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Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to
simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets
of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive
neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these
sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models
are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing
the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of
state. Comparison between the calculated distillates by ANFIS and neural networkmodels and also equation of state-basedmethod
indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods.

1. Introduction

One of the most successful methods for heavy oil production
is steam flooding and while steam has been injected into
reservoirs almost as long, the mechanisms of this process
are much less understood. Several experimental studies are
performed for studying the effect of different mechanisms
such as viscosity reduction, wettability alteration, and steam
distillation/vaporization during this method of recovery.
Among all these mechanisms, steam distillation mechanism
is the main difference between steam and other thermal
methods.

Steam distillation process happened when light fractions
of crude oil are separated by injecting the steam into the crude
oil. Observation of the produced vapors of matured steam
floods proves the fact that steam can carry a large amount of
light hydrocarbons in the steam distillation process. Several
papers have reported the effects of steam distillation on oil
recovery observed in laboratory steam displacement tests.
Farouq Ali [1] estimated that 5 to 10% of the heavy oil
recovery and as much as 60% of the light-oil recovery may
be attributed to steam distillation mechanism. Willman et al.

[2] demonstrated that steam flooding produces significantly
greater oil recovery than that in flooding with hot water at the
same temperature. Mainly, this is due to steam distillation.
Wu and Fulton [3] reported that oil in the steam plateau of
an in situ combustion process is removed mainly by steam
distillation. Johnson et al. [4] showed that the oil vaporization
recovery by steam ranges from 54.7 to 94.0% of immobile oil
volume.

Several methods have been presented for simulating
steam distillation mechanism in steam injection process.
Sukkar [5] used the relative velocities of steam, the steam
front, and also the rates at which hydrocarbon components
were distilled to estimate the amount of oil distilled during
steam flooding. Holland and Welch [6] developed a model
for calculating steam distillation yield at saturated steam tem-
peratures, where the solubility of hydrocarbon and water is
negligible. Duerksen andHsueh [7] proposed correlations for
the prediction of steam distillation yield with different crude
oil properties and operating conditions. They also showed
that the distillation recovery correlates well with American
Petroleum Institute (API) gravity and wax content. Northrop
and Venkatesan [8] presented an analytical multicomponent
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Table 1: Trial and error calculations for selecting the most suitable
ANN.

Number of neurons in
the hidden layer

Training data
(RMSE)

Test data
(RMSE)

5 0.0122 0.0316
7 0.0126 0.03
9 0.0125 0.0302
11 0.0121 0.0314
15 0.0115 0.0312
18 0.0118 0.0311
20 0.0116 0.0297
21 0.0119 0.0298
23 0.0129 0.0317
24 0.0141 0.0319
25 0.0132 0.0312

model to predict steam distillation yield and showed that
the distillation yield increases as the temperature increases.
Van Winkle [9] proposed a method to predict the amount
of steam required for distillation of a specific amount of a
volatile material based on Raoult’s and Dalton’s laws.

Thementioned studiesmay face considerable errorswhen
they are applied to crude oil samples and some of them
require experimental data such as oil characterization data,
so we need to propose a model for prediction of steam
distillation yield with minimum entry data.

The complexity of steam distillation mechanism leads
us to use artificial intelligence such as artificial neural net-
work (ANN) and adaptive neurofuzzy interference system
(ANFIS) for simulation of steam distillation process. In
this paper we use ANN and also ANFIS to propose a
practical model for predicting the steam distillation recovery
as accurate as possible by choosing the best model based
on laboratory data. This model can be applied to predict
the steam distillation yield of crude oils with new properties
(Table 2).

