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Abstract

Noise permeates biology on all levels, from the most basic molecular, sub-cellular processes to the

dynamics of tissues, organs, organisms, and populations. The functional roles of noise in

biological processes can vary greatly. Along with standard, entropy-increasing effects of

producing random mutations, diversifying phenotypes in isogenic populations, limiting

information capacity of signaling relays, it occasionally plays more surprising constructive roles

by accelerating the pace of evolution, providing selective advantage in dynamic environments,

enhancing intracellular transport of biomolecules and increasing information capacity of signaling

pathways. This short review covers the recent progress in understanding mechanisms and effects

of fluctuations in biological systems of different scales and the basic approaches to their

mathematical modeling.

1. Introduction

Living world is shaped by the interplay of deterministic laws and randomness Monod

(1971). In the past, biologists learned to deal with fluctuations and uncertainty by drawing

mostly qualitative conclusions from a large number of observations. However, in the last

two decades, the situation began to change with the birth of the emerging field of

quantitative biology. Perhaps not coincidentally, within the same timeframe a large

contingent of physicists began to look at biology as a fertile ground for new and interesting

physics. The new generation of “biological physicists”, many of them trained in nonlinear

dynamics and statistical physics, started to view fluctuations not as a nuisance that makes

experiments difficult to interpret, but as a worthwhile subject of study by itself. Researchers

are finding more and more evidence that noise is not always detrimental for a biological

function: evolution can tune the systems so they can take advantage of natural stochastic

fluctuations.

All processes in Nature are fundamentally stochastic, however this stochasticity is often

negligible in the macroscopic world because of the law of large numbers. This is true for

systems at equilibrium, where one can generally expect for a system with N degrees of

freedom the relative magnitude of fluctuations to scale as . However, when the

system is driven out of equilibrium, the central limit theorem does not always apply, and

even macroscopic systems can exhibit anomalously large (“giant”) fluctuations Keizer

(1987). There are many examples of this phenomenon in physics of glassy systems, granular

packings, active colloids, etc. Biology deals with living systems that are manifestly non-
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equilibrium, and so it is not surprising that noise plays a pivotal role in many biological

processes.

Variability in biological populations is a result of many confluent factors. The most basic

one is genetic diversity among individual organisms. This genetic diversity is crucial for

survival of the species in an ever-changing environment. However, even genetically

identical organisms, such as monoclonal microbial colonies, cloned animals or identical

human twins exhibit significant phenotypic variability. Traditionally, this variability was

ascribed to environmental fluctuations affecting development of individual organisms

(extrinsic noise), but in recent years it has become clear that significant variability persists

even when genetically identical organisms are kept under nearly identical conditions

(intrinsic noise). Biological fluctuations span multiple spatial and temporal scales from fast

cellular and subcellular processes to more gradual whole-organism multi-cellular dynamics

to very slow evolutionary and population-level variability. In this review we will consider

properties and sources of some of these types of biological fluctuations.

During the past several years, a number of excellent reviews have been published regarding

the role of noise and fluctuations in biology, however most of these reviews were written by

biologists and published in biological journals Kærn et al. (2005); Fraser and Kærn (2009);

Simpson et al. (2009); Wilkinson (2011); Chalancon et al. (2012). This review is written by

a physicist with some experience working on biological problems, for physicists interested

in exploring and perhaps joining the new and rapidly advancing field of quantitative

biology. Biology is very broad, and noise affects all biological processes. This review tries

to strike a reasonable compromise between encompassing the breadth of the subject and

delving into the complexities of individual systems of interest. We begin with discussion of

fluctuations at the cellular level, then give several characteristic examples of noise

influencing development of multicellular organisms, and finally we address the effects of

fluctuations on the population dynamics. Space constraints did not permit the author to give

equal justice to all aspects of this vast and diverse topic. The most glaring omission is

perhaps the dynamics of neurons and neural networks that is known to exhibit ample

stochasticity. Fluctuations in neuroscience is such a rich subject that it certainly requires a

separate review. This review also does not touch upon fluctuations affecting the properties

of intracellular transport and cellular mechanics. Instead, we pay the most attention to the

fundamental source of stochasticity in biology - noisy gene expression. We show how these

fluctuations propagate to the higher level of biological organization and affect crucial

biological functions such as decision making, development, spatiotemporal population

dynamics and even evolutionary processes.

