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Abstract

Introduction—The transcatheter mitral valve repair (TMVR) technique utilizes a stent to cinch a

segment of the mitral annulus (MA) and reduces mitral regurgitation. The cinching mechanism

results in reduction of the septal-lateral distance. However, the mechanism has not been

characterized completely. In this study, a method was developed to quantify the relation between

cinching tension and MA area in an ex vivo ovine model.

Method—The cinching tension was measured from a suture inserted within the coronary sinus

(CS) vessel with one end tied to the distal end of the vessel and the other end exited to the CS

ostium where it was attached to a force transducer on a linear stage. The cinching tension, MA

area, septal-lateral (S-L) and commissure-commissure (C-C) diameters and leakage was

simultaneously measured in normal and dilated condition, under a hydrostatic left ventricular

pressure of 90 mmHg.

Results—The MA area was increased up to 22.8% after MA dilation. A mean tension of 2.1 ±

0.5 N reduced the MA area by 21.3 ± 5.6% and S-L diameter by 24.2 ± 5.3%. Thus, leakage was

improved by 51.7 ± 16.2 % following restoration of normal MA geometry.

Conclusion—The cinching tension generated by the suture acts as a compensation force in MA

reduction, implying the maximum tension needed to be generated by annuloplasty device to

restore normal annular size. The relationship between cinching tension and the corresponding MA

geometry will contribute to the development of future TMVR devices and understanding of

myocardial contraction function.

© 2014 Elsevier Ltd. All rights reserved.
*Correspondent author's contact information: Wei Sun, Ph.D., 206 Technology Enterprise Park, Georgia Institute of Technology, 387
Technology Circle, Atlanta, GA 30313-2412, Phone: (404) 385-1245, wei.sun@bme.gatech.edu.
3Shamik Bhattacharya and Thuy Pham contributed equally to the following manuscript
4Shamik Bhattacharya's present affiliation: The School of Science, Engineering and Technology, St.Mary's University, San Antonio,
TX
5Wei Sun's present address: The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology,
Atlanta, GA 30313

Conflict Of Interest: The authors have no conflict of interests.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Biomech. Author manuscript; available in PMC 2015 April 11.

Published in final edited form as:
J Biomech. 2014 April 11; 47(6): 1382–1388. doi:10.1016/j.jbiomech.2014.01.044.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Introduction

Functional mitral regurgitation (MR) is associated with mitral annular dilation and

alternations in subvalvular apparatus such as papillary muscular displacement. Annuloplasty

is the most common repair procedure to correct functional MR. Recently, the development

of transcatheter mitral valve repair (TMVR) offers a great promise for patients who cannot

undergo surgery due to its minimally invasive approach. One of the TMVR techniques

utilizes the proximal location of the coronary sinus (CS) to the mitral annulus (MA) to

deploy a TMVR device within the CS and the great cardiac vein (GCV) (Fig.1). When the

device contracts, it indirectly reshapes the MA by shortening the septal-lateral direction to

decrease MR (Deharrera and Sun, 2007). Several TMVR devices have been developed

including Viacor (Viacor, Inc.), Carillon (Cardiac Dimensions, LLC) and Monarc System

(Edwards Lifesciences, Inc.). Animal studies have demonstrated the short term effectiveness

of TMVR devices to reduce MR (Condado and Velez-Gimon, 2003; Kaye et al., 2003a;

Maniu et al., 2004). However, the initial outcomes from human trials were suboptimal

(Duffy et al., 2006; Harnek et al., 2011; Sack et al., 2009; Siminiak et al., 2009b; Webb et

al., 2006) with report of adverse events including compression of the left circumflex artery,

vessel perforation, device migration and fracture (Duffy et al., 2006; Hoppe et al., 2009;

Siminiak et al., 2007; Siminiak et al., 2009a; Webb et al., 2006). As a result, TMVR devices

are not yet commercialized.

Previous investigation on MA mechanics demonstrated the tension was lower in the

commissural section (17.8 N/m) compared to anterior (40.0 N/m) or posterior (30.6 N/m)

sections of the annulus (Bhattacharya and He, 2009, 2012; He and Bhattacharya, 2008,

2010). These studies offered insights into the underlying mechanism of annular dilatation.

