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Abstract

The study of metabolomics can provide valuable information about biochemical pathways and

processes at the molecular level. There have been many reports that have examined the structure,

identity and concentrations of metabolites in biological systems. However, the binding of

metabolites with proteins is also of growing interest. This review examines past reports that have

looked at the binding of various types of metabolites with proteins. An overview of the techniques

that have been used to characterize and study metabolite-protein binding is first provided. This is

followed by examples of studies that have investigated the binding of hormones, fatty acids, drugs

or other xenobiotics, and their metabolites with transport proteins and receptors. These examples

include reports that have considered the structure of the resulting solute-protein complexes, the

nature of the binding sites, the strength of these interactions, the variations in these interactions

with solute structure, and the kinetics of these reactions. The possible effects of metabolic diseases

on these processes, including the impact of alterations in the structure and function of proteins, are

also considered.
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1. Introduction

Metabolomics is a field that involves the study of low mass compounds (i.e., metabolites)

that are produced through metabolic processes [1,2]. Metabolites are part of a collection of

chemicals known as the “metabolome”, which can include small molecules that are found in

cells, tissues, organs, or biological fluids. The area of metabolomics is of interest because

the identity and concentration of metabolites can provide information about cellular activity

and can be directly related to processes such as protein and gene expression [1–3]. This
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means that metabolomics can provide information on the phenotypes of individuals at the

molecular level [3]. In addition, the characterization and examination of metabolites could

lead to new discoveries in biomedical research and personalized medicine [1,3].

Research in metabolomics began in the late 1990s and early 2000s, with the emphasis at that

time being on the effects of different metabolites on the gene expression of bacteria and

yeast [1]. The first examples of metabolomic studies utilized two-dimensional thin-layer

chromatography separations to characterize metabolites in samples. This provided

researchers with evidence that variation in the concentrations of metabolites can affect

cellular activity [1,4–6]. Further progress in the area of analytical methods such as structural

characterization and separation methods has resulted in the development of new instruments

and techniques that can be used to provide high resolution information and data from

complex samples such as tissues and cells [1,2].

Research in metabolomics can involve either targeted or untargeted approaches [7]. In a

targeted approach, researchers use qualitative techniques such as nuclear magnetic

resonance (NMR) spectroscopy and mass spectrometry (MS) for the identification,

quantification, and structural characterization of specific metabolites. This information can

be used to examine specific classes of metabolites and to provide information on the

biochemical pathways that are involved in metabolism [2]. In an untargeted approach,

scientists use global profiling to analyze the group of chemicals in a metabolome as a whole.

This second approach is less specific and sensitive than the targeted approach but allows for

the highest possible coverage of the metabolites that may be involved in biochemical

pathways [7].

A significant amount of recent research has been devoted to metabolic profiling, or the

identification and measurement of the different metabolites that are present and produced in

the metabolome [8]. However, it is also important to consider the interactions that occur

between metabolites and biological agents, such as the binding of cofactors to enzymes,

hormones to receptors, and drugs or their metabolites to proteins [8]. Information on these

interactions can be combined with the structural data to provide a better understanding of the

regulatory networks and connections in biological pathways. Such information, in turn,

could provide a better understanding of how healthy and disease states differ at the

molecular level and could provide vital data that can be used for pharmaceutical

development [7,9].

This review will look at previous studies that have examined biological interactions as

related to metabolites and proteins as binding agents. This will include an overview of the

various methods and techniques that have been used in this work to study metabolite-protein

interactions. A summary will also be provided of the different types of metabolite-protein

binding interactions that have been investigated with these approaches. In addition, the

possible effects that metabolic diseases may have on these interactions will be considered.

2. Techniques for examining metabolite-protein interactions

The characterization of metabolite-protein interactions can provide a better understanding in

clinical diagnostics of the cellular activity and the biochemical pathways that are present in
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various medical conditions [1–3,9]. There are many methods that can be used to examine the

binding of metabolites with proteins. These methods may involve the direct examination of

binding that occurs between proteins and low mass drugs, hormones and their metabolites,

or may involve an examination of the free concentrations of these molecules [9–12]. The

approaches that are used for this purpose can be divided into three categories: in vitro, in

vivo and in silico techniques [9,11–46].

2.1. In vitro methods for studying metabolite-protein interactions

In vitro methods are the most popular techniques used to characterize metabolite-protein

interactions. This approach involves the use of standard, well-controlled conditions and

reagents that are used in the laboratory to mimic conditions seen in biological systems. To

examine metabolite-protein interactions, in vitro methods may use a binding assay (e.g., one

based on ultrafiltration or equilibrium dialysis) to examine an interaction or to identify the

chemicals that are involved in this process [9]. This approach can provide information such

as the strength of the interaction, as well as the thermodynamics and kinetics of binding and

possible conformational changes that occur as a result of the interaction [13–15].

Alternatively, an in vitro study may make use of a method that directly examines the

structure of a protein and a bound metabolite, such as occurs in X-ray crystallography or

NMR spectroscopy [1,16–20]. Other methods may examine the protein-metabolite complex,

as demonstrated with mass spectrometry [24–29].

