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ABSTRACT: Characterizing the in vivo dynamics of the polyclonal
antibody repertoire in serum, such as that which might arise in response
to stimulation with an antigen, is difficult due to the presence of many
highly similar immunoglobulin proteins, each specified by distinct B
lymphocytes. These challenges have precluded the use of conventional
mass spectrometry for antibody identification based on peptide mass
spectral matches to a genomic reference database. Recently, progress has
been made using bottom-up analysis of serum antibodies by nanoflow
liquid chromatography/high-resolution tandem mass spectrometry
combined with a sample-specific antibody sequence database generated
by high-throughput sequencing of individual B cell immunoglobulin
variable domains (V genes). Here, we describe how intrinsic features of
antibody primary structure, most notably the interspersed segments of
variable and conserved amino acid sequences, generate recurring
patterns in the corresponding peptide mass spectra of V gene peptides, greatly complicating the assignment of correct
sequences to mass spectral data. We show that the standard method of decoy-based error modeling fails to account for the error
introduced by these highly similar sequences, leading to a significant underestimation of the false discovery rate. Because of these
effects, antibody-derived peptide mass spectra require increased stringency in their interpretation. The use of filters based on the
mean precursor ion mass accuracy of peptide-spectrum matches is shown to be particularly effective in distinguishing between
“true” and “false” identifications. These findings highlight important caveats associated with the use of standard database search
and error-modeling methods with nonstandard data sets and custom sequence databases.

The ability of the humoral immune system to provide broad
protection against a diverse and constantly changing

population of invasive pathogens stems largely from the
antigen-binding capabilities of the antibody (immunoglobulin,
Ig) repertoire. Antibodies recognize foreign molecules (anti-
gens) through epitope-binding sites in the variable domains of
the antigen binding fragment (Fab) and alert immune cells to
putative threats through interaction sites in the constant
domain of the tail region. Individual antibodies will
preferentially bind a particular antigenic epitope, with specificity
largely determined by the antigen-binding site sequences in the
variable domains of immunoglobulin heavy chain (VH) and
light chain (VL) genes. In order to provide coverage against a
large variety of potential antigens, the B cell-encoded antibody
repertoire is incredibly diverse, estimated to comprise >108

immunoglobulins with distinct variable domain sequences in
human serum,1,2 resulting in an antibody population capable of
binding a broad range of antigens with high affinity and
specificity.
This massive diversification of sequence is the product of two

processes: V(D)J recombination during B cell maturation and
somatic hypermutation during B cell affinity maturation.3 In the
heavy chain specifically, the variable domain is generated by
recombination of V, D, and J gene segments, with a single

subgene of each segment selected from multiple variants
encoded in the germline genome (Figure 1). Two of the three
hypervariable loops responsible for antigen-binding (CDR-H1
and CDR-H2) are encoded within the V gene segment, while
the third (CDR-H3) is largely nontemplated and is constructed
by the addition of random nucleotides (N-nucleotides)
between the recombination joints of the V, D, and J
segments.3,4 V(D)J recombination generates a single pair of
VH and VL genes per B cell, such that every B cell expresses
only one antibody variant. Somatic hypermutation during
humoral immune response fine-tunes affinity for antigen by
introducing additional mutations in the variable domain, further
increasing the sequence variation and in turn expanding the
sequence diversity within a clonotype.5 Consequently, antibod-
ies that originate from the same B cell precursor lineage are
designated as belonging to the same clonotype and generally
exhibit specificity for the same antigen.
The process of Ig diversification has been elucidated, and

methods for the identification and expression of monoclonal
antibodies, including creation of hybridomas, immortalization
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of B lymphocytes, and cloning of antibody genes from primary
lymphocytes, have revolutionized diagnostics and expanded our
understanding of how immune responses induce the
production of circulating antibodies that help clear a pathogen.
Recently, next-generation (NextGen) sequencing has made
possible investigations of the scope and sequence composition
of the antibody repertoire, as represented in the population of
B cells sequenced.6,7 With technical and financial barriers to
personalized sequencing substantially dropping with advances
in NextGen technologies, immune-related repertoire sequenc-
ing is becoming more commonplace.8,9 However, the B cell
repertoire includes many sequences which are not represented
in the circulating pool of serum immunoglobulins. Character-
ization of the polyclonal serum response thus requires direct
observation of the constituent monoclonal antibodies present at
functionally relevant concentrations.
Unfortunately, the proteomic analysis of serum immunoglo-

bulins by mass spectrometry (MS) presents several challenges.
One such challenge arises from the fact that antibody genes are
not encoded in the germline but are assembled via DNA
recombination and diversified within individual B cells. As a
result, the typical strategy of constructing a reference database
from the genome sequence is not useful for interpreting
antibody-derived mass spectra.10,11 The use of de novo peptide
sequencing for mass spectral interpretation does not require a
reference database,12 thus offering a promising solution to this
problem; however, current methods are not yet capable of
handling the complexity of peptide sequence diversity present
in serum.
A strategy has recently emerged which largely overcomes

these barriers by utilizing high-throughput sequencing of the
immunoglobulin variable domain (V gene) from an individual’s
B cell population to construct a sample-specific antibody
sequence database for the interpretation of antibody-derived
mass spectral data.13,14 With the ability to generate a

personalized reference database, it is now possible to apply
shotgun-style MS proteomics to the analysis of serum
antibodies, as demonstrated by recent studies identifying
antigen-specific monoclonal antibodies directly from
serum,13−16 yet even with the availability of such a database,
confident identification of monoclonal antibodies is not trivial.
The high degree of sequence identity shared across antibodies
introduces additional complications in sequence-to-spectrum
assignments and protein inference, making proteomic analysis
of the repertoire particularly challenging.
The complexity of the V gene repertoire can best be

