmark test on the Amazon
cloud, Crossbow Hadoop/MapReduce analyzed 2.7 billion
data points in about 4 hours, which included the time
required for uploading the raw data, for a total cost of $85
USD. Beside this, they described obstacles which can pose
significant barrier in analysis of DNA sequence.

An interesting approach to design of biomedical cloud
system was described by Taverna [26]. It is a workflow
management system that allows uploading data to the cloud
from web application, creating data flow and run analysis
from multiple computing units. While analysis is running,
user can monitor the progress. This application also allows
sharing of data flow, enabling many researchers from the
same or other projects to influence and give contribution to
research process.

Frameworks for cloud based genome data analysis, such
as Galaxy [27], offer generalized tools and libraries as com-
ponents in workflow editor. Galaxy enables users to define
pipelines that through specifically developed visualization
show progression of the workflow. It is extensible and, there-
fore, a community built around it contributes in developing



The Scientific World Journal 3

various tools for genome analysis. It is important to notice
that Galaxy is integrated with biomedical databases, such as
UCSC table data, BioMart Central, andmodENCODE server.

Hadoop and MapReduce distributed computing
paradigm has been implemented in CloudBurst [28]. It
is used for mapping short reads to reference genomes in a
parallel fashion in cloud environment. Essentially, it provides
a parallel read-mapping algorithm optimized for mapping
sequence data to the human genome and other reference
genomes, intended for use in a biological analysis including
SNP discovery, genotyping, and personal genomics.

Another large biological extensibleworkbench is SeqWire
[29]. Users are allowed to write and share pipelinemodules. It
provides massive parallel processing using sequencing tech-
nologies, such as ABI SOLID and Illumina, web application,
pipeline for processing and annotating sequenced data, query
engine, and a MetaDB.

Web based cloud system, such as FX [30], provides high
usability for users that are not familiar with programming
techniques. It is developed for various biomedical data anal-
yses such as estimating gene expression level and genomic
variant calling from the RNA sequence using transcriptome-
based references. User uploads data and configures data
analysis settings on Amazon Web Service (AWS). Since this
application is domain specific, it does not require manual
arrangement of pipelines.

Critical cloud services in biomedicine are infrastructure
services. Therefore, CloVR [31] offers a virtual operating
system with preinstalled packages and libraries required for
biomedical data analysis, such as large-scale BLAST searches,
whole-genome assembly, gene finding, and RNA sequence
analysis. It is implemented as an online application but does
not provide GUI. Instead, command-line based automated
analysis pipelines with preconfigured software packages for
composing workflows are implemented.

Chae et al. [9] focus on two emerging problems in
bioinformatics data analysis. Those are computation power
and big data analysis for the biomedical data. Biomedical
analysis requires very big computing power with huge storage
space.They proposed BioVLab as an affordable infrastructure
on the cloud, with a graphical workflow creator which pro-
vides an efficient way to deal with these problems. BioVLab
consists of three layers. The first layer is a graphical workflow
engine, called XBaya, which enables the composition and
management of scientific workflows on a desktop.The second
layer, gateway, is a web-based analysis tool for the integrated
analysis of microRNA and mRNA expression data. Analysis
is done on Amazon S3 Interface, which presents third
layer of architecture. Data and commands from gateway are
transferred to cloud, which analyze data and return results to
user on desktop.They emphasized that analysis of bigmedical
data requires use of appropriate tools and databases from a
vast number of tools and databases; therefore using cloud
would not solve problems of computational power and big
data analysis.

Cloud healthcare application could have great impact
on society, but security, privacy, and government regulation
issues limit its usage. Zhang and Liu [32] defined security
model for cloud healthcare system. First part of the model is

secure collection of data. Data collection module is created
and maintained independently by care delivery organiza-
tions. Second part is secure storage. Storage system must be
encrypted and it can allow only authorized access. Third part
is secure usage, which consists of medicine staff signature
and verification sections. Their model deals with problem
of information ownership, authenticity and authentication,
nonrepudiation, patient consent and authorization, integrity
and confidentiality of data, and availability of system.