There are many in vitro approaches that can be used to examine the binding of proteins with

small molecules and their metabolites. For instance, radiometry and fluorimetry can be used

with a binding assay by employing labeled metabolites that contain either a radioisotopic

label or fluorophore, respectively [10,21–23]. These labeled metabolites are then incubated

with proteins and the signal that is produced from the label is measured, such as through a

displacement assay or a proteome microarray [10,23]. Radioisotopic labeling has been

applied to enzymes to determine their activity in metabolomic reactions [9]. An example

involved the screening of potential inhibitors for an enzyme, in which the substrate was

radioactively labeled and the resulting metabolite profiles were analyzed and measured [21].

Fluorescence labeling can provide similar results to radiolabeling; however, this method can

also be used to identify and determine the location of a binding site for a metabolite on a

protein, such as by observing the displacement of specific probes that are bound to known

locations on a protein [10].

Surface plasmon resonance (SPR) and calorimetry are two other methods that can provide

information on the strength of protein-metabolite binding and the thermodynamics or

kinetics of this interaction [13–15]. Studies based on SPR utilize an immobilized protein on

a sensor chip, in which changes in the resonance energy (e.g., from binding of the protein

with a target) are detected [9]. The change in this signal is related to the mass of the bound

metabolites and can be used to determine the equilibrium constants for this process or, if

examined over time, the association and dissociation kinetics that occur between the

metabolite and protein during binding [9]. The reaction between a metabolite and protein

can result in heat being absorbed or given off [9,13]. Calorimetry can be used to measure the

overall enthalpy of the binding reaction between a metabolite and a protein [13].
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NMR spectroscopy and X-ray crystallography are two tools that have been used to

characterize the structures of metabolite-protein complexes [9,16–20]. NMR spectroscopy

has often been used in recent years for characterizing and identifying metabolites in

biological samples, but this method can also be used to examine conformational changes

that occur during the binding of metabolites with proteins [18–20]. X-Ray crystallography

can also give structural information on such interactions by providing detailed information

on the binding sites and active sites for hormones, drugs and their metabolites or related

compounds on proteins and enzymes [16–17], as is illustrated in Figure 1 [30].

Mass spectrometry can not only be used as a tool for analyzing structure and identity of

metabolites, but it can be used to analyze metabolite-protein interactions in which

information about enzymatic processes or binding by small molecules is generated [9].

Experiments utilizing various types of mass spectrometry, such as quadrupole mass

spectrometry or matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

(MALDI-TOF MS), have allowed for monitoring of the resulting products and analysis of

the reaction kinetics of enzyme-substrate reactions [7,24,25]. Further analysis through high

resolution mass spectrometers (e.g., an orbitrap or Fourier transform ion cyclotron resonance

mass spectrometry) has resulted in accurate analyses of enzymatic activities in which the

intermediate steps in enzymatic reactions can be identified [26–29].

Various separation techniques can also be used to examine metabolite-protein interactions.

Examples of traditional methods that have often been utilized for this purpose are

equilibrium dialysis, ultrafiltration, and ultracentrifugation [9,31–33]. Equilibrium dialysis

and ultrafiltration can both be used to separate protein-bound metabolites from free

metabolites through the use of a semipermeable membrane. These methods are commonly

applied to binding studies to determine the affinity of proteins with drugs and small solutes

but can be employed in the same way to examine the interactions of metabolites with

proteins [31]. Ultracentrifugation can be used to provide a similar separation of free and

protein-bound forms of a metabolite by utilizing a gravitational field in combination with a

density gradient to separate these fractions [9,32]. However, each of these methods does

have limitations, such as difficulty in detecting small free solute fractions, undesirable

adsorption of solutes onto the membrane (e.g., in ultrafiltration or equilibrium dialysis) or

overestimation of the free fraction due to release of the bound solute during the separation

process [33].

Various chromatographic techniques have also been employed to separate free and protein-

bound metabolite fractions [34]. As an example, size exclusion chromatography (SEC) can

be applied to this type of analysis when metabolite-protein complexes and free metabolites

have a sufficiently large difference in size. In this type of studies, metabolites or small

molecules are incubated with a protein, and SEC can be used to remove the small molecules

from proteins [34]. Such a method can be used for either the isolation and preparation of

metabolite-protein complexes, which can later be analyzed by other methods, or can be used

in binding studies to provide information on the association equilibrium constant for a

metabolite-protein interaction [8,34,35].
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Affinity chromatography and high-performance affinity chromatography (HPAC) have also

become popular for analyzing solute-protein interactions [35–38]. These affinity methods

have an immobilized biological molecule, such as a protein, as the stationary phase. When

used in a low-performance setting, affinity chromatography can be used in a similar way as

SEC in that it can be used for preparation and purification. The use of more rigid and

efficient supports in HPAC allows this approach to be used as a rapid and relatively high-

throughput method for providing information about solute-protein interactions. This

information can include data on the affinity, thermodynamics and kinetics of these

processes, as well as information on the types of sites that are involved in the interaction

(see Figure 2) [35–39].

Capillary electrophoresis (CE) is another separation method that can be used to examine

metabolite-protein binding [9,37,40,41]. One way this method can be used is to separate the

free and bound metabolites through the differences in their size-to-charge ratios. This

approach can be utilized alone to determine the affinity of metabolite-protein binding or

combined with other methods such as mass spectrometry to examine this interaction [41].