understood as a massively expanded set of homologous
proteins, each sharing regions of highly conserved (or identical)
sequences with short intervening hypervariable sequences.
From a proteomics perspective, this creates a large pool of
potential peptide sequences with at least partial sequence
identity. Proteolytic digestion of antibodies for shotgun
proteomics yields many peptides that map to multiple
clonotypes and are therefore noninformative for monoclonal
antibody identification or that share partial sequence identity
with many other candidate peptides, resulting in highly similar
mass spectra that are difficult to interpret unambiguously, even
with the high resolution and mass accuracy of current mass
spectrometers.
In this paper, we detail how these interspersed segments of

variable and conserved amino acid sequences create unusual
features in the corresponding antibody peptide mass spectra.
We demonstrate the importance of using high mass accuracy
liquid chromatography mass spectrometry (LC-MS/MS) and
describe how antibody proteomics requires a particularly high
stringency in the interpretation of the peptide mass spectra for
reasons that are intrinsic to antibody gene structure. Finally, we
offer specific guidelines for the interpretation of antibody
peptide mass spectra focusing on correctly distinguishing CDR-
H3 peptides with shared subsequences.

Figure 1. A schematic of the structure and representative sequences of the immunoglobulin (Ig) heavy chain variable domain (VH). The VH
sequence is created by recombination of V, D, and J subgenes and encodes epitope binding sites for antigen-recognition. Complementarity
determining regions (CDRs) represent uniquely nondegenerate fingerprints, interspersed between constant framework sequences (FRs), and
manifest as hypervariable and conserved sequences, respectively, in the multiple sequence alignment. Antigen binding specificity is primarily dictated
by the CDR-H3 region. Hence, the challenge of antibody repertoire proteomics can be largely reduced to the problem of successfully identifying
CDR-H3-containing peptides.
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■ EXPERIMENTAL METHODS

Materials and Reagents. Concholepas concholepas hemo-
cyanin (CCH), Protein A agarose, Protein G Plus agarose, N-
hydroxysuccinimide (NHS)-activated agarose, immobilized
pepsin resin, and Zeba spin columns were acquired from
Pierce (Thermo Fisher Scientific, Rockford, IL). Incomplete
Freund’s Adjuvant (IFA), TRIS hydrocholoride (Tris-HCl),
ammonium bicarbonate (NH4HCO3), 2,2,2-trifluoroethanol
(TFE), dithiothrietol (DTT), triethylphosphine (TEP),
iodoacetamide (IAM), and iodoethanol (IE) were obtained
from Sigma-Aldrich (St. Louis, MO). Urea and AG-5Ol-X8
resin were purchased from Bio-Rad (Hercules, CA). Microcon
10 kDa MWCO (Microcon-10) centrifugal filter columns from
Millipore (Bedford, MA) and Hypersep SpinTip C18 columns
(C18-SpinTips) from Thermo Scientific (Rockford, IL) were
used in LC-MS/MS sample preparation along with LC-MS
grade water, acetonitrile (ACN), and formic acid from EMD
(Billerica, MA).
Rabbit Immunization, V Gene Sequencing, and

Preparation of Serum Antibodies. Methods for immuniza-
tion, V gene sequencing, and preparation of antibodies for this
study were previously described in Wine et al.13 Briefly, a New
Zealand white rabbit was immunized with 100 μg of CCH
protein. Booster immunization with antigen in IFA was
administered at days 14 and 28. The animal was sacrificed at
day 35. Total RNA was isolated from femoral bone marrow
cells (BM), peripheral B cells (PBCs), and CD138+ bone
marrow plasma cells (BM-PCs), and cDNA libraries were
generated from poly(A)+ RNA. V gene cDNA was amplified by
5′RACE with primers complementary to rabbit IgG CH1 and
sequenced using the Roche 454 GS FLX Titanium platform
(Roche Diagnostics GmbH, Mannheim, Germany). Sequencing
data was processed using sequence quality and signal filters in
the 454 Roche analysis pipeline, followed by identification of
conserved framework regions and V germline gene identi-
fication using the IMGT/HighV-Quest Tool. Additional filters
were applied to remove truncations (sequence length <70
amino acids, misalignment of framework regions FR1 and FR4)
and sequences containing stop codons or ambiguous reads. In
total, >1.5 × 105 reads were obtained, resulting in 107 672
unique full-length, in-frame VH genes. For reference sequence
database construction, single read sequences were excluded to
reduce the impact of sequencing errors (18 593 VH genes ≥2
reads).
Serum IgG was purified by protein A agarose affinity

chromatography, and F(ab′)2 fragments were generated by
digestion with immobilized pepsin. Antigen-specific IgG-
derived F(ab′)2 was isolated by affinity chromatography against
CCH protein coupled to NHS-activated agarose and eluted in
100 mM glycine, pH 2.7. Immediately following elution, the pH
was neutralized with 1 M Tris-HCl, pH 8.5. Protein
concentrations were measured using an ND-1000 spectropho-
tometer (Nanodrop, DE, USA).
Alternative Cysteine Alkylation and Trypsin Diges-

tion. Protein samples were concentrated on Microcon-10
columns and split into aliquots for alternative cysteine
modification. For IAM alkylation, aliquots were resuspended
in 50% (v/v) TFE, 50 mM NH4HCO3, and 2.5 mM DTT and
incubated at 37 °C for 60 min. Reduced samples were then
alkylated with 32 mM IAM at room temperature, in the dark,
for 60 min. Alkylation was quenched by addition of 7.7 mM
DTT. Samples were diluted to 5% TFE and digested with