Annuloplasty complicates the annular mechanics by undersizing the dilated MA geometry

(Rabbah et al., 2013). Some studies measured the forces generated by the myocardium on a

prosthetic device and correlated them with changes in MA geometry. The maximum in-

plane MA force generated by the myocardium on a rigid annulplasty ring was 6 – 8 N at

mid-systole (porcine model) (Hasenkam et al., 1994). The maximum force in flexible rings

was in a range of 4.4 – 13.9 N (swine models) (Shandas et al., 2001). Later, the development

of saddle-shape bioprosthetic valve represented a novel advance in design to reduce the

leaflet stress (Gorman et al., 2004; Jensen et al., 2011; Padala et al., 2009; Salgo et al.,

2002). In a comparative study, the forces on the anterior and commissural annular segments

of the flat ring were 0.72 ± 0.14 N and 1.38 ± 0.27 N, respectively, while the saddle-shaped

ring exhibited nearly zero(Jensen et al., 2008).

These studies, however, only provided knowledge of cyclic forces that a device could

experience during implantation, e.g. myocardial forces acting on the device, but not the

force generated by devices necessary to reduce dilated MA. A fundamental question arises:

what are the contributions from active and passive myocardial deformation, hydrostatic

pressure and MA tension to the forces on the devices? The answer will not only facilitate the

design and increase safety of annuloplasty devices but help to understand myocardial

function and MA dilatation mechanism. In this study, an ex vivo technique was developed to

quantify the CS cinching tension. The goal is to form a baseline value of cinching tension

needed to correct dilated MA. The ovine model has been used extensively in experimental
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mitral valve mechanics studies (Gorman Iii et al., 1997; Randall Green et al., 1999) and pre-

clinical studies of TMVR (Byrne et al., 2004; Kaye et al., 2003b; Liddicoat et al., 2003). The

impact of cinching tension on the MA area, septal-lateral (S-L) and commissure-commissure

(C-C) diameters and leakage in dilated valves were investigated.

Materials and Methods

Specimen preparation

Ten fresh adult ovine hearts (313.5 ± 51.9 g) were obtained from a local slaughter house.

The hearts, which were not tested within 48 hours upon arrival, were cryopreserved at

−80°C (Bia et al., 2006). Studies have shown that a short period of cryopreservation do not

induce significant changes in passive vascular tissue mechanical properties (Bia, 2006;

Delgadillo et al., 2010; Langerak et al., 2001; Stemper et al., 2007). For each heart, the left

atrium was carefully removed to expose the mitral valve (MV), the MA, the CS vessel and

CS ostium. Small graphite markers were affixed to the MA to demarcate the area to be

measured (Fig. 2c). A suture was inserted within the CS vessel with one end tied at the GCV

end and the other end exited the CS ostium. The coronary arteries and CS attributes were

occluded by sutures.

The MV cinching system setup

The experimental system consists of a water column, a pump, a clear Plexiglas solution

chamber, a custom-made rigid supporting structure, a slider system, one digital camera and a

computerized data acquisition system (Fig.2a). Each heart was stabilized by fixing the right

ventricle to the custom-made supporting structure placed inside the Plexiglas chamber. The

left ventricle (LV) pressurization was achieved by injecting saline solution into the LV

through a cannula, which was inserted into the ascending aorta vessel and passed the aortic

leaflets. The water column, fabricated with a large-bore tubing attached to the aortic

cannula. Ethylene-Glycol-Tetraacetic acid (EGTA, 2.0 mM) and papaverine (0.1M) were

added to the saline solution (37°C) to minimize the active contraction of muscle fibers in

order to obtain the passive mechanical properties of the heart (Alastrué et al., 2008; Carboni

et al., 2007; Desch and Weizsäcker, 2007; García et al., 2011; Schulze-Bauer et al., 2003).

The LV pressure was controlled by the height between the saline level in the water column

and the mitral annular plane (Yamauchi et al., 2012). A quasi-static system was chosen as

the MV experiences a highest force during peak systole or when it is fully closed. A peak

hydrostatic systolic pressure of 90 mmHg is chosen for the physiological pressure of an

ovine heart (Sakamoto et al., 2006; Siefert et al., 2012c). The leakage volume was measured

by an amount of fluid regurgitated back into the left atrium during pressurization. The

testing chamber was threaded with an outlet tube that drained the regurgitated fluid into a

graduated cylinder for leakage measurements.