One form of CE is affinity capillary electrophoresis (ACE), in which a biological molecule

such as a protein is used as a running buffer additive, thus making it possible to obtain data

on the interactions of solute components with this additive [40]. Like HPAC, ACE is a

relatively fast method and can be used with small amounts of sample for the screening or

analysis of metabolite-protein interactions [38,40].

2.2. In vivo methods for studying metabolite-protein interactions

Although in vitro methods can provide detailed information about metabolite-protein

interactions, in vivo analysis can provide a better representation about the metabolite-protein

interaction within a biological sample [8,9]. This is particularly true in a situation where a

protein may undergo post-translational modifications that result in changes in the protein’s

interactions with solutes such as drugs and their metabolites [9]. In vivo methods are often

similar to techniques used for in vitro studies but must be able to work with complex

samples. In many cases, clinical samples from patients can be obtained and analyzed

through approaches such as labeling, NMR or MS structural characterization, and affinity

separation methods. By utilizing in vivo studies, researchers are better able to understand the

effect of disease states on metabolite-protein interactions, as well as related biochemical

pathways and regulatory processes [9,39].

2.3. In silico methods for studying metabolite-protein interactions

Another area of examining metabolite-protein interactions is through in silico tools [9].

These methods utilize computational schemes to determine the docking configurations of a

metabolite’s binding sites on proteins or enzymes, as obtained through the use of molecular

modeling or quantum mechanics [42,43]. This approach can provide information about the

structure of a metabolite-protein complex at a given binding site through an analysis of the

most thermodynamically-favorable configurations. These computational methods can result

in docking predictions that have a 1.5 to 2 Å accuracy with success rates of 70–80% [43]. If

the location of a binding site is not known in advance, a homology method can be used to

predict binding sites on a protein through the use of the protein’s amino acid sequence and
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chemical structures of the metabolites [44]. This method can allow for accurate prediction of

ligand-binding proteins and enable the development of a database for these peptide

sequences selected for binding to different metabolites [9,45]. These in silico methods can

be combined with in vitro analysis to optimize the structural characterization of metabolite-

protein interactions, as demonstrated in NMR experiments [46].

3. Interactions of proteins with hormones and related metabolites

Hormones are chemicals that are secreted by endocrine glands. Hormones play a significant

role in many regulation pathways, including metabolism, growth and development [47,48].

Examples of low mass hormones include various types of steroids (e.g., estrogens and

testosterone) or thyroid hormones (e.g., thyroxine) [49–52]. As these chemicals enter the

circulation, they are carried to their target tissue or organ to produce an effect. Many low

mass hormones are transported in the bloodstream through their binding to serum proteins

[51,52]. These transport proteins may bind to a broad range of hormones and other targets,

as occurs for human serum albumin (HSA), or they may be specific for a given hormone or

group of hormones, as is the case for thyroxine-binding globulin (TBG) [49]. Once it has

been delivered to its target tissue or organ, the hormone can then bind with a receptor to

produce an effect. This section will consider interaction studies that have been reported for

several types of hormones or their metabolites with serum proteins and hormone receptors.

3.1. Thyroid hormones

Thyroid hormones are a group of iodothyronine compounds that are responsible for

metabolism, growth, development, and the regulation of iodine within the body [47]. Many

of these hormones are bound in the bloodstream to both HSA through low-to-moderate

affinity interactions and to transthyretin or TBG through higher affinity processes [48,49].

An important compound in this group is the hormone L-thyroxine (L-3,5,3′,5′-

tetraiodothyronine, or T4), which can be metabolized to form L-3,5,3′-triiodothyronine (T3)

[53,54]. Both T4 and T3 are actively involved in regulatory processes and are more than

99% bound to transport proteins in blood [49,53,54].

Several studies have explored the structural differences between thyroid hormones and

related compounds as they bind to serum proteins or cell surface receptors [53–55]. One

report utilized HPAC to characterize the binding of T4, T3 and related compounds with

HSA; the results were used to examine both the affinity constants and thermodynamic

properties of these compounds in their interactions with this protein [54]. Some typical

results that were obtained in competition studies and through the use of site-specific probes

are provided in Table 1. The results indicated that these thyroid hormones were interacting

with HSA at both of the major drug-binding sites on this protein for drugs (i.e., Sudlow sites

I and II) [53,54]. A comparison of the data obtained for the thyroid hormones and their

metabolites indicated that the number and position of iodines, the phenol group, and the

thyronine backbone were all important during the binding of these compounds to HSA [54].

Structural studies have also been carried out through the use of modeling and

crystallographic data to examine the binding of thyroxine and related compounds to a cell

surface receptor for thyroid hormones on αvβ3 integrin [55].

Matsuda et al. Page 6

J Chromatogr B Analyt Technol Biomed Life Sci. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3.2. Steroid hormones

The protein binding of steroid hormones and their metabolites has also been characterized

through a variety of techniques. As an example, the crystal structure of the serum transport

protein sex-hormone binding globulin (SHBG) was determined for a complex of this protein

with 5α-dihydrotestosterone [56]. SHBG is an important binding agent in blood for many

sex hormones and related compounds, including estradiol, testosterone, androste-5-ene-3β,

17β-diol, and 5α-dihydrotestosterone [47,49,56]. The information that was obtained from

the crystal structure for the 5α-dihydrotestosterone/SHBG complex was compared with the

results of previous binding studies for steroid hormones with SHBG [57,58], and this

allowed a model of the binding site for these compounds to be developed. This model gave

good agreement with prior data from site-directed mutagenesis [59–61] and photolabeling

experiments [62,63] that have been conducted with SHBG [58].