trypsin at a ratio of 1:75 trypsin/protein at 37 °C for 5 h.
Digestion was halted by addition of formic acid to 1% (v/v)
concentration.
For IE alkylation, trypsin digestion in the presence of urea

was carried out as previously described17 with the following
modifications: Samples were resuspended in 8 M urea and then
diluted to a final reaction solution consisting of 2.4 M urea, 200
mM NH4HCO3, pH 11.0, 49% (v/v) ACN, 8.5 mM TEP, and
65 mM IE. pH was adjusted to 10, and samples were incubated
at 37 °C for 60 min. Samples were concentrated by SpeedVac
(Eppendorf, NY, USA) and resuspended in 100 mM Tris-HCl,
pH 8.5, to reach a final urea concentration of 1.6 M prior to
trypsin digestion. Trypsin was added at a ratio of 1:75 trypsin/
protein at 37 °C for 5 h. The digestion was quenched with 1%
formic acid.

Human Raw Spectral Data and VH Sequence Data-
base. All human data used in this study corresponds to the
donor HD1 data set previously described in Lavinder et al.15 In
summary, a healthy human subject (HD1) was administered
the tetanus toxoid/diphtheria toxoid vaccine (Sanofi Pasteur
MSD GmbH, Leimen, Germany) for booster immunization 7
years after the previous booster. VH and VL gene sequences
from plasmablasts and memory B cells isolated at 7 days and 3
months postboost were determined by Roche 454 sequencing.
Sequence data was processed and filtered as described for rabbit
sequencing. In total, 70 326 VH gene sequences were used in
construction of the human HD1 reference sequence database.
IgG was purified by affinity chromatography with Protein G

Plus agarose from serum samples collected at prevaccination
(day 0), 7 days, 3 months, and 9 months postvaccination and
digested with immobilized pepsin resin to generate F(ab′)2
fragments. Antigen-specific F(ab′)2 was isolated by affinity
chromatography against vaccine-grade tetanus toxoid protein
(Statens Serum Institut) coupled to NHS-activated agarose and
eluted with 20 mM HCl (pH 1.7). Eluted samples were
neutralized with 1 M NaOH, 10 mM Tris-HCl and desalted on
a 2 mL Zeba spin column prior to denaturation with 50% TFE,
reduction with 10 mM DTT, and alkylation with 32 mM IAM.
Samples were diluted 10-fold with 50 mM NH4HCO3 and
digested with trypsin (1:35 trypsin/protein) overnight at 37 °C.
Digestion was quenched with 1% formic acid.

Sample Preparation and LC-MS/MS Analysis. Digested
IAM (human, rabbit) and IE (rabbit) samples were
concentrated by SpeedVac, resuspended in Buffer C (5%
ACN, 0.1% formic acid), and loaded and washed on C18-
SpinTips according to the manufacturer’s protocol. Bound
peptides were eluted in 60% ACN, 0.1% formic acid,
concentrated by SpeedVac, resuspended in Buffer C, and
filtered through Microcon-10 columns prior to LC-MS/MS
analysis.
Peptides were separated by reverse phase chromatography on

a Dionex UltiMate 3000 RSLCnano system (Thermo
Scientific) using a Dionex Acclaim PepMap RSLC C18 column
(Thermo Scientific), with eluting peptides analyzed on-line by
nano-electrospray ionization tandem mass spectrometry on an
Orbitrap Velos Pro (Thermo Scientific). Parent ion (MS1)
scans were collected in the orbitrap at 60,000 resolution. Ions >
+1 charge were selected for fragmentation by collision-induced
dissociation, with up to 20 fragmentation spectra (MS2)
collected per MS1. Monoisotopic precursor selection and
dynamic exclusion were enabled, with 45-s exclusion time for
ions selected more than twice in a 30-s window.
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Construction of Target and Decoy Databases. Sample-
specific target protein sequence databases were constructed for
SEQUEST searches of rabbit and human mass spectral data.
The CCH rabbit database consisted of VH and VL gene
sequences (≥2 reads), Ensembl rabbit protein-coding sequen-
ces (OryCun2.0), and common contaminants (from MaxQuant
Web site, http://maxquant.org/downloads.htm). The human
HD1 database included VH and VL gene sequences, Ensemble
human protein-coding sequences (release 64, longest sequence
variant/gene), and MaxQuant common contaminants.
Decoy databases were constructed for rabbit and human

analyses to evaluate the effects of decoy variants on error
modeling of V-gene peptides. Reversed and shuffled databases
were generated for each database at the protein level.
Additionally, conserved-J region shuffled decoys were generated
by preserving the conserved J-segment sequence (which
directly follows the CDR-H3) of VH gene sequences. For the
remaining V gene sequence, amino acids between arginine and
lysine residues were shuffled, with Arg/Lys residues fixed to
preserve peptide length and precursor mass distributions.
Computational Interpretation of Peptide Mass Spec-