2. Stochasticity in Cell Biology

The chief source of stochastic variability on the cellular level is the intrinsic thermal

fluctuations of biochemical reactions driving gene expression, signaling, cell cycle, motility,

etc. These reactions occur through random collisions and transient binding of various

molecular species within a single cell. In macroscopic systems randomness of inter-

molecular collisions is negligible because of very large numbers of participating molecules.

But most biological molecules (chromosomes, RNAs, proteins) are present inside a cell in

Tsimring Page 2

Rep Prog Phys. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



very small numbers. According to mass spectrometry measurements Ishihama et al. (2008),

the median copy number of all proteins in a single bacterium E. Coli is approximately 500,

and 75% of all proteins have a copy number of less than 250. The copy numbers of RNAs

often number in tens, and the chromosomes (and so the majority of the genes) are usually

present in one or two copies. Therefore, the reactions among these species can be prone to

significant stochasticity.

2.1. Transcription and translation

The central dogma of molecular biology stipulates that proteins that are main structural

blocks of life, are produced within the cells in two steps: genes are transcribed to synthesize

messenger ribonucleic acids (mRNAs) and the latter in turn are translated to make proteins.

These reactions are often modeled as zeroth- and first-order Markovian “birth” reactions ∅
→ m, m → p characterized by rates km and kp, respectively. The accumulation of RNAs

and proteins is limited by first-order “death” reactions of degradation for mRNAs and

proteins, m → ∅, p → ∅ with rates γm and γp, respectively. If fluctuations were

negligible, the numbers of mRNA and protein molecules would evolve according to the

ordinary differential equations

(1)

(deterministic mass-action approximation), and eventually reach fixed stationary levels

, ps = kmkp(γmγp)−1. To account for stochasticity due to finite numbers of

participating molecules and probabilistic reaction events, one can write a chemical master

equation for the two-dimensional probability distribution to have m transcripts and p

proteins at time t,

(2)
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In most cases chemical master equations cannot be solved analytically, and their solutions

can be approximated by averaging over an ensemble of stochastic trajectories. Such

trajectories can be generated using so-called Stochastic Simulation Algorithm (SSA)

Gillespie (1976). In this algorithm, often referred to as direct Gillespie algorithm, time to the

“next reaction” is computed based on the current state of the system under the Markovian

assumption that all reactions are Markovian. For a system of N species comprising a state

vector x = {x1, …xN} at time t and M possible reactions with propensities wm(x), the time to

the next reaction Δt is selected from an exponential distribution with the mean 1/w(x) where

w(x) = ∑ w(x) is the total rate of all possible reactions. The type of the next reaction is

chosen among the M possibilities with the probabilities wm(x)/w(x). Time t is advanced to

time t + Δt and the numbers of molecules in each species are updated according to the

stoichiometry of the chosen reaction. Thus, the system “jumps” from one individual reaction

event to the next and generates an exact stochastic trajectory. Generating enough of these

trajectories allows one to compute the probability distributions of the participation species

with arbitrary accuracy. This direct method was later improved and made more

computationally efficient while still keeping it exact by Gillespie and others Gillespie

(1977); Gibson and Bruck (2000). It was first introduced to the field of gene regulatory

networks by McAdams and Arkin (1997) and has since become very popular. Still, this

brute-force approach in most realistic cases is computationally prohibitive. Many

approximate computational methods were proposed in recent years that take advantage of

certain small or large parameters. For example, if some reactions are slow and others are

fast, one can expect the fast reaction channels to equilibrate between two rare firings of slow

reactions. This forms the basis of so-called tau-leap method and its modifications Gillespie

(2001); Rathinam et al. (2003); Cao et al. (2005). One can also apply hybrid algorithms

which treat fast reactions using Langevin equations (or even deterministic ODEs) Haseltine

and Rawlings (2002) (see also Gillespie (2007) for a review of various stochastic simulation

algorithms).