Another structural study looked at the interactions between the human androgen receptor

(AR) ligand-binding domain and several androgen-related steroid hormones and metabolites

[30]. The compounds that were examined included testosterone, dihydrotestosterone, and

tetrahydrogestrinone. An example of some of the results was provided earlier in Figure 1.

Both the binding affinity and structural characteristics for the complexes of these agents

with AR were explored. Tetrahydrogestrinone was found to have the highest affinity for the

AR ligand-binding domain. This strong binding was thought to be due to the presence of

greater van der Waals interactions for this compound than for the other steroids that were

studied. Dihydrotestosterone had a higher affinity than testosterone, an effect that was

proposed to be due to the stronger electrostatic interactions between the structure of

dihydrotestosterone and the AR binding domain [30].

4. Interactions of proteins with fatty acids and related metabolites

Fatty acids can also have significant binding to proteins. These compounds are carboxylic

acids that contain hydrocarbon chains with lengths of 4 to 36 carbons. In some fatty acids,

the hydrocarbon chain is unbranched and fully saturated, such as myristic acid (C14:0). In

others, the chain contains one or more double bonds, as is the case of linoleic acid (C18:2)

[48]. Long chain fatty acids (i.e., fatty acids with chains containing 16–20 carbons) are

particularly critical for a diverse set of cellular and metabolic functions. For instance, long

chain fatty acids act as fuel that can be stored as triacylglycerols (or triglycerides) and that

can be used to generate ATP through β-oxidation in mitochondria and peroxisomes. In

addition, fatty acids are the precursors of phospholipids and glycolipids, which are needed

for the construction of membranes [64].

Long chain fatty acids such as oleic (C18:1), palmitic (C16:0), linoleic (C18:2), stearic

(C18:0), arachidonic (C20:4) and palmitoleic (C16:1) are crucial intermediates in lipid

metabolism [65]. They tend to have low solubility in water and are typically bound in

plasma to proteins, with less than 0.1% being present as non-bound, or “free”, fatty acids.

Most of the long chain fatty acids in the blood are transported by HSA [65–68]. HSA carries

between 0.1 and 2 mol of fatty acids under normal physiological conditions. However, this

value can rise to as high as 6 mol fatty acid per mol of HSA in the peripheral vasculature
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during fasting or exercise or disease states such as diabetes, liver and cardiovascular disease

[67].

Many recent studies have attempted to locate fatty acid binding sites on HSA by using X-ray

crystallography or NMR spectroscopy [67,69–73]. Some typical results of such studies are

provided in Figure 3 [74,75]. In addition, site-directed mutagenesis has been utilized with

these methods to see how specific changes in peptide sequence of HSA will affect its

binding properties and structure [67,69]. Such studies have revealed that five to seven

binding sites on HSA may be occupied by medium and long-chain fatty acids [71]. These

binding sites are asymmetrically distributed across the three domains of HSA, with three of

these sites overlapping Sudlow sites I and II [70]. All of these sites have similar structural

interactions with fatty acids, providing a deep hydrophobic pocket for the methylene tail and

containing two or three polar surface residues nearby which provide a binding location for

the carboxylic head group of the fatty acid.

A variety of techniques have also been employed to estimate the binding constants for fatty

acids at their sites on HSA. The strongest of these interactions have association equilibrium

constants that range from 105 and 108 M−1 [66,74–77]. It has been observed for fatty acids

with multiple binding sites on HSA that the value of the individual association constants for

each mole of added fatty acid increased as the length of the fatty acid chain was raised [71].

It was later found that the association equilibrium constant for the first bound fatty acid

increases with chain length but that this increase does not necessarily occur in a linear

fashion; instead, the affinity is generally dependent on the hydrophobic portion of the fatty

acid and how it interacts with HSA [69]. It has further been demonstrated that some fatty

acids can have direct competition with drugs on HSA or can lead to allosteric effects during

these binding processes [72,74,75,78].

5. Interactions of proteins with drugs and related metabolites

Numerous studies have examined the interactions of drugs and their metabolites with

proteins. Like low mass hormones, many drugs and their metabolites are transported

throughout the body through the use of serum transport proteins. Approximately 43% of the

1500 most commonly used pharmaceutics have at least 90% binding to such binding agents

[35,79]. These interactions usually involve proteins that can bind to a broad range of targets,

such as HSA and alpha1-acid glycoprotein (AGP), and can play a significant role in

determining the activity, distribution, rate of excretion or metabolism, and toxicity of many

pharmaceutical agents in the body [80]. In recent years there has also been interest in how

the presence of drug metabolites can affect the distribution, apparent activity, and protein

interactions of the parent drug [81].