Since security is identified as a major challenge in cloud
systems,Wooten et al. [33] designed and implemented secure
healthcare cloud system. This was achieved with a trust-
aware role-based access control and a tag system. System was
implemented on top of Amazon Web Services (AWS) Elastic
Compute Cloud (EC2) and Linux, Apache, MySQL, and PHP
(LAMP) solution stack.

Liu and Park [34] focused on challenges and adaptation
of e-healthcare cloud systems. This system extends the cloud
paradigm in order to satisfy global demands in digital
healthcare applications. Therefore, technology, healthcare
process, and service are identified as the main characteristics
of healthcare cloud systems. Similarly, new challenges arose
by the unique requirements of the e-healthcare industry for
using cloud services for regulation, security issues, access,
intercloud connectivity, and resource distribution.

IBM Watson is also used in healthcare as cloud service.
Giles and Wilcox [35] used Watson ability to use natural
language processing and combine it with content analysis
in order to help medical staff in diagnostic analysis. This
application of Watson identifies diseases, symptoms, right
medications, and modifiers directly from medical records
from different medical facilities stored on cloud.

Knowledge cloud based systems in medicine, as Lai et al.
[17] stated, are one of the major government’s strategic plans
to drive the healthcare services which are identified as public
concerns in China. They highlighted some successful criteria
for establishment of a private knowledge network for business
network collaboration and the knowledge cloud system for
radiotherapy dynamic treatment service in China, such as
innovation outsourcing, marketing opportunity, economy of
scales, leverage existing resources, and service on demand.
Three parties are identified in the KaaS service model. The
first party is the knowledge user (patients, hospitals, and
doctors), the one who pays for the knowledge service on
demand. The second party is the knowledge expert (external
consultants), the one who provides the knowledge service on
demand. The third party is the knowledge agent who links
together the knowledge user and the knowledge expert on
demand.

Great potential of cloud services in the area of
biomedicine is identified by Grossman and White [7],
who made a vision of biomedical cloud in the future. Since
amount of data which hospitals and medical institutions
are dealing with is growing rapidly, big data technologies
will have indispensable role in data analysis. Consequently,
managing and processing data will fundamentally change,
and new data mining and machine learning algorithms
will be developed to deal with these changes. Explosion of
data is expected to be in genomic, proteomic, and other
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“omic” data and molecular and system biology. Probes
that collect data from tissue are more complex and allow
simultaneous tracking and collect more data than few years
ago. Authors have also considered several issues such as
security, scalability of storage, scalability of analysis, peer
with other private clouds, and peer with public clouds.

Metalearning presents powerful methodology which
enables learning on its past knowledge of solving different
tasks. This methodology is used in fraud detection [36], time
series forecasting [37], load forecasting [11], and others.

3. Metalearning Framework for
Clustering Biomedical Data

Exponential growth of the data and rapid development of
large number of complex and computationally intensive data
mining algorithms led to one of the major problems in
modern data mining: selection of the best algorithm for data
at hand [38].Namely, analyst often does not have enough time
or resources for creating models and evaluating themwith all
available algorithms.

One of the most promising approaches for dealing
with this problem is metalearning [39, 40]. Metalearning is
methodology which solves different data mining tasks based
on past knowledge.Themain idea is to store history of exper-
imental results with descriptions (meta-attributes) of datasets
(e.g., dataset characteristics, algorithm, and classification
accuracies for classification problems) and, based on this,
to create metamodel (classification or regression) that will
predict the performances of each algorithm on new dataset.
Creating of suchmetamodel (with good performance) would
reduce the need for brute force evaluation (evaluation of
every algorithm).