tra. Spectra were searched against the protein sequence and
decoy databases described above using SEQUEST (Proteome
Discoverer 1.3, Thermo Scientific). Fully tryptic peptides with
up to 2 missed cleavages were considered. Mass tolerance filters
of 5 ppm (MS1) and 0.5 Da (MS2) were applied. Static
cysteine modifications of either carbamidomethylation (IAM-
alkylation, +57.0215 Da) or ethanolyl (IE-alkylation, +44.0262
Da) were included on the basis of which modifying reagent was
used. Oxidation of methionine (+15.9949 Da) was allowed as a
dynamic modification. PSMs were filtered using Percolator
(implemented in Proteome Discoverer) to control false
discovery rates (FDR) to <1% as determined using a reverse-
sequence decoy database.18 All observed precursor masses were
recalibrated according to the methods of Cox et al.,19 and the
average mass deviation (AMD) was calculated for all high-
confidence PSMs (Percolator FDR <1%) matching the same
reference peptide, as the mean difference between the observed
precursor masses and the expected mass of that reference
peptide in units of ppm. Due to the high frequency of isobaric
peptides with isoleucine−leucine substitutions in V-gene
sequences, we considered all Iso/Leu sequence variants as a
single group and mapped the group to all CDR-H3 peptides
associated with any of the group members. For other isobaric
pairings (e.g., Asp/Gly-Gly, Gln/Gly-Ala) and ambiguous
identifications where MS/MS spectral differences can distin-
guish between pairings, we considered only the top-ranked
PSM determined by the SEQUEST-Percolator pipeline.
Survey of Covalent Peptide Modifications. In order to

confirm the specificity of cysteine modifications and to assess
the general overall presence of covalent post-translational
modifications (PTMs) among antibody peptides, raw peptide
mass spectra from the rabbit samples were computationally
searched for the dominant, differentially observed PTMs as
follows: Tandem mass spectral sets were first reduced in size
and complexity through spectral clustering, in which merged
spectra were represented by a single consensus spectrum. For
each sample, spectra were initially grouped based on precursor
mass so that all the members within a group were within 25
ppm of at least 1 other member. Hierarchical clustering was
performed on the tandem mass spectra of each weight group
using a fuzzy cosine similarity metric and weighted linkage
criteria with a distance cutoff of 0.25. The fuzzy cosine

similarity, or correlation, between two spectra A and B is
defined as

= =
·

|| || || ||
A B

A B
A B

similarity cos( , ) c

where Ac is the convolution of spectrum A with a Gaussian 1
Da in width. This serves to influence the correlation by both
the intensity of each peak pair and the closeness of the peaks in
m/z. Spectra composing each cluster were then reduced into a
single consensus spectrum. An average parent ion mass was
then assigned to each cluster.
All pairs of spectral clusters between IAM- and IE-labeled

samples were compiled with the constraint that the parent ion
mass difference between pair members fell within ±60.5 Da.
Similarity measures were calculated for each pair, the sum of
which was a composite metric for judging spectral correlation.
Pairs were then binned in 2D arrays by mass offset and
composite correlation score. Because clusters had varying
numbers of members, all cluster pairs were not equal and were
therefore weighted by 0.5 plus the log of the product of the two
membership counts. The sum of these weights gave a single
summary statistic for each bin, and the data was visualized as a
stacked bar graph consisting of 121 offset bins of width 0.02 Da
that are centered at an integer value.

Differential Analysis of Cysteine Modifications. PTM
analysis (described above) was used to identify pairs of spectral
clusters exhibiting an observed parent mass difference of 12.995
± 0.005 Da (or 25.99 ± 0.005 Da for two Cys) between IAM-
and IE-treated samples. Paired clusters with similar elution
times and fragmentation patterns were flagged as originating
from cysteine-containing peptides. The top-ranked SEQUEST
peptide identification for each cluster was then considered. If
the same sequence was identified in both treatments
(inherently requiring the presence of cysteine to match), the
peptide sequence was flagged as a likely correct, or “true
positive”, identification. If the peptide identification differed
between treatment sets (precluding the presence of cysteine in
the sequence), the corresponding peptide sequences were
flagged as definitely incorrect, or “false positive”, identifications.

■ RESULTS AND DISCUSSION
The goal of serum antibody proteomics is to systematically
identify the distinct antibodies present in a serum sample, as
assayed through the use of shotgun proteomics mass
spectrometry. To achieve this, our approach relies on the
integration of two main experimental pipelines: (1) high-
throughput sequencing of B lymphocyte cDNAs to generate a
database of class-switched antibody variable domain sequences
in a particular individual; (2) a protein biochemistry and mass
spectrometry-based proteomics pipeline for the identification of
peptides derived from antigen-specific antibodies.
A personalized reference sequence database generated by the

high-throughput sequencing pipeline is used to interpret
antibody-derived peptide mass spectra obtained through the
proteomics pipeline. Identified peptides can be mapped back
onto the antibody sequence database to determine the
distribution of specific clonotypes comprising the antigen-
specific repertoire. However, the frequency of degenerate
peptides mapping to multiple clonotypes complicates this
analysis. Given that the CDR-H3 is the most hypervariable
region in immunoglobulins and is overwhelmingly responsible
for antigen specificity, as well as being the primary determinant
of clonality, this problem can be largely simplified to that of the
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quantitation and sequence determination of CDR-H3 peptides.
The remaining sequence of each antibody can then be retrieved
from the V gene reference database.
For this study, we largely focused on analysis of serum

samples from a New Zealand white rabbit (Oryctolagus
cuniculus) immunized with Concholepas concholepas hemocyanin
(CCH). Sequencing data for this rabbit was previously
described13 and is summarized in the Experimental Methods.
We focus here only on the VH sequences; while the partner VL
chain contributes to antibody stability and binding character-
istics, native VH-VL pairing information cannot be determined
by proteomic analysis but can be derived by other methods
once VH chains are known.13,20

From this rabbit, we prepared antigen-specific F(ab′)2
fragments, proteolytically digested them with trypsin, and
analyzed the resulting peptides by quantitative shotgun
proteomics, employing nanoflow LC-MS/MS (see Experimen-
tal Methods). A conventional analysis of the peptide mass
spectra would involve comparing the spectra against the rabbit’s
VH gene database in order to identify those antibodies actually
present in the serum. However, as we next discuss, the
conventional proteomics database search process is insufficient
for the analysis of antibody peptide mass spectra due to
intrinsic properties of the antibody sequences.
Limitations of Standard Peptide-Spectrum Assign-

ments and Decoy-Based Error Modeling. While the
general process of identifying the best peptide-spectrum
match (PSM) is well established for conventional data sets
searched against normal proteomic sequence databases,21,22 V-
gene databases contain unique sequence characteristics which
pose challenges to this standard method of data interpretation.