2. Description of Method

2.1. Artificial Neural Network (ANN). A neural network is
structured by multiple connection units arranged in layers
which indicate the weights between neurons that are learned
under an optimization criterion. ANNs provide a nonlin-
ear mapping between inputs and outputs by its intrinsic
ability [11]. The success in obtaining a reliable and robust
network depends on the correct data preprocessing, correct
architecture selection, and correct network training choice
strongly [12]. Artificial neural networks have been developed
for a wide variety of problems such as classification, func-
tion approximation, and prediction. Multilayer feedforward
networks are the most commonly used for the function
approximation. Feedforward networks consist of groups of
interconnected neurons arranged in layers corresponding
to input, hidden, and output layers. Once the input layer
neurons are clamped to their values, the evolving starts layer
by layer and the neurons determine their output and this

is the reason that these networks are called feedforward.
The dependence of output values on input values is quite
complex and includes all synaptic weights and thresholds.
Usually this dependence does not have a meaningful analytic
expression. These types of network can approximate most
types of nonlinear functions, irrespective of how much they
are complex.

The network is trained by performing optimization of
weights for each node interconnection and bias terms, until
the obtained values of output become as close as possible to
the actual outputs.

The type of artificial neural network used in this study
wasMultilayer feedforward network.We need enough exper-
imental data for training the network. Sixteen experimental
data sets were used for simulation of steam distillation in this
study and these data sets are obtained from literature [10].
Thirteen crude oil data sets were used as training data and the
data sets related to Shiells Canyon, Teapot Dome, and Rock
Creek oil fields were considered as test data. The inputs of
this network are American Petroleum Institute (API) gravity,
kinematic viscosity at 37.8∘C, characterization factor, and
steamdistillation factor, while the output is distillate recovery.
Steam distillation factor is the ratio of the volumetric amount
of steam injected based on cold water equivalent and the
volume of initial oil. Distillate recovery is the volumetric
amount of hydrocarbon distilled over initial oil volume.
The volumes are calculated at standard conditions. The
characterization factor and API are defined as

characterization factor =
average boiling point

specific gravity
,

API = 141.5

specific gravity
− 131.5.

(1)

Levenberg-Marquardt back propagation algorithm was used
for training the network [13] and the number of neurons in
hidden layers was chosen according to the minimum root
mean square error (RMSE) by trial and error:

RMSE =

norm (simulated result − experimental result)
sqrt (length (simulated result))

.

(2)

Table 1 shows the results of trial and error calculations
used in this study for determining the number of neurons in
the hidden layer. Several networks were trained and finally a
network with one hidden layer with twenty tangent sigmoid
neurons was selected as the most suitable network. The
neurons in the output layer have linear transfer functions.The
tangent sigmoid function is defined as follows:

tansig (𝑛) = 2

1 + 𝑒

−2𝑛

− 1. (3)

2.2. AdaptiveNeurofuzzy Inference System (ANFIS). Adaptive
neurofuzzy inference system (ANFIS) is a kind of neural
network that is based on fuzzy inference system [14]. Since
it integrates both neural networks and fuzzy logic principles,
it has potential to capture the benefits of both in a single
framework. Generally, two objectives are followed using



The Scientific World Journal 3

Ta
bl
e
2:
Cr

ud
eo

il
pr
op

er
tie

sa
nd

ex
pe
rim

en
ta
lr
es
ul
ts
of

ste
am

di
st
ill
at
io
n
re
co
ve
ry

fo
rd

iff
er
en
to

il
fie
ld
sa
.