5.1. General effects of metabolites on drug-protein interactions

Many studies have investigated the difference between drugs and their metabolites in their

overall binding in serum or to specific serum proteins. For instance, equilibrium dialysis was

used to examine the binding of propisomide and its major metabolite to human serum and

isolated serum proteins such as AGP [82] and the binding of acetohexamide and its

metabolite (−)-hydroxyhexamide to HSA [83]. Another study utilized a similar approach to
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investigate the binding by tolterodine and its 5-hydroxymethyl or N-dealkylated metabolites

to human serum, HSA and AGP [84]. Equilibrium dialysis was further used to measure the

binding of tizoxanide, an active metabolite of the drug nitazoxanide, with albumin and AGP

[85].

A few studies have been conducted to provide a more detailed comparison of the binding

regions and binding constants for drugs and their metabolites on serum proteins. As an

example, HPAC and competition studies have been used to compare the binding regions on

HSA for the drug phenytoin and its two major metabolites: 5-(3-hydroxyphenyl)-5-

phenylhydantoin and 5-(4-hydroxyphenyl)-5-phenylhydantoin (i.e., m-HPPH and p-HPPH,

respectively) [81,86]. In an examination of both the major and minor drug binding regions

of HSA, phenytoin was found to have direct binding at Sudlow site II and the digitoxin site,

with association equilibrium constants at these regions in the range of 0.65–1.04 × 104 M−1

at 37 ºC and pH 7.4 (see Table 2). The same drug had allosteric effects plus possible direct

binding at Sudlow site I and the tamoxifen site [86]. However, m-HPPH and p-HPPH only

had significant interactions with Sudlow site II, with binding constants of 0.32–0.57 × 103

M−1 for this region [81]. Thus, the parent drug and its metabolites not only had different

affinities for HSA but also had differences in the number of their interaction sites with this

protein [81,86].

5.2. Effects of chirality on drug metabolite-protein binding

Another factor to consider for drug- and drug metabolite-protein binding is the effect of

chirality on these interactions. Chiral drugs have been estimated to represent 40–50% of all

drugs that are currently on the market [87,88]. The separate chiral forms for some drugs can

exhibit a wide variation in their toxicology, pharmacokinetics and metabolism. In the

extreme case, one enantiomer may produce the desired function in treatment while another

may be inactive or even produce undesired or toxic effects. This is because within the body

numerous compounds (i.e., enzymes, plasma proteins, and other biomolecules) work as

chiral selectors, causing them to sometimes bind or metabolize each chiral form of a drug

differently [89–95].

These differences have made it possible in the past to use protein-based HPLC columns,

such as those containing serum proteins, for separating the various chiral forms of many

drugs [93–95]. The same approach has been utilized to separate and measure chiral drugs

and their metabolites in biological samples. For instance, an AGP column was recently used

with fluorescence detection to measure the enantiomers of tramadol and its two major

metabolites, O-desmethyltramadol and N-desmethyltramadol, in plasma samples (see Figure

4). This method was then used to examine the pharmacokinetics for each of these

compounds in the body [96]. A similar approach has been used with LC-MS to examine the

chiral forms of methadone and its metabolites 2-ethylidene-1,5-dimethyl-3,3-

diphenylpyrrolidine and 2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline in hair samples from

patients undergoing methadone maintenance therapy [97].

As has been observed for their parent drugs, the different forms of a chiral metabolite can

also differ in how they interact with proteins. One report compared the chiral forms of

oxybutynin and its metabolite, N-desethyloxybutynin, in their binding and competition on
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HSA and AGP. The results showed that the affinity of oxybutynin enantiomers on AGP was

much higher than on HSA, and that the enantiomers of N-desethyloxybutynin and

oxybutynin were all bound by the same site on AGP [33]. Another study involving the

phenytoin metabolites m-HPPH and p-HPPH compared the dissociation rates of the chiral

forms of these metabolites from an HPLC column containing immobilized HSA [98].

Dissociation rate constants of 8.2–9.6 s−1 were obtained at pH 7.4 and 37º C for the

enantiomers of m-HPPH, while values of 3.2–4.1 s−1 were obtained for the enantiomers of

p-HPPH. These results were then used along with separate estimates of the association

equilibrium constants to also compare the association rate constants for these metabolites

and their enantiomers [98].

5.3. Use of binding data to characterize protein interaction sites for drug metabolites

A number of reports have used binding data for drugs, their metabolites and related analogs

to learn about the binding site of these compounds on a protein. Binding and retention data

that have been acquired by HPAC have been used to examine the binding of several types of

compounds with immobilized serum proteins. This approach has been used to examine the

binding of warfarin and coumarin compounds to HSA [99–101], as well as the binding of L-

tryptophan and various indole compounds to this protein [102–104]. The same general

method has been used to compare the binding of several sulfonylurea drugs with HSA and

various preparations of glycated HSA [39,105–110].

If a relatively large group of compounds is considered in a binding study, the results can be

used to create a quantitative structure-retention (or reactivity) relationship (QSRR) to

describe the site at which these agents are binding to a protein [111–114]. For instance,

binding studies based on HPLC or CE using serum proteins can be used to mimic biological

systems and to quickly study how changes in the structure of an applied drug or analog will

alter these interactions [115,116]. This format has been used to build models that describe

the binding of HSA with benzodiazepines [117–119]. Such an approach has also been

utilized to examine the binding of AGP with beta-adrenolytic drugs, antihistamines, amino

alcohols, cyclic vinca alkaloid analogs, and quinazolone derivatives [116,120–125].