Under the standard target-decoy approach, candidate
peptides within a specified mass range of the parent ion are
initially scored based on cross-correlation to the observed
fragmentation spectrum (XCorr), subjected to additional
quality filters, and ultimately assigned confidence scores by
reference to the score distributions of decoy sequences. For a
conventional proteome, the occurrence of multiple peptides
sharing partial sequence identity and mass is extremely rare, as
can be seen for proteins sampled from the human proteome
(Figure 2A). Thus, while multiple theoretical peptides may fall
close in mass to a given precursor ion, the correct peptide
sequence will almost always match the MS2 spectrum with a
significantly higher score than competing, incorrect peptides.
This is reflected by the positive correlation between XCorr and
the normalized difference in XCorr between the top two PSMs
of a given spectrum (ΔCN) (Figure 3A).
For the case of immunoglobulin variable genes, however,

large numbers of peptide sequences overlap in both mass and
partial sequence identity (as plotted for our VH data sets in
Figure 2B,C), yielding sets of highly similar theoretical MS2
spectra. This confounds proteomics analysis and often results
in, for a single spectrum, multiple ambiguous peptide-spectral
matches sharing similarly high PSM correlation scores
(observed as high-XCorr/low-ΔCN, i.e., high scoring-second
rank hits) (Figure 3B,C). In some cases, incorrect sequences
out-score the correct PSMs. Even when applying an extremely
strict mass accuracy filter, requiring a peptide mass to fall within
5 ppm of the observed precursor ion mass to be considered,
false identifications are still prevalent.
V-gene sequence similarity also effects decoy-based error-

modeling. Standard errors in PSM assignment normally arise

Figure 2. In contrast to the proteome in general, antibody peptide sequences resemble each other in both mass and expected fragmentation patterns.
The peptide sequence search space is thus strongly dependent on mass accuracy, as seen by plotting the extent of theoretical peptide-spectral match
ambiguity, for (A) human proteome peptide sequences, (B) rabbit CCH antibody VH peptides, and (C) human tetanus toxoid antibody VH peptides.
Reducing precursor mass tolerance thus more strongly affects the potential for false identifications in VH peptides than for a typical proteome. Here,
an in silico digest of the rabbit CCH VH antibody sequences generated 505 790 unique peptide sequences (constrained to fully tryptic peptides of ≥8
amino acids, ≤6000 Da theoretical mass, and ≤2 missed cleavages). Each peptide sequence contributes to a y-axis bin defined by the self-inclusive
count of all theoretical peptides within a specified mass tolerance (x-axis) and sharing at least 60% predicted fragmentation ion similarity. For
comparison, the human proteome (A) and human TT VH (C) sequence databases were processed likewise and subsampled to include the same
number of peptide sequences as (B). The intersequence similarity evident in the antibody sets is negligible in this size-matched human proteome
control.
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Figure 3. Confidently identified spectra from most proteomics samples generally score well against only one database sequence. In contrast, the
interspersal of conserved (framework) and variable regions in antibody F(ab′)2 sequences often leads to multiple high-scoring PSMs for a single
IgG-VH peptide spectrum. Plotting the primary PSM score (XCorr) vs the normalized difference in XCorr scores between the two top-scoring
matches (ΔCN) from proteomic analysis of (A) human HeLa cell lysate compared to (B) rabbit and (C) human IgG-VH peptide spectra reveals a
substantial proportion of high XCorr/low ΔCN PSMs (denoted by black boxes) in the IgG-VH data sets. Standard false discovery rate (FDR)
calculations fail for these PSMs, as illustrated by high (blue), medium (green), and low (red) Percolator confidence scores: many high XCorr/low
ΔCN PSMs are erroneously assigned high confidence in spite of high-scoring second hits implicit in the low ΔCN values. Filtering out low ΔCN
PSMs inadvertently removes many true hits. Comparison of PSM XCorr distributions between target (blue) and decoy (red) databases reveals that
standard decoys do not adequately model the nonrandom structure of IgG-VH peptides [(D) human proteome, (E) rabbit IgG-VH, (F) human IgG-
VH]. This is attributable to high-scoring, incorrect matches to IgG framework region-derived sequences. By constructing an alternate decoy database
for which variable residues were shuffled but J-region framework regions were preserved (“Conserved-J Decoy”), ambiguity of CDR-H3,J peptide
assignment can be modeled (green). These peptides acount for the majority of high-XCorr PSMs in rabbit (E), while additional framework-derived
peptides add to the complexity of the human IG-VH sample (F, inset).