Eq. (2) has only zero- and first-order reactions, and therefore it is analytically solvable. For

example, differential equations for moments which can be easily derived from the master

equation, do not contain higher moments and can be solved sequentially Thattai and van

Oudenaarden (2001). The equations for the first moments (means) of the mRNA and protein

distributions coincide with the mass-action approximation (1). The stationary variance of the

mRNA distribution Vm = 〈m2〉−〈m〉2 is equal to the mean ms, which can be expected since

the stationary distribution of mRNA molecules is evidently Poissonian (simple birth-death

process). However, the distribution of proteins is broader than Poissonian, with variance that

can be much larger than the mean

(3)

A similar result for the protein distribution in a growing and dividing cell population in the

absence of protein degradation was obtained much earlier by Berg (1978). This protein

distribution broadening is caused by the so-called “translational bursting”, since every

molecule of mRNA can produce a random integer number of proteins before it is degraded.
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The mRNA is translated after it binds to a ribosome (the latter actually prevents it from

being rapidly degraded). It is can be shown that if mRNA binding to a ribosome and

degradation and are two mutually exclusive reactions with fixed rates, the distribution of the

number of proteins synthesized per single mRNA is geometric McAdams and Arkin (1997),

(4)

where b = kp/γm is the mean number of proteins synthesized by a single transcript

(translational efficiency). In the limit of large b the distribution approaches exponential ν(p)

= b−1 exp(−p/b). Figure 1 shows typical time series of protein numbers obtained by the

direct Gillespie method in cases of weak (small b) and strong (large b) bursting. Of course,

if many mRNAs are present in the cell at the same time, there may not be actual bursts of

translational activity, however the protein distribution will still be much wider than Poisson.

Ozbudak et al. (2002) set out to test the above theoretical predictions by measuring the

distribution of the green fluorescent protein in a monoclonal population of Bacillus subtilis

and independently varying transcriptional and translational rates. The transcriptional rate

was regulated by the concentration of IPTG (a chemical inducer), and the translation rate

was modified by introducing point mutations in the ribosome binding site (RBS) and the

initiation codon of the gfp gene. The strong correlation was indeed observed between the

normalized width of the distribution (Fano factor, or the ratio of the variance to the mean)

and the translation rate of the GFP proteins (see Fig. 1,c). In contrast, varying the

transcriptional efficiency (by changing inducer concentration) did not affect the Fano factor,

in agreement with the theoretical predictions (see Fig. 1,d).

Using a microfluidic-based assay in which single cells can be trapped within enclosed

observation chambers, Cai et al. (2006) were able to measure the temporal fluctuations of

highly fluorogenic protein β-galactosidase in E. coli cells with single molecule sensitivity in

real time (see also Yu et al. (2006)). They indeed observed bursts of protein production

which had exponential distribution of molecules per burst.

Friedman et al. (2006) introduced a simple model of translational bursting. This model is

based on the assumption that bursting is fast compared with protein degradation, i.e. each

mRNA molecules instantaneously produces random number of protein molecules. Ignoring

discreteness of protein numbers, this process can be described by a continuum master

equation for the protein probability distribution P(p, t),

(5)

Here the first term in the r.h.s. describes exponential degradation of the proteins with rate γ,

and the second term describes discontinuous (“bursty”) synthesis of proteins. The transition

probability w(p, p′) of having p proteins at time t+ and p′ proteins at time t− can be written

in the form w(p, p′) = k[ν(p−p′)−δ(p−p′)] where ν(x) denotes the probability distribution of

making a burst of x proteins (it is assumed stationary and independent of the current number

Tsimring Page 5

Rep Prog Phys. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



of proteins p′). This master equation can be solved using the Laplace transform. For the

exponential distribution of burst sizes, ν(x) = b−1 exp(−x/b), the exact stationary solution of

Eq. (5) has the form of a Gamma distribution,

(6)