6. Interactions of proteins with xenobiotics and related metabolites

The term “xenobiotics” refers to chemicals that are produced synthetically and that are not

normally found in biological organisms [126]. Drugs represent one type of xenobiotic, but

others include environmental pollutants and food additives [126–128]. When they enter the

body, xenobiotics can be metabolized through various enzymatic processes. The resulting

metabolites, in turn, can sometimes interact with proteins and compete for endogenous

compounds for common binding agents [126,129].

Several studies have examined the effects that xenobiotics and their metabolites may have

on hormone-protein binding [127,130,131]. For example, the effect of polybrominated

diphenyl ethers (PBDEs) on the binding of thyroid hormones to serum proteins has been

examined [131]. It has been suggested in several studies that environmental exposure to

PBDEs can result in decreased thyroid hormone concentrations in serum, leading to possible

neurotoxicity and behavioral effects [131–133]. This effect may be linked to the fact that,
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when metabolized, PBDEs become hydroxylated and produce a chemical structure similar to

that of T4 and its metabolites. It has been further found that PBDE metabolites are able to

bind to T4-binding proteins in serum, which could result in the displacement of thyroid

hormones. One study examined the binding of transthyretin and TBG with fourteen

hydroxylated PBDE compounds through various methods. A fluorescence displacement

assay indicated that hydroxylated PBDEs could compete with T4 for binding sites on

transthyretin, while work with circular dichroism indicated that hydroxylated PBDEs could

bind to the same sites as T4 on TBG and transthyretin [131]. Binding and competition with

T4 has also been noted for some polychlorinated biphenyls (PCBs),

dichlorodiphenyltrichloroethane (DDT), and related metabolites or compounds with respect

to human thyroid receptor, TBG, and transthyretin [130].

Another report examined the effects for a number of xenobiotics and their metabolites on the

binding of 17β-estradiol to the estrogen receptor and on the binding of 5α-

dihydrotestosterone to the androgen receptor, androgen-binding protein, and SHBG [127].

Compounds that were tested included hexachlorocyclohexane, DDT, methoxychlor,

pentachlorophenol, and nonylphenol. It was found that some of these xenobiotics and

metabolites could cause a significant decrease in the binding of 5α-hydrotestosterone or

17β-estradiol to their binding proteins. It was further found that binding by these xenobiotic

agents could be selective for the steroid receptors and binding proteins that were tested

[127].

Polyphenolic compounds are flavonoids that are often used as dietary supplements [128].

Ultrafiltration and CE were used to examine the binding of these compounds to the human

serum proteins HSA and AGP. Although similar in structure, these compounds did vary in

their affinity towards HSA, with a high level of binding being observed for those

compounds with hydrophobic properties and a carbonyl at position C(4) in their structure. It

was further noted that these hydrophobic properties did not play a major role in the ability of

polyphenolic compounds to bind with AGP [128].

7. Variations in protein structure and binding due to metabolic processes

Another way in which changes in metabolites may affect solute protein interactions is

through changes that are created in the structure of the protein. In some cases, these changes

may be a direct result of the modification of a protein by a metabolite (e.g., glycation, as

discussed in the next section) [39,80,93,134]. In others, this change may be a response to

differences in a protein’s environment that are created as the metabolic profile is altered

(e.g., as might occur through oxidation) [135,136]. This section will discuss both types of

effects using changes that have been observed in serum transport proteins and binding

agents as examples.

7.1. Human serum albumin

One protein that has been found to be altered by some metabolic disease is HSA. As has

been indicated earlier, HSA is a serum protein that plays a fundamental role in the reversible

binding and transport of metabolites, drugs and various endogenous ligands, such as fatty

acids [65,137]. HSA is normally found in blood at concentrations ranging from 30–50 g/L
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and accounts for approximately 60% of the total serum protein content [65]. Binding to HSA

is known to greatly influence the pharmacokinetics and activity of many common drugs

[49,138–140]. In addition, HSA can increase the solubility of lipophilic drugs, sequester

toxins, and act as an important antioxidant in plasma [49,65].

Several past studies have noted that the chemical modification of HSA can alter its binding

to drugs, hormones and other solutes. For instance, the reaction of HSA with p-nitropheny

acetate, which is thought to mainly modify Tyr-411 at Sudlow site II, can change the

binding of various solutes with this protein [141]. The modification of Trp-214 by o-

nitrophenylsulphenyl chloride has been demonstrated to change the stereoselectivity and

binding affinity of Sudlow site I of HSA [142]. Similar work has been presented that has

examined the effects of modifying the lone free cysteine group on HSA by reacting this

protein with ethacrynic acid [143,144].

Diabetes is a metabolic disease in which the structure of HSA can be modified. This disease

is actually a group of disorders that are characterized by abnormal high levels of blood

glucose (i.e., hyperglycemia) that result from insulin deficiency and/or insulin resistance

[145]. Many of the long term complications of diabetes, such as heart disease and nerve

damage, are associated with the non-enzymatic glycation of proteins [145,146]. Glycation

starts with the nucleophilic attack of a reducing sugar (e.g., glucose) onto some of the

primary amine groups on proteins to form a reversible Schiff base (see Figure 5). This

intermediate can then slowly rearrange to form a more stable Amadori product [145–147].