Figure 4. High-scoring PSMs for antibody CDR-H3 peptide mass spectra are dominated by matches to peptides sharing identical C-terminal J
region FR4 framework sequences. This is illustrated by two top-scoring peptide sequences mapped to a single observed rabbit spectrum, with shared
(orange) and unique in silico predicted MS2 fragmentation peaks associated with APYGDGDPYNLWGPGTLVTVSSGQPK (blue) and
DAGTSGYHFNLWGPGTLVTVSSGQPK (green). Both sequences exhibit PSMs with XCorr >4.7 with a normalized difference in XCorr scores
(ΔCN) of 0.006. A similar trend accounts for a large proportion of the high-scoring matches in Figure 3B,C,E,F.
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from poor quality spectra, which contain significant noise and/
or additional peaks due to unaccounted for contaminating
peptide fragments following ion isolation. In order to assign
PSM confidence and calculate a false identification rate, a decoy
reference database of either reversed or shuffled protein
sequences is generally used to model this standard error,
allowing for confidence-filtering based on discernible differ-
ences in the distributions of true and false positive PSMs
(Figure 3D).22,23 Software programs such as Percolator18

analyze multiple parameters of target and decoy results
(including XCorr, ΔCN, and others) in order to determine a
set of high-confidence PSMs at a given FDR (Figure 3A−C).
For the case of Ig V genes, reversing or shuffling sequences did
not replicate the high incidence of high scoring-second rank
hits observed in the forward search, demonstrating that a
standard decoy database fails to model this aspect of IgG
sequences (Figure 3E,F).
Immunoglobulin PSM Ambiguity Arises from Ig

Peptides Containing Highly Immutable Framework
Regions. To further investigate this trend, we focused on
the partial sequence identity of CDR-H3-containing peptides.
Most such peptides also contained the entirety of the J-region
subsequence in both the rabbit and human samples, generally a
series of 12 or more residues sharing exceptional self-similarity
within each species. Hence, peptides containing the J-region
shared a significant fraction of identical peaks within their
fragmentation spectra, in addition to peaks contributed by the
variable CDR-H3 sequence (Figure 4).
In order to assess the magnitude of this effect on the

resulting PSM scores, we generated sample-specific shuffled

decoy databases in which the J-region residues were explicitly
preserved (“Conserved-J Decoy”). Importantly, the Conserved-
J Decoy database reproduced the incidence of high scoring-
second rank hits observed in the J-region peptides and evident
in the VH forward peptide database (Figure 3E,F[inset]). A
significant portion of high scoring-second rank hits can
therefore be attributed to CDR-H3-containing peptides
partially matching other CDR-H3-containing peptides by
their conserved J region sequences. More generally, Ig peptides
containing an antibody framework region at one terminus are
subject to this kind of ambiguous PSM assignment.
Consequently, standard decoy-based error modeling signifi-
cantly underestimates false identifications for this class of
peptides.

Construction of a High-Confidence Set of Rabbit VH
Identifications. In order to determine the prevalence of
incorrect identifications and find characteristics by which to
discriminate between true and false matches, we employed
differential labeling of cysteine residues to create a set of higher
confidence identifications consistent with the cysteine labeling
data and to flag a subset of definitively incorrect identifications
as high-scoring false positives (Figure 5A). Rabbit F(ab′)2
fragments were divided into two aliquots. One aliquot was
alkylated with iodoacetamide (IAM), while the second was
alkylated with iodoethanol (IE). This created equivalent
samples with the exception of a 13 Da mass difference between
modified cysteine residues in the two samples.
Following LC-MS/MS analysis, data sets corresponding to

IAM- and IE-treated samples were compared to identify parent
ion pairs across the two data sets exhibiting the signature 13 Da

Figure 5. A limited set of higher-confidence identifications can be created using differential covalent modification to flag cysteine-containing
peptides. (A) Comparison of rabbit CCH spectra from samples treated with iodoacetamide (Cys +57 Da) vs iodoethanol (Cys +44 Da) results in a
13 Da mass difference per cysteine. PSMs for paired spectra exhibiting a mass shift but no cysteine residues in the corresponding matched sequences
can be flagged as false identifications. (B) Comparison of precursor mass offsets between differentially labeled rabbit CCH samples confirms
alkylation and oxidation account for the most abundant modifications.
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mass difference, similar chromatographic elution times, and
correlated MS2 fragmentation spectra. Qualifying ion pairs
were considered cysteine-containing; upon peptide-spectrum
sequence assignment, ion pairs with identical sequences
containing cysteine residues and displaying the 13 Da difference
in the two aliquots were flagged as more likely to be correct and
considered for these purposes to be “true positive” identi-
fications. In contrast, those spectra shifted by 13 Da but lacking
a cysteine residue in their assigned sequences were considered
definitely incorrect, or “false positive”. By flagging peptides in
this manner, we defined a set of 53 “true positive” and 40 “false
positive” peptide identifications comprising 11 077 and 425
PSMs, respectively. This set was used both to diagnose PSM
assignment error and to define filtering criteria appropriate for
more general application across all PSMs, not just those
containing cysteine residues.
To further assess these samples, we examined the frequency

of all potential precursor ion mass offsets between the
differentially treated samples so as to survey the most common
covalent modifications, thus confirming the cysteine modifica-
tions and testing for other potential modifications (Figure 5B).
Besides modified cysteine, only one other prevalent mod-
ification was found, occurring in both samples at a mass offset
of 15.99 Da and consistent with oxidation. Detailed manual
analysis of fragmentation spectra confirmed oxidized methio-
nine as the main contributor to this offset peak.
A Stringent Average Mass Accuracy Filter Success-

fully Removes False Identifications. Using the high
confidence true and false identification sets, we searched for
mass spectral properties that distinguished these cases. We
observed a robust difference in mass accuracy distributions
(defined as the difference between observed precursor mass
and expected peptide mass, in units of parts per million
(ppm)), with the “true positive” PSMs centered around 0.127
ppm with a standard deviation of 0.637 ppm (following mass
recalibration), while “false positive” PSMs were more evenly
distributed throughout the mass range. This signal, while clear,
was not suitable for direct use as a mass accuracy filter at the
level of PSMs, since many individual “true positive” PSMs still