N
um

be
r

Fi
el
d

Ex
pe
rim

en
ta
lr
es
ul
ts
of

ste
am

di
st
ill
at
io
n
yi
el
ds

fo
r𝑉
𝑤

/
𝑉
𝑜
𝑖

Cr
ud

eo
il
pr
op

er
tie

s
1

2
3

4
5

10
15

20
A
PI

Ki
ne
m
at
ic
vi
sc
os
ity

at
37
.8
∘

C
Ch

ar
ac
te
riz

at
io
n
fa
ct
or

1
So
ut
h
Be

lri
dg
e

0.
03
1

0.
04

6
0.
06

0.
06
9

0.
07
5

0.
1

0.
119

0.
13

12
.4

0.
40

85
9.7

2
W
in
kl
em

an
D
om

e
0.
08
9

0.
11
1

0.
12
5

0.
13
6

0.
14
2

0.
17

0.
18
2

0.
19
5

14
.9

0.
04

88
9.6

3
W
hi
te
Ca

st
le

0.
07

0.
09
5

0.
11

0.
12
2

0.
13
7

0.
18
5

0.
21

0.
23

16
0.
03
08

9.7
4

Ed
iso

n
0.
09
2

0.
12

0.
14

0.
15
1

0.
16
4

0.
19

0.
19
8

0.
20
9

16
.1

0.
03
97

9.7
5

Re
d
Ba

nk
0.
12
8

0.
16
2

0.
18

0.
19
5

0.
20
5

0.
23
1

0.
24
1

0.
25

17.
1

0.
03

9.9
6

Sl
oc
um

0.
03
2

0.
08

0.
09
7

0.
11

0.
12
2

0.
17
2

0.
19
5

0.
2

18
.8

0.
03
95

10
.0

7
H
id
de
n
D
om

e
0.
119

0.
14
8

0.
16
9

0.
19

0.
20
5

0.
25

0.
28

0.
29
5

20
.7

0.
00
86

10
.1

8
To

bo
rg

0.
19
6

0.
23
9

0.
26
7

0.
28
5

0.
3

0.
33
9

0.
34
9

0.
36

22
.2

0.
00
36

10
.1

9
Br
ea

0.
21

0.
24

0.
26
5

0.
28
3

0.
29
6

0.
33

0.
34

0.
35
4

23
.5

0.
00
39

10
.0

10
Sh
an
no

n
0.
14

0.
19
2

0.
22

0.
24

0.
26

0.
30
7

0.
32
8

0.
33
1

24
.7

0.
00
32

10
.2

11
Ro

bi
ns
on

0.
12
8

0.
17
6

0.
20
8

0.
22
8

0.
24
5

0.
29
5

0.
31
2

0.
32

26
0.
00
29

10
.3

12
El

D
or
ad
o

0.
34
5

0.
4

0.
43

0.
44

1
0.
45

0.
47

0.
47
5

0.
48

32
.5

0.
00

05
10
.1

13
Sh

ie
lls

Ca
ny
on

0.
37
8

0.
43
8

0.
47

0.
49

0.
50
8

0.
54
1

0.
55
8

0.
57

33
0.
00

06
10
.2

14
Te
ap
ot

D
om

e
0.
24

0.
32

0.
36

0.
39
6

0.
42
5

0.
50
3

0.
53
4

0.
57

34
.5

0.
00

06
10
.4

15
Ro

ck
Cr

ee
k

0.
29
5

0.
36

0.
4

0.
41
2

0.
42

0.
44

7
0.
46
5

0.
48

38
.2

0.
00

05
10
.4

16
Pl
um

Bu
sh

0.
28

0.
33
8

0.
36

0.
38

0.
4

0.
46

0.
48
9

0.
53

39
.9

0.
00

06
10
.5

a W
u
an
d
El
de
r,
19
83

[1
0]
.



4 The Scientific World Journal

ANFIS: integrating the best features of fuzzy systems and
neural networks and their applicability to synthesize. ANFIS
combines the fuzzy logic, if-then rules, and the accuracy
and learning power of neural networks to make them a
hybrid intelligent system. ANFIS has the ability to solve
nonlinear problems. For specifying the relationship between
input and output to determine the optimized distribution of
membership functions, two learning methods are generally
used in ANFIS. These learning methods are back propa-
gation and hybrid. The hybrid system is a combination of
propagation and least squares method [15]. In the backward
pass, the error is sent back through the network in a similar
manner to back propagation [16]. Hybrid systems have been
used by researchers for modeling and predictions in various
engineering systems. When generating a FIS using ANFIS,
selecting proper parameters is very important, including the
number of MF for each individual antecedent variable and
also selecting proper parameters for the learning and refining
process. Parameter selection and their impact on the ANFIS
have been addressed in the literature [17–19].