Oxidation of the Amadori products or free sugars can also generate reactive α-

oxaloaldehydes that can react with both lysines and arginines on proteins to form advanced

glycation end-products (AGEs) [147].

In recent years, it has been found that glycation can affect the binding of several endogenous

and exogenous solutes with HSA. For example, L-tryptophan is an essential amino acid

[148] and has been extensively used as a site-selective probe for Sudlow site II of glycated

HSA and normal HSA [105–108,149]. Recent binding studies using glycated HSA with

levels of modification similar to those found in diabetes found an increase of 4.7 to 5.8-fold

in the affinity of L-tryptophan for this protein at 37°C [106,149]. Sulfonylurea drugs are a

group of anti-diabetic drugs that are used in the management of type 2 diabetes; these drugs

are also highly bound to serum proteins such as HSA. Binding studies based on HPAC have

found that glycation can affect the binding strength of these drugs to HSA, with both the

degree of glycation and the specific type of drug influencing the size of the change [39,105–

110].

As indicated in the last section, fatty acids are the major endogenous ligands of HSA and are

also known to have many binding sites on this protein [75]. Reports that have examined the

combined effect of glycation and the presence of various fatty acids on the binding of

sulfonylurea drugs to HSA have found that glycation increases the overall affinity of these

drugs to HSA, while the addition of increasing amounts of fatty acids causes a decrease in

affinity [74,76]. It has further been noted that glycation could produce changes of at least 3-

to 5-fold in the affinities of some fatty acids at their sites of competition with sulfonylurea

drugs when comparing the binding of these solutes to normal HSA [76].
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Methylglyoxal is a highly reactive metabolite of glucose that has been implicated in several

chronic diseases associated with diabetes [150,151]. The elevated concentrations of

methylglyoxal in diabetes patients can also lead to protein modification and the formation of

AGEs through the reaction of methylglyoxal with arginine or lysine residues. A recent

report using quantitative MS and multiple reaction monitoring found that a major site for

modification by methylglyoxal on HSA occurs at Arg-257, which is located in Sudlow site I.

Molecular modeling conducted in the same study indicated that a decrease in binding by

warfarin may occur due to these modifications when comparing glycated HSA and normal

HSA [151].

7.2. Alpha1-acid glycoprotein

A second type of serum transport protein that can be affected by metabolic diseases is AGP.

AGP is an acute-phase protein that is responsible for binding and delivering numerous basic

and neutral drugs in the bloodstream [121]. The concentration of AGP in blood can vary

over a wide range and is affected by systemic tissue injury, inflammation and infection. In

addition, the glycosylation of AGP can be altered in some disease states, such as rheumatoid

arthritis, systemic lupus erythematosus and autoimmune thyroid disease [152]. These

changes are important because they can also alter the binding of drugs to AGP. As an

example, the affinity of disopyramide for AGP has been found to be affected by the

biantennary glycan structures for this protein [153,154]. It has also been reported that

genetic variants of AGP can have a significant effect on binding by chiral drugs such as

disopyramide and warfarin [153,155].

A number of reports have looked at how changes in AGP binding can affect parent drugs

compared to their metabolites. One study evaluated the effect of AGP on lidocaine and its

active metabolites monoethylglycinexylidide and glycinexylidide during continuous epidural

anesthesia in infants and young children. The results indicated the AGP concentration in

plasma could be used as an index to monitor and prevent the toxicity caused by the

accumulation of monoethylglycinexylidide during the continuous administration of

lidocaine [156]. Another report looked at the concentrations of vecuronium and its

metabolite 3-OH desacetylvecuronium in children who were receiving phenytoin or

carbamazepine for chronic anticonvulsant therapy [157]. These last two drugs were of

interest because many anticonvulsant drugs have been shown to increase the concentration

of AGP in plasma, which can then increase protein binding to cationic drugs and alter their

distribution. It was found that the increase in AGP concentration associated with the

anticonvulsant therapy did not significantly contribute to resistance to vecuronium [158].

7.3. Lipoproteins

Lipoproteins are another set of binding agents in serum that can be affected by metabolic

diseases. Lipoproteins are macromolecular complexes of proteins and lipids that transport

hydrophobic lipids and related compounds, such as cholesterol and triglycerides, throughout

the body [158–161]. Lipoproteins are also known to interact with several basic and neutral

hydrophobic drugs in blood [99,162–172]. Examples of drugs that bind to lipoproteins are

propranolol and verapamil [37,162–169,173–175].
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Lipoprotein concentrations in blood can vary with different disease states. For example, the

levels of low-density lipoprotein (LDL) in plasma can increase in diseases such as

atherosclerosis and hyperlipidemia [176]. In addition to changes in the levels of lipoproteins

in the circulation, metabolic diseases often result in modifications in lipoprotein structures.

For instance, increased amounts of LDL that have been modified by AGEs are found in

individuals with diabetics and non-diabetics with renal failure. Glycation of LDL may lead

to the formation of foam cells and an increase in atherosclerosis. In addition, glycated LDL

is more susceptible to further modifications due to oxidation [135].