The stationary protein distribution is characterized by two parameters, the mean burst

frequency a = k/γ and the mean burst size b which also are equal to the ratio of variance 

to the mean square of the proteins 〈p〉2 (or inverse square of the coefficient of variation, CV

= σp/〈p〉), and the Fano factor (ratio of the variance to the mean), respectively. This Gamma

distribution is a continuum limit of the negative binomial distribution derived earlier by

Paulsson and Ehrenberg (2000) for protein molecules produced in random geometrically-

distributed bursts. It can also be obtained in the continuum limit from an explicit solution of

the two-dimensional master equation for mRNA and proteins in the limit of long-lived

proteins and short-lived mRNA Shahrezaei and Swain (2008). Recent high-throughput

quantitative measurements of mRNA and protein expression with single-molecule

sensitivity Taniguchi et al. (2010) indeed showed that almost all protein number

distributions in E. coli could indeed be well-fitted by the Gamma distribution (6). However,

the distribution of fitting parameter a showed a non-trivial dependence on the protein

abundance 〈p〉: for low-abundance proteins, it scaled inversely with 〈p〉, as could be

expected from the above model. However, high-abundance proteins (roughly 〈p〉 > 10)

showed no dependence on 〈p〉, which may imply a different, most likely extrinsic source of

fluctuations. If parameters a and b of the Gamma distribution (6) vary slowly, with arbitrary

but peaked distributions f(a), g(b), (CVa, CVb < 0.3) the resulting distribution P(p̄) = ∫ ∫
P(p)f(a)g(b)dadb is still well-approximated by the Gamma distribution Taniguchi et al.

(2010). However, the coefficient of variation of p in this case approaches

 and independent on 〈p〉.

Under closer inspection, this relatively simple picture of protein synthesis begins to show

strong limitations. On one hand, the transcription rate of a gene itself does not remain

constant in time but is known to fluctuate, which leads to so-called transcriptional bursting.

These bursts of mRNA synthesis were observed by Golding et al. (2005) in E. coli by an

ingenious method of visualization of individual mRNA molecules. Similar bursts of

transcription activity were also observed in other organisms Raj et al. (2006); Chubb et al.

(2006). This stochastic variability of transcriptional activity can be caused by a multitude of

global factors such as fluctuations of the number of RNA polymerase (RNAP) molecules

and other components of transcriptional machinery (for example, σ-factors that assist RNAP

binding to promoters), changes in the chromatin structure, error-correction mechanisms

leading to pausing and even backtracking in the nascent RNA synthesis, etc. The

transcription rate of a specific protein is also modulated by the regulatory intracellular units

such as transcription factor proteins or small interfering RNAs (siRNA) whose abundance

itself can fluctuate greatly. Kepler and Elston (2001) studied statistics of stochastic gene

expression modeling gene activation/deactivation as a random telegraph process, see also
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Paulsson (2005); Sánchez and Kondev (2008) for review and generalization to arbitrarily

multi-state promoter dynamics.

On the other hand, even seemingly “elementary” transcription and translation reactions are

in fact very complex multi-staged biochemical reactions. For example, transcription of a

single gene in a eukaryotic cell starts from initiation, or forming a so-called pre-initiation

complex consisting of six sequentially recruited transcription factors that help position RNA

polymerase (RNAP) over gene transcription start sites and locally unwind DNA double

helix. Then a RNAP binds and begins elongation, or assembly of the nascent RNA chain

which itself is a sequence of hundreds of reactions of binding of individual nucleotides. This

process ends by the termination mediated by specific transcription termination factors. After

that the nascent RNA chain goes through the process of splicing which is also a complex

chain of biochemical reactions. Thus, even if individual steps were Markovian, the

transcription taken as a whole cannot be described as a memoryless Poisson process. A

somewhat more realistic approach to modeling multistep biochemical reactions such as

transcription or translation consists in imposing a fixed or distributed time delay between the

reaction initiation and the resulting change in the stoichiometry. Delayed reaction steps can

lead to many interesting phenomena in gene expression, including oscillatory dynamics

Lewis (2003); Bratsun et al. (2005); Morelli and Jülicher (2007); Mather et al. (2009).