Metalearning system is built on set of algorithm or
combination of algorithms (ensembles). Therefore, every
algorithm or combination of algorithms (ensembles) is sim-
pler.Theoretically,metalearning system can be infinitely large
by puttingmetalearning as component of other metalearning
systems. An advantage of its using is that it can address new
types of tasks that have not been seen but are similar to
already defined problems.

Metalearning, by Smith-Miles [39, 40], is definedwith the
following aspects:

(i) the problem space, 𝑃, which represents set of
instances (datasets) of a given problem class;

(ii) the meta-attribute space,𝑀, which contains charac-
teristics that describe existing problems (e.g., number
of attributes, entropy, normality, etc.);

(iii) the algorithm space, 𝐴, which represents the set of
candidate algorithms which can be used to solve the
problems defined in problem space 𝑃;

(iv) a performance metric, 𝑌, which represents measures
of performance of an algorithm on a problem (e.g.,
classification accuracy (for classification problems) or
root mean square error (for regression problems)).

General procedure for metalearning is done in several
steps: first, datasets from problem space are evaluated by

algorithms fromalgorithm space. Further,metafeatures of the
datasets are related to algorithm performance, forming the
database of metaexamples. Then, regression or classification
models are created (and evaluated by performance metric).
Finally, when new problem (dataset) arrives, meta-attributes
are extracted and performance prediction is made. In this
way analyst does not have to evaluate each algorithm on each
dataset but only ones with the best predicted performance
of the problem and algorithm spaces. While technologies for
data collection enabled cheap and fast accumulation of data
and extension of problem space, development and collection
of data mining algorithms is a more difficult problem since
development of new algorithms demands a lot of time and
effort, and also different algorithms are implemented on
different platforms.

The most important issue for good performance of met-
alearning systems is the size of problem and algorithm space
because the accuracy of metamodels is directly dependant on
these spaces [39, 40].Thismeans that cloud based system and
service oriented architecture should be natural environment
for this kind of systems because it would enable community
based extension models to be created and evaluated by
performance metric in order to capture relations between
meta-attributes and algorithm performance.

With metalearning approach in solving problems time
for choosing appropriate algorithm for problem is greatly
reduced but requires time for creating and updating meta-
models, especially if data and algorithms are gathered from
community. This is one of the main motivations for integra-
tion of such a system in cloud based environment and inte-
gration with big data technologies (like Hadoop, Hive, and
Mahout) for storing and aggregation of data and predictive
modeling.

3.1. Component Based Metalearning System for Biomedical
Data. One of the promising approaches for tackling these
problems (existence of large algorithm space and existence
of efficient procedure for selection of the best algorithm)
is component based data mining algorithm design [41–43].
This approach divides algorithms with similar structure (in
this case representative based algorithms) into parts with
the same functionality called subproblems. Every subproblem
has standardized I/O structure and can be solved with one
or more reusable components (RCs), presented in Table 1.
This approach combination of RCs, which originates from
different algorithms, can be used to design large number
(thousands) of new “hybrid” algorithms. This approach gave
very promising results in the area of clustering biomedical
(gene expression) data [8, 44, 45].

Combining RCs is used for reproducing or creation
of cluster algorithms. For example, K-means algorithms
can be reconstructed as RANDOM-EUCLIDEAN-MEAN-
COMPACT. However, a new hybrid algorithm can be con-
structed using DIANA-CORREL-MEDIAN-CONN, where
DIANA is used to initialize representatives, CORREL to
measure distance, MEDIAN to update representatives, and
CONN to evaluate clusters.
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Table 1: Sub-problems and RCs for generic clustering algorithm
design.