The slider system consists of a force lever, which was connected to a 10 N force transducer

mounted on a linear stage. The handle of the linear stage can be manually rotated to linearly

displace the force lever with an accuracy of ± 0.01 mm. The force transducer was connected

to data acquisition device (National Instrument, NI SCC-68/SCC-SG24, NI 6351). A

LabVIEW program recorded the force transducer data at each displacement. The force
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transducer was calibrated prior to each experiment. The MA area was obtained from a

digital camera mounted perpendicular to the annular plane.

Experimental protocol

Each heart was preconditioned by applying 10 consecutive pressure loading (90 mmHg)

cycles. The experimental measurements including the MV cinching tension, MV area and

leakage measurements were obtained during the three phases when the mitral valve was: 1)

open (no pressure, P0), 2) closed (pressurized at 90 mmHg, P90), and 3) altered or dilated at

90 mmHg pressure (P90-D). The P0 was performed to measure the cinching force generated

by the suture inside the CS vessel during the passive relax state. The P90 was chosen as a

baseline value for normal valve function during LV filling. For P90-D, the MV dilation was

achieved by injecting phenol (95%), into the muscular MA using a needle. The toxic

substance in phenol can damage the structure and function of muscles and has been utilized

in an in vivo study to simulate MA dilation (Green et al., 1999). To cinch the MA, the CS

ostium suture end was pulled in the direction perpendicular to the C-C direction of the MA

(Fig. 2b). For each pull, a linear displacement, d, of 2 mm for a total of 9 displacements in

each phase was achieved (di, i = 0, 2, 4…12, 16 and 20 mm).

Data acquisition and analysis

The cinching tension (T) and the corresponding image of MA were measured

simultaneously at an instant of a displacement. All the MA dimensions were measured using

ImageJ (National Institute of Health). The MA area, A, was defined as the area encompassed

by the markers. The S-L diameter was calculated as the distance between the two markers

placed on the mid-septal and mid-lateral MA, and the C-C diameter was measured as the

distance between the two markers placed on the commissures (Fig. 2c). The leakage (L/min)

was measured after visualization of full expansion of the LV and closing of the MV for 20

seconds.

Statistics

All measurements are shown as mean ± standard deviation (SD). The analysis of variance

(ANOVA) test followed by the Holm-Sidak test and the Dunn's Method test were used to

compare measurements between three phases. Data were tested for normality using the

Shapiro-Wilk test. The Student's t-test was used to determine significant differences. The

paired Student's t-test was employed to determine the significant changes within each phase.

Correlations between the parameters were determined using the Pearson's (for normal) and

Spearman (for non-parametric data) correlation coefficient (r). A probability value less than

0.05 was considered statistical significant, with high significance indicated by p < 0.001. All

statistical analyses were performed using SigmaPlot (Systat Software Inc., San Jose, CA)

and SYSTAT (Systat Software, Chicago, IL).

Results

The MA deformation after each incremental load increase of a representative ovine heart

during the three phases is shown in Fig. 3. The decrease in the mean MA area after each pull

in each phase is shown in Fig. 4a. Prior to pulling, the MA area increased 23.3 ± 18.0% from
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P0 to P90 and dilated further by 22.8 ± 0.1% in P90-D. Upon pulling about 16 mm (d16), the

dilated MA area was reduced by 26.2% (from 8.4 ± 2.0 cm2 to 6.6 ± 1.9 cm2) and similar to

the baseline value (6.8 ± 1.9 cm2). From Fig. 4b, at d = 16 mm, T required to reduce the

dilated MV area to the baseline was 2.1 ± 0.5 N. It can also be seen that T generated by the

suture (P0) alone without pressurization was 0.4 ± 0.1 N.

The mean S-L diameter increased significantly by 26% from the baseline to dilation (from

2.2 ± 0.3 cm to 2.8 ± 0.3 cm, p < 0.001). At d16, the mean S-L diameter was significantly

lower than d0 (2.1 ± 0.3 versus 2.8 ± 0.3, p < 0.001) and below the baseline value (2.1 ± 0.3

cm to 2.2 ± 0.3 cm, p = 0.485). The C-C diameter was increased by 11% after dilation.