Furthermore, since many RNAP can move simultaneously on a single DNA track, they can

interfere with each other’s progress Zia et al. (2011). This basic interaction can be abstracted

in the form of a totally asymmetric simple exclusion process, or TASEP. It was first

introduced by MacDonald et al. (1968) in the context of translation where multiple

ribosomes may move along the same mRNA, and similar traffic jams may occur.

To make things even more complicated, the translocation of RNAP along the DNA chain is

far from uniform, and is characterized by pausing Herbert et al. (2006) or even backtracking

Nudler (2012). This leads to a broad distribution of the time intervals between successive

RNAP steps Abbondanzieri et al. (2005), and consequently to heavy-tailed distribution of

transcription elongation times and transcriptional bursting. A number of recent papers

addressed the mechanisms of this intermittency, e.g. Voliotis et al. (2008); Ribeiro et al.

(2009); Ó Maoiléidigh et al. (2011) which broadly are based on the Brownian ratchet model.

Yamada and Peskin (2009) proposed an interesting “look-ahead” model of RNAP

translocation which assumed that the RNA elongation happens in parallel within a certain

transcription “bubble” and found that the bubble width of 4 nucleotides describe well the

translocation waiting time distribution and the average speed of elongation. However, this

model has yet to be tested experimentally. Voliotis et al. (2008) found that RNAP pausing

Herbert et al. (2006) and possible backtracking Shaevitz et al. (2003) lead to a

2.2. Intrinsic vs. extrinsic noise

As we mentioned in the previous section, the stochastic fluctuations in the level of cellular

components can be caused by the multitude of factors. They can roughly be divided into two

categories: intrinsic and extrinsic. Intrinsic noise refers to the stochastic fluctuations within

the system under consideration, usually caused by the inherently probabilistic nature of the

underlying biochemical reactions. The stochastic processes outside the system under
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consideration may serve a source of extrinsic noise. Following Swain et al. (2002), we can

introduce the probability distribution for the intrinsic I and extrinsic E components of noise,

p(I, E), and assume that the observable x is a function of both I and E. Then the k-th

moment of x can be written as

(7)

According to this formula, the moments can be determined by first conditional averaging

over intrinsic fluctuations under fixed extrinsic noise (angular brackets) and the subsequent

averaging over extrinsic variability (overbar). Using this notation, one can immediately see

that the coefficient of variation of x is a linear sum of intrinsic and extrinsic components:

(8)

How can one experimentally measure relative contributions of intrinsic and extrinsic sources

to the level of noise in a fluctuating intracellular system? An elegant way to quantify the

sources of gene expression noise was proposed by Swain et al. (2002) and implemented by

Elowitz et al. (2002). In this dual-reporter method, identical promoters drive transcription of

two genes that produce distinguishable, but otherwise nearly identical proteins (Fig. 2A). If

extrinsic sources of noise affect both promoters identically, in the absence of intrinsic noise

the amount of both gene products protein in a cell would be the same at all times. This

explicitly relies on the assumption that under the same extrinsic conditions both genes are

transcribed and translated with the same efficiency, and both proteins degrade at the same

rate. Thus, the magnitude of the difference in protein levels in different cells across a large

population gives us a measure of the intrinsic noise, whereas the magnitude of the overall

fluctuations characterizes the sum of intrinsic and intrinsic noise contributions. More

formally, measuring x1 and x2 and computing

 allows one to find CVint and

CVext separately using Eq. (8). A simple graphical way to characterize the magnitudes of

intrinsic vs. extrinsic noise it to create a scatter plot of (x1, x2) pairs for each cell in a

population and estimate the widths of the resulting two-dimensional distribution along and

perpendicular to the the diagonal x1 = x2. In the absence of intrinsic noise the points would

be confined to the diagonal. In the presence of intrinsic noise but in the absence of the

extrinsic noise the points will be scattered according to a wide distribution which is a direct

product of two identical one-dimensional distributions for individual proteins (assuming that

intrinsic noise is statistically independent for both observables). Thus, the width of the

distribution perpendicular to the diagonal may serve as the measure of the intrinsic noise

(see Fig. 2B).