Sub-problem Reusable components

Initialize representatives DIANA, RANDOM, XMEANS,
GMEANS, PCA, KMEANS++, SPSS

Measure distance EUCLIDEAN, CITY, CORREL,
COSINE

Update representatives MEAN, MEDIAN, ONLINE

Evaluate clusters AIC, BIC, SILHOU, COMPACT, XB,
CONN

Extendedmetalearning system, shown in Figure 2, is used
in this research. Problem space is presented in upper left
cloud. Every problem (dataset) from problem space 𝑃 has its
task (clustering, classification, regression, etc.) denounced 𝑥.
Based on problem, function 𝑓 extracts meta-attributes. For
selected problem, based onmeta-attributes, function 𝑆 selects
algorithm from algorithm space 𝐴. Every algorithm is con-
structed from reusable components (RCs), from which addi-
tional meta-attributes were derived (algorithm descriptions).
Also, as a result of clustering algorithm on specific dataset
internal evaluationmeasures (additional meta-attributes) are
calculated and saved as meta-attributes. Central cloud is the
most important part of metalearning system. It is responsible
for ranking and selection of algorithms. Inputs in this cloud
are task 𝑥, algorithm 𝑎, and performance metric 𝜋. Meta-
attributes created for each task 𝑥 are input for ranking and
selection, as they are a basis for learning on metalevel. For
most tasks performance ofmeta-learning system is calculated
earlier, as output label, and it is available on metalevel.

3.2. Initial Evaluation of Component Based Metalearning
System for Clustering Biomedical Data. In this section we will
describe the data and the procedure for initial evaluation of
the proposed system. 30 datasets gathered from original met-
alearning system [46] were used (http://bioinformatics.rut-
gers.edu/Static/Supplements/CompCancer/datasets.htm).

For the construction of themetaexamples a set of 13meta-
attributes for dataset description proposed by Nascimiento
et al. [46] are used (detailed description of datasets and
metafeatures can be found in Nascimiento et al. [46]).

Additionally, meta-attribute space is extended with
descriptions of algorithms (four components of algorithm
and normalization type described in Table 1) and internal
cluster evaluation measures including compactness, global
silhouette index,AIC, BIC,XB-index, and connectivity.These
three types of meta-attributes (dataset descriptions, reusable
components, and internal evaluation measures) form the
space of 24 meta-attributes.

Component based clustering algorithms were used to
define algorithm space. For that purpose 504 RC-based clus-
ter algorithms were designed for experimental evaluation.
These algorithms were built by combining already described
RCs (Table 1) with 4 different normalization techniques,
which lead to total of 2016 clustering experiments.

Table 2: Meta-algorithm performance.

Algorithm/Error RMSE MAE
RBFN 0.143 0.109 (±0.092)
LR 0.111 0.086 (±0.070)
LMSR 0.265 0.094 (±0.248)
NN 0.101 0.064 (±0.078)
SVM 0.050 0.034 (±0.036)

For validation of clusteringmodels AMI (adjustedmutual
information) index was used since it is recently recom-
mended as a “general purpose” measure for clustering valida-
tion, comparison, and algorithm design [47], after exhaustive
comparison between a number of information theoretic
and pair counting measures. Even more, this measure is
thoroughly evaluated on gene expression microarray data.

After validation of component based clustering algo-
rithms on 30 datasets, 55326 valid results were gathered,
which represent metaexample repository. Next step was
identification of the best algorithm for ranking and selection
of algorithms for clustering gene expression microarray data.

A procedure for ranking and selection of the best clus-
tering algorithms is based on regression algorithms, called
meta-algorithms, which predict (regression task) AMI values
based on a dataset metafeatures, algorithm components, and
internal evaluation measures.

In this research five meta-algorithms were used. Those
are radial basis function network (RBFN), linear regression
(LR), leastmedian square regression (LMSR), neural network
(NN), and support vector machine (SVM).

Estimate of quality of regression algorithms is done using
mean absolute error (MAE) and root mean squared error
(RMSE). Validation of results is done using 70% of dataset
for training the model and the remaining 30% for testing.

Performance of each algorithm, in terms of MAE and
RMSE, and best values are shown in bold (Table 2).