deviated from expected mass by several ppm. Application of a
strict mass accuracy filter to remove false PSMs would therefore
inevitably remove many true PSMs as well (Figure 6A).
However, the average mass deviation (AMD) of a peptide

identification, calculated as the average mass accuracy of all
high-confidence PSMs associated with a given peptide, showed
an extremely narrow distribution for the “true positive” set
(mean 0.141 ppm, stdev 0.238 ppm). In contrast, the “false
positive” set exhibited a roughly uniform AMD distribution
across the mass range. Consequently, filtering hits by applying a
strict AMD filter was feasible without substantial loss of true
identifications. Requiring AMD < 1.5 ppm in this data set
improved the precision from a prior rate of approximately 50%
to 79%, with no loss of true identifications. Applying an even
stricter AMD threshold of 1 ppm further improved the
precision to 87%, again with no loss of true identifications
(Figure 6B). High mass accuracy LC-MS/MS is therefore
sufficient to identify antibody CDR-H3 peptides from serum at
relatively high precision when combined with a stringent AMD
filter beyond the conventional proteomics analytical pipeline.

■ CONCLUSIONS

Proteomic analysis of serum immunoglobulins has only recently
become feasible with the ability to generate appropriate mass
spectrometry reference databases via next-generation sequenc-
ing of personal B cell antibody repertoires. Even with an
appropriate custom database in hand, however, antibody
sequences still present significant challenges for mass spectral
interpretation due to the frequency of interspersed variable and
conserved amino acid sequences within the same peptides. We
have shown how these sequence properties lead to certain
systematic trends in the fragmentation spectra of antibody-
derived peptides, which introduce additional errors in peptide-
spectrum correlation scoring not accounted for by standard
decoy-based error modeling. The observation of similar
sequence properties in rabbit and human data sets indicates
that these are intrinsic features of immunoglobulin primary
structure which should be accounted for in any proteomic
analysis of antibody repertoire, regardless of species. To this

Figure 6. Correctly matched PSMs exhibit a systematically smaller average mass deviation (AMD) compared to incorrect identifications. (A)
Plotting the difference in precursor ion mass from expected peptide mass (Precursor Mass Accuracy) vs XCorr scores of individual rabbit CCH
PSMs reveals overlapping mass accuracy distributions for PSMs matched to the same peptide sequence for correct (blue) and incorrect (red)
identifications. While individual incorrect PSMs may achieve higher XCorr scores than correct matches, the average precursor mass accuracy across
all PSMs for a given peptide (AMD) discriminates well between correct and incorrect identifications. (B) For the set of high-confidence rabbit CCH
PSMs derived from cysteine-labeling, true identifications exhibit low AMD scores while false identifications are more uniformly distributed. Thus,
filtering by AMD strongly controls misidentifications. Here, controlling AMD to within 1.5 ppm provides 100% recall of true identifications and
increases precision from near 50% (background rate) to 79%. Requiring AMD < 1 ppm further increases precision to 87% with no loss of recall.
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end, we have demonstrated a strategy to reduce false discovery
and improve the accuracy of antibody identification by shotgun
proteomics through the use of high mass accuracy LC-MS/MS
and high stringency filters applied to groups of peptide-spectral
matches, rather than individual PSMs.
These findings highlight the importance of evaluating

methods of data analysis when applied to nonstandard data
sets. While we specifically addressed complications encountered
in the analysis of antibodies, we would expect similar trends for
any protein samples where many close variant sequences might
be present, such as in samples assaying human genetic variants
or large protein families with related sequences.

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: marcotte@icmb.utexas.edu.
*E-mail: gg@che.utexas.edu.
Author Contributions
‡D.R.B., A.P.H., and Y.W. contributed equally.
Notes
The authors declare the following competing financial
interest(s): A patent application on this work has been filed.
No other competing interests exist.
The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium24 via the PRIDE partner
repository, with dataset identifiers PXD000916 (Rabbit) and
PXD000917 (Human).

■ ACKNOWLEDGMENTS
Funding for this work was provided by the Clayton Foundation
(G.G.), Welch Foundation Grant F1515 (to E.M.M.), Defense
Advanced Research Projects Agency (G.G.), Defense Threat
Reduction Agency (G.G. and E.M.M.), and National Institutes
of Health (NIH) Grants 5 RC1DA028779 (to G.G. via a
subcontract from University of Chicago) and GM 076536 and
DP1 OD009572 (to E.M.M.). J.J.L. was supported by a
postdoctoral fellowship by Cancer Prevention and Research
Institute of Texas. The Linear Trap Quadrupole (LTQ)
Orbitrap Velos MS was purchased with generous support by
the NIH Western Research Center of Excellence in Biodefense
(NIH Grant 5U54AI057156) and the Texas Institute for Drug
and Diagnostics Development (TI-3D).