Strictly speaking, the dual-reporter method tacitly assumes that the environmental

fluctuations are slow compared with the intrinsic fluctuations. As pointed out by Hilfinger

and Paulsson (2011), in many biologically relevant conditions, the time scales of extrinsic
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and intrinsic fluctuations are comparable. Therefore the vector of extrinsic fluctuations E
which was used above, has to include not just instantaneous values of extrinsic variables, but

the temporal histories of the latter. This implies that in such cases a naive application of the

dual-reporter method to quantification of noise sources may lead to systematic errors.

Hilfinger and Paulsson (2011) proposed an alternative method of computing the extrinsic

noise by time averaging the covariance between the two reporters Cov(x1, x2) = 〈〈x1x2〉〉t −

〈〈x1〉〉t〈〈x2〉〉t. Here the inner brackets denote ensemble average, and the outer brackets

denote the time average. Since presumably the two time series x1 and x2 share the same

environmental history, this covariance should correctly characterize the variance of reporter

fluctuations due to the extrinsic noise.

Elowitz et al. (2002) constructed a synthetic dual-reporter system in bacteria E.coli using

yellow and cyan alleles of the green fluorescent proteins driven by the same Plac promoter.

Rather than putting them on a separate plasmid, they incorporated them into a single

chromosome at equal distances from the origin of replication to ensure that the number of

copies of each gene-promoter pair is exactly the same in every cell, and the rates of their

transcription are as similar as possible. Since this is a fundamental assumption underlying

the dual-reporter method, they checked that univariate distributions of both proteins were

indeed very similar. When the Plac promoter was fully active (in the strain that did not have

lacI repressor gene), the overall noise level was rather small (CV ≈ 0.077) with similar

contributions of intrinsic and extrinsic noise (CVint ≈ 0.055, CVext ≈ 0.054). In a wild-type

E. coli, LacI protein binds to the Plac promoters and strongly represses transcription of both

YFP and CFP. As expected, the smaller mean level of proteins contributed to the larger

intrinsic noise levels (CVint ≈ 0.19). Interestingly, the level of extrinsic noise increased even

more, to CVext = 0.32, which presumably is explained by strong fluctuations of LacI levels

across the cell population. Raser and O’Shea (2004) performed a similar experiment and

analysis for eukaryotic cells by quantifying the difference in expression of two alleles in

diploid budding yeast S. cerevisiae. They placed two fluorescent proteins (YFP and CFP)

under control of identical promoters at exactly the same loci on two homologous

chromosomes and obtained a much smaller fraction of intrinsic noise in the overall

fluctuations of the fluorescence compared to bacteria (typically only 2–3%). This is to be

expected because the intrinsic noise of constitutively expressed protein should scale

inversely proportional to the square root of the mean number of protein molecules, and

much bigger eukaryotic cells typically feature a much larger quantities of proteins

expressed.

An alternative method of estimating the significance of intrinsic vs. extrinsic noise in gene

expression that does not require the two-color technique was proposed by Volfson et al.

(2005). This method is based on a simple observation that if multiple copies of a gene are

present in the cell, and only intrinsic noise is present which is uncorrelated among the

copies, the RNAs of the protein concentration will scale inversely proportional to the square

root of the copy number. However, if all genes are affected by the same extrinsic noise, then

the CV should be independent of the copy number. The analysis of fluctuations of

fluorescence in five mono-clonal populations of S. cerevisiae with varying number M = 1,

…, 5 of GFP genes embedded in the chromosome under the control of identical native
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GAL1 promoters showed, in agreement with the dual-reporter studies, that the gene

expression in yeast is indeed dominated by the extrinsic noise (Fig. 3).