Although all five algorithms showed good results, SVM,
as in Table 2, gave the best performance, and this model
should be used for prediction of algorithm performances for
new datasets. RMSE of 0.05 and MAE of 0.034, with the
smallest variance (numbers in brackets), indicate that this
metamodel is applicable to the new problems since AMI
measure takes values from 0 to 1 where 1 is the best. Note
that with an extension of algorithm space and problem space
these results could be changed and so continuous evaluation
of available meta-algorithms should be done. Because of this
it is important to have adequate computing infrastructure
for processing big data and updating the models. Process for
creating and updating the models is presented in Figure 3.
Creation of model contains several steps. First, microarray
metaexamples are loaded, from which only important vari-
ables are selected. After that, data preparation phase was
conducted where only those attributes that are important
for model building were selected, label attribute was set on
AMI attribute, missing values were replaced with average
value, and nominal values were transformed to numerical
values using dummy coding. Modeling phase is conducted

http://bioinformatics.rutgers.edu/Static/Supplements/CompCancer/datasets.htm
http://bioinformatics.rutgers.edu/Static/Supplements/CompCancer/datasets.htm
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Figure 2: Extended metalearning system for clustering biomedical data.

Figure 3: Main process for finding the best model for prediction of
AMI.

Figure 4: Stream for application of metalearning system on new
cases.

using 10-fold cross validation where the above-mentioned
five algorithms were used. Every trained model is saved on
hard disk, which allows its reusability.

Automatic application of the selected (in this case SVM)
model is presented in Figure 4. After every update of the
model or after inserting new dataset, this process needs to be
updated. Savedmodel, in this case SVM, is loaded and applied
on new dataset. Results gathered are sorted and exported.
Detailed information can be found in Radovanovic et al. [48].

4. Extended Cloud Based Model for
Big Data Analysis

Dai et al. [16] addressed the problems of storing and analysis
of biomedical data by proposing a cloud based model for
analysis of biomedical data and it is composed of four service
categories:

(i) data as a service (DaaS),
(ii) software as a service (SaaS),
(iii) platform as a service (PaaS),
(iv) infrastructure as a service (IaaS).

DaaS is group of cloud services which enables on demand
data access and provides up-to-date data that are accessible
by a wide range of devices that are connected over the
web. In case of bioinformatics, AmazonWeb Services (AWS)
provides repository of public archives (data sets), including
GenBank, Unigene, Ensembl, and Influenza Virus, which can
be accessed from cloud based applications.

Since bioinformatics requires a large diversity of software
tools for data analyses, the task of SaaS in bioinformatics is to
deliver and enable remote access to software services online.
Thus, installation of software tools on desktop computer is
no longer required. Another one advantage of using SaaS is
enablingmuch easier collaboration betweendispersed groups
of users.

Platform as a service (PaaS) should offer a programmable
environment for users in order to develop, test, and deploy
cloud applications. Computer resources scale automatically
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Figure 5: Cloud based system [16] integrated with KaaS extension
[17] for analysis of biomedical data.

without user interference. In most PaaS services, besides
programming environment, database and web server are
available.

Since most medical institutions do not have computing
resources, such as CPU, IaaS offers a full computer infras-
tructure delivering virtualized resources. Those virtualized
resources can be operating systems, RAM, CPU, or other
computer resource.

Lai et al. [17] introduced a new service model in cloud
computing—the knowledge as a service (KaaS) that facilitates
the interoperations amongmembers in a knowledge network.
Extended model is depicted on Figure 5.

This new service model relies on data created in a
collaboration process of domain experts. It was recognized
as a new form of cloud service and categorized as KaaS. In
a nutshell, such approach is data driven and lacks higher
order structure in order to provide knowledge as a service.
This implies that KaaS in this form is provided by human,
domain experts. We extend this class of services with data
and model approach. By combining data driven models and
expert knowledge that is stored in unstructured data like
documents, notes, and collaborations, knowledge is created
and offered to cloud users. Specifically, we extend models of
[16, 17] by including big data technologies, platforms for data
mining, andmetamodels for ranking and selection of the best
algorithms for biomedical data mining. System components
are displayed on a diagram (Figure 6) and classified according
to service type directed towards end user. Big data engine
provides data storage and access and it is a basis of each class
of services (diagram center).