■ REFERENCES
(1) Poulsen, T. R.; Meijer, P. J.; Jensen, A.; Nielsen, L. S.; Andersen,
P. S. J. Immunol 2007, 179, 3841−3850.
(2) Glanville, J.; Zhai, W.; Berka, J.; Telman, D.; Huerta, G.; Mehta,
G. R.; Ni, I.; Mei, L.; Sundar, P. D.; Day, G. M.; Cox, D.; Rajpal, A.;
Pons, J. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 20216−20221.
(3) Briney, B. S.; Crowe, J. E., Jr. Front. Immunol. 2013, 4, 42.
(4) Murphy, K.; Travers, P.; Walport, M.; Janeway, C. Janeway′s
immunobiology, 8th ed.; Garland Science: New York, 2012; p xix, 868
p.
(5) Tarlinton, D.; Good-Jacobson, K. Science 2013, 341, 1205−1211.
(6) Weinstein, J. A.; Jiang, N.; White, R. A., 3rd; Fisher, D. S.; Quake,
S. R. Science 2009, 324, 807−810.
(7) Reddy, S. T.; Ge, X.; Miklos, A. E.; Hughes, R. A.; Kang, S. H.;
Hoi, K. H.; Chrysostomou, C.; Hunicke-Smith, S. P.; Iverson, B. L.;
Tucker, P. W.; Ellington, A. D.; Georgiou, G. Nat. Biotechnol. 2010, 28,
965−969.
(8) Vollmers, C.; Sit, R. V.; Weinstein, J. A.; Dekker, C. L.; Quake, S.
R. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 13463−13468.
(9) Britanova, O. V.; Putintseva, E. V.; Shugay, M.; Merzlyak, E. M.;
Turchaninova, M. A.; Staroverov, D. B.; Bolotin, D. A.; Lukyanov, S.;

Bogdanova, E. A.; Mamedov, I. Z.; Lebedev, Y. B.; Chudakov, D. M. J.
Immunol. 2014, 192, 2689−2698.
(10) de Costa, D.; Broodman, I.; VanDuijn, M. M.; Stingl, C.;
Dekker, L. J. M.; Burgers, P. C.; Hoogsteden, H. C.; Smitt, P. A. E. S.;
van Klaveren, R. J.; Luider, T. M. J. Proteome Res. 2010, 9, 2937−2945.
(11) Dekker, L. J. M.; Zeneyedpour, L.; Brouwer, E.; van Duijn, M.
M.; Smitt, P. A. E. S.; Luider, T. M. Anal. Bioanal. Chem. 2011, 399,
1081−1091.
(12) Bandeira, N.; Pham, V.; Pevzner, P.; Arnott, D.; Lill, J. R. Nat.
Biotechnol. 2008, 26, 1336−1338.
(13) Wine, Y.; Boutz, D. R.; Lavinder, J. J.; Miklos, A. E.; Hughes, R.
A.; Hoi, K. H.; Jung, S. T.; Horton, A. P.; Murrin, E. M.; Ellington, A.
D.; Marcotte, E. M.; Georgiou, G. Proc. Natl. Acad. Sci. U.S.A. 2013,
110, 2993−2998.
(14) Cheung, W. C.; Beausoleil, S. A.; Zhang, X.; Sato, S.; Schieferl,
S. M.; Wieler, J. S.; Beaudet, J. G.; Ramenani, R. K.; Popova, L.; Comb,
M. J.; Rush, J.; Polakiewicz, R. D. Nat. Biotechnol. 2012, 30, 447−452.
(15) Lavinder, J. J.; Wine, Y.; Giesecke, C.; Ippolito, G. C.; Horton,
A. P.; Lungu, O. I.; Hoi, K. H.; Dekosky, B. J.; Murrin, E. M.; Wirth,
M. M.; Ellington, A. D.; Dorner, T.; Marcotte, E. M.; Boutz, D. R.;
Georgiou, G. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 2259−2264.
(16) Sato, S.; Beausoleil, S. A.; Popova, L.; Beaudet, J. G.; Ramenani,
R. K.; Zhang, X.; Wieler, J. S.; Schieferl, S. M.; Cheung, W. C.;
Polakiewicz, R. D. Nat. Biotechnol. 2012, 30, 1039−1043.
(17) Hale, J. E.; Butler, J. P.; Gelfanova, V.; You, J. S.; Knierman, M.
D. Anal. Biochem. 2004, 333, 174−181.
(18) Kall, L.; Canterbury, J. D.; Weston, J.; Noble, W. S.; MacCoss,
M. J. Nat. Methods 2007, 4, 923−925.
(19) Cox, J.; Michalski, A.; Mann, M. J. Am. Soc. Mass Spectrom. 2011,
22, 1373−1380.
(20) DeKosky, B. J.; Ippolito, G. C.; Deschner, R. P.; Lavinder, J. J.;
Wine, Y.; Rawlings, B. M.; Varadarajan, N.; Giesecke, C.; Dorner, T.;
Andrews, S. F.; Wilson, P. C.; Hunicke-Smith, S. P.; Willson, C. G.;
Ellington, A. D.; Georgiou, G. Nat. Biotechnol. 2013, 31, 166−169.
(21) Marcotte, E. M. Nat. Biotechnol. 2007, 25, 755−757.
(22) Nesvizhskii, A. I. J. Proteomics 2010, 73, 2092−2123.
(23) Elias, J. E.; Gygi, S. P. Nat. Methods 2007, 4, 207−214.
(24) Vizcaıńo, J. A.; Deutsch, E. W.; Wang, R.; Csordas, A.;
Reisinger, F.; Rıós, D.; Dianes, J. A.; Sun, Z.; Farrah, T.; Bandeira, N.;
Binz, P. A.; Xenarios, I.; Eisenacher, M.; Mayer, G.; Gatto, L.; Campos,
A.; Chalkley, R. J.; Kraus, H. J.; Albar, J. P.; Martinez-Bartolome,́ S.;
Apweiler, R.; Omenn, G. S.; Martens, L.; Jones, A. R.; Hermjakob, H.
Nat. Biotechnol. 2014, 30, 223−226.

Analytical Chemistry Article

dx.doi.org/10.1021/ac4037679 | Anal. Chem. 2014, 86, 4758−47664766

mailto:marcotte@icmb.utexas.edu
mailto:gg@che.utexas.edu