However, the C-C diameters obtained during P90-D remained unaffected throughout the

experiment (Fig. 4c). The mean C-C diameter in P90 at d0 was 3.1 ± 0.4 cm and in P90-D at

d16 was 3.4 ± 0.4 cm, p = 0.121. A summary of comparisons of the MV area, the S-L and C-

C diameters and the leakage rate between baseline at no pull (d = 0) and dilated condition at

16 and 20 mm pulling distances (d = 16 and 20) are listed in Table 1.

The relation between MA area and T in each phase is shown in Fig. 5a. At a maximum

pulling distance (d20), a small tension of 0.6 N was required to shrink 58% of the MA area

during P0. At the same tension, as expected, only 9% and 11% MA reduction were achieved

for P90 and P90-D, respectively. At 15% MA area reduction, the tension of both P90 and

P90-D was 1 N. After this point, the P90-D response curve shifted down slightly, indicating

a larger tension would be required to shrink the MA area. The decrease in the MA area was

accompanied by the reduction in the S-L and C-C diameters, and no difference was observed

between P90 and P90-D, see Fig. 5b. At 2.1 ± 0.5N, when the dilated MA area returned back

to the baseline value, a 21.30 ± 5.6% reduction in the MA area and a 24.18 ± 5.28%

reduction in the S-L diameter were achieved.

Figure 6 shows the changes in the MA area, the tensions and the leakage rates from the

initial (d0) to the final (d20) pulling distances. In the normal hearts, we observed a small

leakage of 0.1 ± 0.1 L/min. After phenol application, the leakage rate increased to 0.2 ± 0.0

L/min or by 93%. The progression of annular cinching caused the MA area to decrease

progressively with leakage rate (r = 0.99, p < 0.001 for P90 and r = 0.96, p < 0.001 for P90-

D). The T was inversely correlated with leakage rate (r = -0.98, p < 0.001 for P90 and r =

-0.91, p < 0.001 for P90-D). Leakage was reduced to normal leakage rate at 1.71 N, and the

MV area approached to normal at 6.8 cm2.

Discussion

At present, limited information is available on TMVR devices regarding device forces

required to restore normal valve function. An ex vivo technique developed in this study aims

to quantify the cinching tension (T) needed to restore normal MA from dilation in the

passive ovine heart model. The MA dilation was achieved up to 22.8% and the S-L and C-C

diameters were increased by 26% and 11% upon dilation, respectively. An in vivo animal

study demonstrated that in chronic ischemic MR condition, the entire mitral annular regions

dilates proportionally (Tibayan et al., 2003). Timek et al. (Timek et al., 2010) showed that

the progression of acute ischemic MR in ovine models was characterized as 20% - 28%
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increase in MA area and 14% -19% increase in S-L diameter. For human study, significant

MR caused by ischemic cardiomyopathy was characterized as 31% increase in MA area and

17% and 11% increase in S-L and C-C diameters (Kwan et al., 2003). Thus, the increase in

both MA area and S-L and C-C diameters in this study showed an indication of MA dilation.

The loading condition on the MA is primarily due to the LV pressurization achieved by the

hydrostatic pressure. Therefore, T is an additional force on the LV wall and leaflets

connecting to the MA to balance this hydrostatic pressure force. From Fig. 4, during P0, T
generated by the suture was 0.1 ± 0.0 N (P0, d = 4 mm), resulting in MA area of 4.9 ± 1.6

cm2. The T required to reduce to a similar MA area with a presence of the hydrostatic

pressure was 2.8 ± 0.6 N (P90, d = 20 mm). Thus, the increase in T as the result of

hydrostatic pressure can be calculated as P90 - P0, approximately 2.7 N or increased by

4557%. This drastic increase in T between P0 and P90 indicates that LV pressure is an

important factor in determining the effective T of the device. To determine the change in T
with the presence of MA dilation, the difference between T at P90 and P90D was obtained.

At a MA area of 6.3 ± 1.8 cm2, T of P90 and P90D were 0.4 ± 0.1 N and 2.6 ± 0.4 N,

respectively, resulting in 2.2 N, or increased by 539%. Since the pressure was constant for

both phases, this increase in tension directly relates to the impaired muscular tissue around

the MA due to phenol. Thus, we can view this suture cinching tension as a compensation

force in MA reduction. In other words, T indicates the maximum force to be generated by

the device necessary to restore normal MA geometry without active myocardial contraction,

and usually depends on severity of annular dilatation.