Key component of KaaS is metalearning algorithms and
selected algorithms for clustering biomedical data. Both
are represented by algorithm space component, and both
are accompanied by their describing metamodels. These
metamodels are used in runtime for ranking and selection

of best algorithms for the new problem (dataset). Experi-
mental results provide knowledge on performances of each
algorithm with meta-attributes on each dataset. Data flows
are kept using big data engine such as Hadoop. Segment
of experimental results component lies on DaaS since these
meta-attributes can be provided as a data service. DaaS
provides biomedical data. It is divided into protected and
public segments.

Cloud approach provides data accumulation and higher
availability of data to interested parties (with rights of access
implied). Interested parties can be found among not only
medical employees and researchers but also community using
different software tools to access data using DaaS.

Central part of the circle (Figure 6) contains components
of a big data engine (HDFS, Hive, and Mahout) where all
the data are centralized (medical data, metadata, and algo-
rithms performances). Additionally, big data engine provides
interfaces for data manipulation and analysis. Apache Hive
[49] is data warehouse software built on top of Hadoop,
used for querying and managing large datasets residing in
distributed storage. Apache Mahout [50] is also built on
top of Hadoop and is used as a scalable machine learning
library for classification, clustering, recommender systems,
and dimension reduction.

Our solution provides software for data analysis in a
service form (SaaS) with respect of SOA dependability [51].
Additionally, third party software can easily become an
integrated part of SaaS (RapidMiner [52], R [53], or others).

These software solutions are recommended because they
have a direct interface for access and analysis of big data
(e.g., Radoop [54] allows using visual RapidMiner interface
and has operators that run distributed algorithms based on
Hadoop, Hive [49], and Mahout [50] without writing any
code).

Most medical institutions require not only computing
resources, such as CPUs, but also communication infras-
tructure; these components are offered as a part of IaaS,
in a form of virtualized resources. Higher level of service
rests on using platform such as variety of operating systems.
But platform can also provide tools for development of
algorithms and applications (Eclipse, Netbeans, RapidMiner,
R. . .). The circle is closed by development of new algorithms
and also for algorithm deployment and execution. For this
reason algorithms space component is partly situated in PaaS
space.

5. Conclusion and Future Research

In this paper we proposed a cloud based architecture for
storing, analysis, and predictive modeling of biomedical big
data. Existing service based cloud architecture is extended by
including metalearning system as a data and model driven
knowledge service. As a part of the proposed architecture,
we provided a support for community based gathering of
data and algorithms that is an important precondition for
quality of metalearning. Advancement of this research area
and adding new value are enabled through platform for devel-
opment and execution of distributed data mining processes
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Figure 6: Cloud based system for predictive modeling of biomedical data.

and algorithms. Finally, we provided data and model driven
decision support on selecting best algorithms for working
with biomedical data.

Retrospectively, proposed solution focuses on a specific
type of biomedical data, while other types still remain to
be included and evaluated. Data security and privacy still
remains a concern to be taken into amore serious account. In
order to provide even further impact in research community,
additional work is necessary on providing interoperability
among potential open source components.

System was tested on microarray gene expression data,
with specific meta-attributes for this data type (e.g., chip
type). Further efforts will be made to include other types
of biomedical data. This will be done by identifying spe-
cific meta-attributes that fit newly included data types.
Additionally, as a further work, integration with OpenML
[55] platform, used for storing and gathering datasets and

clustering algorithm runs, is planned.This platform provides
a base for a community to share experiments, algorithms, and
data. Significant clustering algorithm meta-attributes can be
extracted and used for updating our metalearning system.
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