The oxidation of lipoproteins occurs through free radicals, such as peroxyl radicals, which

are released from cells and chemical reactions [136]. These radicals can react with

lipoproteins, depleting the particle’s antioxidant defense and initiating oxidation of the lipid

core. In the later stages of this process, the surface protein also becomes modified. The

oxidation of lipoproteins, specifically LDL, leads to atherosclerosis [136]. In addition to the

increased risk of atherosclerosis, oxidized lipoproteins may also impact the ability of the

complexes to bind and carry basic and neutral drugs throughout the body [176].

The effects of LDL oxidation on drug binding have been evaluated by using CE and using

verapamil and nilvadipine as models for basic and neutral drugs, respectively [176]. It was

found that the affinity of these drugs increased with the amount of LDL oxidation. In

addition, the binding of verapamil was increased more than it was for nilvadipine,

suggesting that basic drugs were more sensitive to oxidation effects. No stereoselective

binding was detected between LDL and these model drugs at any oxidation state [176].

However, other studies based on HPAC have noted different binding for the chiral forms of

some drugs to LDL [174,175].

8. Conclusion

The field of metabolomics has seen great growth in recent years because of the wealth of

information it can provide about biochemical pathways and processes. This review

examined previous reports that have looked at the interactions of metabolites with proteins.

The first topic discussed was an overview of techniques that have been used to characterize

and study metabolite-protein binding. These methods have been used in vitro and in vivo to

provide information on the structures of metabolite-protein complexes and to examine the

nature of metabolite-protein interactions. Computational studies using in silico tools have

been used to provide additional data on metabolite-protein complexes and interactions.

This review next described numerous studies that have investigated the binding of various

types of small solutes and their metabolites with proteins. This included work that has been

carried out with hormones, fatty acids, drugs or other xenobiotics, and their metabolites with

transport proteins and receptors. These examples have considered the structures of the

resulting solute-protein complexes, the nature of the binding sites, the strength of these

interactions, the variations in these interactions with solute structure, and the kinetics of

these reactions. Studies that have examined the effects of various metabolic processes on the

structure and activities of proteins, and on the corresponding interactions of solutes with

these proteins, were also summarized.
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Although most past work in metabolomics has been concerned with the structure and

analysis of metabolites, research in metabolite-protein interactions is still a relatively new

area. Based on the research that has already been carried out, it is already clear that data on

metabolite-protein interactions can provide useful information on biological processes that

involve hormones, drugs and other low mass solutes. It is further expected that this type of

research will continue to grow in the future as metabolomics becomes more widely used in

biomedical research, pharmaceutical science, and personalized medicine.
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Highlights

• Interactions involving metabolites and proteins as binding agents are discussed.

• An overview is given of previous methods used to study these interactions.

• Drug-, hormone-, and fatty acid-protein interactions are considered.

• Some effects of metabolic diseases on protein binding are also examined.

Matsuda et al. Page 24

J Chromatogr B Analyt Technol Biomed Life Sci. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Crystal structure for the complex of human androgen receptor ligand-binding domain with

testosterone (Testo). Reproduced with permission from Ref. [30].
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Figure 2.
Example of a competition study using high-performance affinity chromatography to

examine the interactions of an injected site-selective probe with a solute that is present at a

known concentration in the mobile phase. This example shows the change in the retention

factor (k) that was measured for R-warfarin as a probe for Sudlow site I of human serum

albumin (HSA) in the presence of various concentrations of tolbutamide as a competing

agent. These results were obtained for columns that contained two clinical samples of HSA

that had different levels of modification due to glycation. Adapted with permission from

Ref. [39].
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Figure 3.
Structure of HSA, showing the regions that bind palmitic acid. This structure was generated

using Protein Data Bank (PDB) file ID: 1E7H [75] and is adapted with permission from Ref.

[74].
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Figure 4.
Chiral separation and analysis of tramadol and its major metabolites using HPLC and a

column containing immobilized APG as stationary phase. The results in (a) are for a blank

human plasma sample. The results in (b) are for a plasma sample taken from a volunteer 2.5

hours after receiving a 100 mg dose of racemic tramadol. Symbols: enantiomers of tramadol,

+(T) and −(T); enantiomers of the metabolite O-desmethyltramadol, +(M1) and −(M1);

enantiomers of the metabolite N-desmethyltramadol, +(M2) and −(M2); and internal

standard (fluconazol), IS. Adapted with permission from Ref. [96].
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Figure 5.
Reactions involved in the early stages of glycation of a protein, using human serum albumin

(HSA) as an example [145].
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Table 2

Association equilibrium constants (Ka) and types of binding for phenytoin and its metabolites to various

regions on HSAa

Binding region on HSA Drug or drug metabolite

Phenytoin m-HPPH p-HPPH

Sudlow site Ib Allosteric effects + possible direct binding No binding No binding

Sudlow site IIb Direct binding
Ka = 1.04 × 103 M−1

Direct binding
Ka = 3.2 × 103 M−1

Direct binding
Ka = 5.7 × 103 M−1

Digitoxin site Direct binding
Ka = 6.5 × 103 M−1

No binding No binding

Tamoxifen site Allosteric effects + possible Direct binding No binding No binding

a
All of these results were obtained at 37ºC in pH 7.4, 0.067 M phosphate buffer and are based on data from Refs. [81,86].

b
Sudlow sites I and II are also known as the warfarin site and indole site, respectively.

J Chromatogr B Analyt Technol Biomed Life Sci. Author manuscript; available in PMC 2015 September 01.