The cinching tension, however, can be less in magnitude during LV contraction. In an in

vivo ovine study (Siefert et al., 2012b), the MA forces were measured using a custom-made

device with strain gauges placed directly on the MA in S-L and C-C directions. They

reported the mean S-L and C-C forces of normal ovine group at 90 mmHg were 3.9 ± 0.8 N

and 2.6 ± 0.6 N, respectively. In another study (Siefert et al., 2012a), the same group found a

significant decrease in the S-L forces as the result of ischemic MR with inferior LV

infarction. Their findings support the notion that the active contraction mechanism might

have been impaired in ischemic MR (Daimon et al., 2010; Kaplan et al., 2000; Yiu et al.,

2000). Daimon et al. (Daimon et al., 2010) found that their IMR patient group had an

attenuated mitral annular motion and a reduction in MA contraction by 23.0 ± 6.5%

compared to the normal group of 42.6 ± 7%. In addition, their analysis showed that MA

contraction was the strongest determinant of the severity of MR among the annular

measurement. The hydrostatic pressure in this study is not considering in vivo MA

contraction and expansion of myocardial fibers. Thus, the active contraction properties of

the MA might relieve this suture tension. However, active contraction in relation to cinching

tension is remained to be determined.

The experimental technique used in this study for MA restoration only allowed a significant

reduction in the S-L dimension while the C-C dimension remained unchanged (Figs. 3&4).

The impact of C-C dimension in restoring MV competency, however, is still a debate.

Several clinical and experimental studies have shown that S-L dimension has a prominent

role in functional MR (Timek et al., 2001) and that reduction in S-L diameter alone is

sufficient to restore leaflet coaptation (Glasson et al., 1998; Lai et al., 2000).
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Restoration of normal MV by cinching the MA was adopted by several novel methods. A

percutaneous annuloplasty device called the Cerclage was tested in 16 swine subjects to

shrink both the MA and the LV outflow tract (Kim et al., 2009). The S-L diameter reduction

was measured at 200g, 400g and 600g tension, and a maximum of 20% reduction at 600g

was observed. This high magnitude of tension could be the result of shrinking a massive

muscular structure that included both MA and aorta. Timek et al. demonstrated that S-L

diameter reduction was achieved by more than one trans-annular sutures connected from

locations on the anterior fibrous region to the posterior annulus (Timek et al., 2004; Timek

et al., 2002) but no force was measured. Recently, Jensen et al. (Jensen et al., 2013) found

that at 32% of trans- annular trigone-posterior annulus distance reduction at three different

location, the peak forces were 1.2 ± 0.9 N, 1.5 ± 1.0 N, and 0.8 ± 0.2 N with no significant

difference between them. Interestingly, the sum of the forces ranged from 0.12 ± 0.03 N to

3.5 ± 1.3 N, which matches our results even though force directions and suture techniques

were different. Their cyclic traction suture forces increased with increasing levels of

downsizing as our cinching tensions increased with increasing MA area reduction. It should

be noted that the magnitude of forces measured is dependent on the type of device (Jensen et

al., 2013) and how it shapes the MA. Difference in the locations of device implantation (e.g.

within the CS or directly on the MA) and various hemodynamic and boundary condition

could affect both MA geometry and mechanics.

In this study, tissue damage from the suture tension was not considered. It is possible that

the suture might have eroded into the vessel wall during tensioning. However, it is unknown

whether these damages, if any, were caused by compressive force or relative slipping

motion. The Cerclage annuloplasty exerted a maximum of 600 g force without evidence of

tissue erosion. Given the significant lower forces experienced in this study, we assumed

minimal or negligible damage to the vessel wall.

Currently, there is a lack of understanding of biomechanics involved in the device design

and optimization of TMVR devices, possibly due to the complex MV geometries.

Fortunately, in the past decade, the mechanical testing techniques and constitutive modeling

in cardiovascular mechanics have improved tremendously. Human tissue material properties

can now be tested extensively (Pham and Sun, 2013), modeled and implemented in

computational studies (Wang and Sun, 2013). Improved computational models of MV has

evolved (Krishnamurthy et al., 2009; Kunzelman et al., 1993; Pouch et al., 2012; Prot et al.,

2009; Stevanella et al., 2011; Weinberg and Kaazempur Mofrad, 2007) and predicted

several diseased states (Kunzelman et al., 1997; Prot et al., 2010; Wenk et al., 2010; Xu et

al., 2012). Thus, the data in this study can be used in validation of computational models to

predict the functionality of TMVR devices.