For simulating steamdistillation process anothermodel is
proposed usingANFIS. For this purpose a structure with four
inputs with three 𝜋-shaped built-in membership functions
was considered. FIS generation was done by grid partition-
ing. Grid partition divides the data space into rectangular
subspaces using axis-paralleled partition. Π-shaped built-in
membership function is given by

𝑓 (𝑦;𝑚, 𝑛, 𝑜, 𝑝) =

{
{
{
{
{
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{
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{

0 𝑦 ≤ 𝑚

2(
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)

2
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2
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)

2
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(4)

The parameters 𝑚 and 𝑝 locate the “feet” of the curve, while
𝑛 and 𝑜 locate its “shoulders.” We utilized a hybrid method
[20] which is a combination of gradient method and least
squares estimate (LSE) for training the system. The inputs of
the system are American Petroleum Institute (API) gravity,
kinematic viscosity at 37.8∘C, characterization factor, and
steamdistillation factor, while the output is distillate recovery.
Again, thirteen crude oil data sets were used as training data
and data sets related to Shiells Canyon, Teapot Dome, and
Rock Creek oil fields were considered as test data. Schematic
of the proposed ANFIS structure is shown in Figure 1.

2.3. Equation of States Method. The first step in simulation
of the steam distillation process by EOS method is to
evaluate the oil characterization. This task is performed by
determining data such as characterization factor, average
molecular weight, viscosity, API, and distillation test data.
For determining the distribution of components in liquid and

vapor phases, flash calculationmust be performed. It must be
noticed that several equations of states must be performed
and then the best EOS will be chosen as the optimum
equation for simulation of this process. For this purpose,
several equations of states were tested in EOS method and
according to the results the modified Peng-Robinson [21]
equation of state seems to generate better results [22].

In this paper, for better comparison between the proposed
models and othermethods, we usedmodifiedPeng-Robinson
equation of state to simulate the steamdistillationmechanism
in steam flooding process. For this purpose, the multistage
adiabatic flash calculation was performed. In this process,
oil comes into contact with fresh steam in each stage, and
as equilibrium condition is reached, the vapor phase which
includes light fractions of oil and steam leaves the stage and
the remaining oil enters the next stage.

The equation of state for mixtures proposed by Peng and
Robinson [23] is as follow:

𝑃 =

𝑅𝑇

𝑉 − 𝐵
𝑚

−

𝐴
𝑚

𝑉 (𝑉 + 𝐵
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𝑚
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(5)

Mathias and Copeman [21] developed a density-dependent
local composition (DDLC) model for the Peng-Robinson
equation of state. Since themodel was too expensive for com-
puter calculation, they formulated the following truncated
model:
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(6)

3. Results and Discussion

The system was trained several times to achieve the best
correlation between the simulated data and experimental
data according to the value of mean square error (MSE), both
for artificial neural network and ANFIS.

In Figure 2, the best linear fit between the simulated and
experimental data is illustrated with correlation factor of
0.9942 which indicates a very good correlation. These results
are obtained using ANNmethod.

After training the network using ANN method, the
network was performed on the test data and the simulation
results versus experimental test data are shown in Figure 3.
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Figure 1: The structure of ANFIS model for steam distillation
recovery estimation.
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Figure 2: The relation between ANN predictions and actual
experimental data.

An ANFIS model was designed with four inputs (Amer-
ican Petroleum Institute (API) gravity, viscosity at 37.8∘C,
characterization factor, and steam distillation factor), each
with three 𝜋-shaped built-in membership functions, and
one output (distillate yield), Figure 4. We utilized a hybrid
method for training the system. The results of the training
data for simulated and experimental data are shown in
Figure 5 which illustrates a very good correlation.

For validation of the proposed model by ANFIS, after
training the system, it was performed on the test data and its
result is illustrated in Figure 6.

In this study we also used modified Peng-Robinson
equation of state, which gives the best results than those of
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Figure 3: Performance of ANN for test data.

others, to simulate the steam distillation process. Vafaei [22]
found that the modified Peng-Robinson seems to generate
better results and used this method to estimate the distillate
yield. For validation of their estimation and then for better
comparison between the results obtained by different meth-
ods and models, we again used this kind of EOS to calculate
the distillate recovery. The results are given in Table 3.

The performance index used for evaluating the models is
based on the present of average relative deviation (ARE) as

ARE =

∑

𝑛

1







(𝑉
𝑜
/𝑉
𝑜𝑖
)sim − (𝑉

𝑜
/𝑉
𝑜𝑖
)exp







/(𝑉
𝑜
/𝑉
𝑜𝑖
)exp

𝑛

.

(7)

Table 4 shows the comparison between the results obtained
by different methods which were considered in this paper
according to the obtained average relative error for both
training and test data.

We must conclude that Vafaei [24] proposed a multilayer
perceptronmodel for simulation of steam distillation process
and used these sets of data for modeling this process but
he chose White Castle, Toborg, and Teapot Dome oil fields
data as test data and the remaining sets of data as training
data and their model obtained ARE of 7.47% and 11.19% for
training data and test data, respectively, but in this study we
could achieve the less AREby changing the conditions of each
system and also choosing different sets of data for training
and testing.

Comparison of the results shown in Table 4 proves that
the proposed model by ANFIS gives better results for both
training and test data and also using artificial intelligence can
give better results with minimum entry without needing oil
characterization.

4. Conclusion

In this paper, we proposed a model which can predict the
distillate yield in distillation process accurately using ANFIS
and ANN that are two important subbranches of artificial
intelligence (AI) tools. ANN is one of the effective tools for
function approximation but it has some problems that ANFIS
can solve; for example, for reaching the best network we
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Figure 4: The generalized 𝜋-shaped membership functions of four input variables.
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Figure 5: Performance of ANFIS for training data.

should run the systemmore times and in this studywe trained
the network many times to reach the best model and this is a
time consuming process but ANFIS removes this problem by
fuzzification process.

In this study, we utilized a FIS structure with four inputs,
each with three 𝜋-shaped built-in membership functions,
and hybrid method for training the system. Thirteen sets of
data were used as training data and three sets of data as test
data.The input data are the steam distillation factor, viscosity,
API, and characterization factor of the oil. The obtained
results by this method were compared with a multilayer feed

Table 3: Average relative error between simulated results by EOS
and experimental data.

Field ARE%
South Belridge 19.77
Winkleman Dome 19.87
White Castle 30.84
Edison 14.29
Red Bank 11.38
Slocum 9.26
Hidden Dome 2.81
Toborg 8.58
Brea 9.9
Shannon 11.67
Robinson 28.03
El Dorado 42.56
Shiells Canyon 13.76
Teapot Dome 9.24
Rock Creek 45.89
Plum Bush 33.46

forward neural network and also an EOS-based method.
The comparison between the designed ANFIS and other
two methods, that is, ANN method and EOS-based method,
indicates that the accuracy of the proposed ANFIS model
for both training and test data is better than that of other
methods. Also both artificial intelligence models give better
results than the proposed MLP model by Vafaei et al. [24].
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Table 4: Average relative error (%) between simulated results
obtained by different methods and experimental data.

Method Training data Test data
ANFIS 2.01 6.12
ANN 4.63 6.27
EOS 18.62 10.2
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Figure 6: Performance of ANFIS for test data.

Nomenclature

𝑎: Pure component energy parameter
𝑎
𝑖
: Component 𝑖 energy parameter

𝑎
𝑖𝑗
: Composition and temperature dependent

binary energy parameter
𝑎

0

𝑖𝑗

: Binary temperature dependent energy
parameter

𝐴
𝑚
: Mixture temperature dependent term

𝑏: Pure component volume parameter
𝑏
𝑖
: Volume parameter for component 𝑖

𝐵: Dimensionless mixture parameter
𝐵
𝑚
: Mixture volume parameter

𝑑
𝑖𝑗
: Binary interaction parameter for
components 𝑖 and 𝑗

𝑘
𝑖𝑗
: Binary interaction parameter for

components 𝑖 and 𝑗
𝑃: Pressure
𝑅: Gas constant
𝑇: Temperature
𝑉: Mixture molar volume
𝑥
𝑖
: Mole fraction of component 𝑖

𝑍: Compressibility factor
𝛼: Pure component temperature dependent

term
𝛼
𝑖
: Temperature dependent term for

component 𝑖.
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