Limitations

There are several limitations in this study. The data are valid for isolated MA dilation model

which is distinctly different from ischemic MR model (Timek and Miller, 2011). The mitral

valve closure due to the hydrostatic pressure could alter the native MA mechanics by the

expansion of the global LV. Leaflet coaptation height, depth and tethering length were not

recorded as the result of 2D imaging, thus, MR grade was not classified. Future study using
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3D echocardiography will provide a new insight into the 3D dynamic behavior of the MV

during cinching. This study did not account for global expansion and contraction of LV, in

vivo annular contraction and expansion of myocardial fibers. Thus, the active contraction

properties of the MA and LV may relieve this suture cinching tension.

Conclusion

This study investigated the cinching tension required to reduce MA dilation in passive ovine

heart model. The MA was dilated up to 22.8%. A mean force of 2.1 ± 0.5 N was required for

21.3 ± 5.6% in MA area reduction, reduced leakage by 51.72 ± 16.19% and restored the

normal condition with a significant reduction in the S-L dimension. The cinching tension

generated by the suture acts as a compensation force in MA reduction, implying the

maximum tension to be generated by annuloplasty device to restore normal MA geometry.

Several approaches that utilize the CS to rectify MA dilation have been developed, but long-

term durability is yet to be achieved due to current fatigue and fracture events. Therefore,

knowledge of the cinching force with the corresponding MA geometry will greatly

contribute to the development and design of future TMVR devices and understanding of

myocardial contraction function.
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Figure 1.
An illustration of one of the transcatheter mitral valve repair devices, the Monarc system

(Edward Lifesciences, Inc.). The device consists of proximal, distal and bridge sections. The

distal anchor is placed within the great cardiac vein (GCV) and the proximal anchor is

deployed near the coronary sinus (CS) ostium.

Bhattacharya et al. Page 13

J Biomech. Author manuscript; available in PMC 2015 April 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
a) An image of the mitral valve (MV) cinching system consists of a computer acquisition

system, a force transducer connects to a slider and a digital camera; b) a top view of a

representative heart showing the location of the MV, the tissue dye highlighting the

measured MV area, the coronary sinus (CS) vessel, the Great Cardiac Vein (GCV) vessel

and the cinching force, F; c) the representative captured digital images of the reference area,

A0 and the area after pulled at a distance, Ai.
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Figure 3.
Images of a representative mitral valve deformation at d = 0, 4, 8, 12, 16 and 20 mm during

the three phases: (P0) when the mitral valve was open at zero pressure), (P90) close or

pressurized at 90 mmHg, and (P90D) after the mitral annulus was dilated and pressurized.

(Dimension is in millimeter)
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Figure 4.
The relations between distance pulled and a) area (cm2), b) force (N) and c) septal-lateral (S-

L) and commissure-to-commissure (C-C) diameter of the ovine hearts in three phases of

valve open (P=0), valve close at 90 mmHg pressure (P=90) and valve dilation at 90 mmHg

(P=90 Dilation). Data are shown as mean ± standard deviation.
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Figure 5.
The relation between (a) mitral annulus area and cinching tension, and between (b) S-L and

C-C diameters and cinching tension. Data are shown as mean ± standard deviation.
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Figure 6.
The correlations between the mean leakage rate and mean mitral area and mean cinching

tension in the a) normal and b) dilated conditions. Solid and dashed lines are the linear fits

of the data. The d0 indicates no pull, and d20 is 20-mm pulling distance.
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Table 1
During pressurization of 90 mmHg

Baseline Dilated
at d=20

at d=0 at d=0 at d=16

MV(cm2) 6.80±1.89 8.35±2.00 6.62±1.85 6.27±1.77

S-L dia(cm) 2.23±0.31 2.81±0.25* 2.14±0.27† 2.01±0.26†

C-C dia (cm) 3.09±0.39 3.42±0.36 3.36±0.36 3.38±0.35

Leakage (L/min) 0.09±0.07 0.18±0.09 0.09±0.07 0.08±0.05‡

*
comparedtobaselined=0,P<0.001,

†
comparedtodilatedd=0,P<0.001,

‡
comparedtodilatedd=16,P<0.05
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