What are the dominating sources of the extrinsic noise that causes fluctuations in gene

expression? Volfson et al. (2005) suggested that large variability in gene expression across a

cell population can be caused by the population dynamics, since even a monoclonal

population consists of growing and dividing cells in different phases of their cell cycle.

Using a mathematical model of population dynamics incorporating random divisions of

cells, they showed that it accounts for much of the apparent extrinsic variability in

monoclonal yeast populations. This mechanism should be distinguished from recently

analyzed random partitioning of molecules at division Huh and Paulsson (2011) which

contributes to both the extrinsic and intrinsic noise in gene expression, since it generates

uncorrelated random fluctuations of copy number of participating molecules at division.

Other factors, such as common upstream regulators, chromatin remodeling, and cell cycle

related variability, can also contribute to the experimentally observable levels of extrinsic

noise.

2.3. Gene regulatory networks

As already mentioned above, the level of expression of a particular gene (the abundance of

the corresponding mRNA and protein) can be modulated by so called transcription factors

(TFs). TFs themselves are proteins whose concentration can be controlled by their own

transcription factors, and so on. Thus, complex gene regulatory networks are formed. A full

stochastic description of such networks in principle could be based on solving the

corresponding chemical master equation. However, even if one ignores the complexity of

individual transcription/translation reactions discussed above, solutions of multi-

dimensional master equations are rarely possible. If the system only involves zero- and first-

order reactions (reaction rates are linear functions of abundances), the time-dependent

moments of the corresponding distributions can still be found, for example, by using

generating function approach. Thattai and van Oudenaarden (2001) obtained explicit

expressions for the mean 〈p〉 and variance Vp of the protein distributions in a simple

autoregulatory motif when the transcription of a single gene is linearly repressed by its own

protein product (the instantaneous transcription rate is a linear function of the abundance p

of the repressor protein, kp − k1p):

(9)

where parameter ϕ = k1/γp characterizes the strength of the negative feedback. These

expressions show that negative autoregulation reduces the strength of stochastic fluctuations.

A general scheme of solving the chemical master equation for systems containing only zero-

and first-order reactions is described in Gadgil et al. (2005).

Similar functional performance can, in principle, be achieved in different network

architectures. For example, a 2-stage negative feedback loop (NFL) can be based on

repression of an activator or activation of a repressor. The competence system in bacterium

Bacillus subtilis which will be discussed in more detail in Sec. 2.5) features the core circuit

Tsimring Page 10

Rep Prog Phys. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



in which the master regulator ComK represses synthesis of its own activator protein ComS

forming a 2-stage NFL. Çağatay et al. (2009a) compared the noise performance of this

native NFL circuit with a synthetic circuit featuring an alternative architecture that employs

activation by ComK of its repressor MecA (Fig. 4a). These two circuits have similar mean-

field dynamics (the synthetic circuit can be tuned to produce a similar average level of

competence), but they exhibit distinctly different statistics of stochastic fluctuations: the

synthetic circuit exhibits a much narrower distribution of competence duration times (Fig.

4,b). Presumably, in unpredictable and fluctuating environments, significant variability of

competence duration can confer a fitness advantage on the bacterial population as a whole.

A more complex case of 3-node feed-forward loops (FFLs) have been studied by

Kittisopikul and Süel (2010) There are 8 possible different types of FFLs (see Fig. 5), all of

them can be found in various regulatory systems of E. coli. These architectures can be

divided into two classes of coherent and non-coherent types, depending on whether the

direct path from gene A to C works in accord with the indirect path or not. Coherent and

non-coherent gene regulatory loops show markedly different dynamical behavior Alon

(2007). But why are there multiple types of either coherent or non-coherent FFLs present

within E. coli genome? One plausible explanation proposed by Kittisopikul and Süel (2010)

is that these different architectures exhibit qualitatively different noise performance, and

depending on the biological function, different noise properties may be beneficial. By

clustering various regulatory circuits according to their functional role, they found that

circuits involved in anaerobic metabolism featured FFL architectures with higher noise in

their “on” states than in the “off” states, whereas stress response circuits exhibited

significant enrichment of FFLs with the opposite characteristics. While many other

“housekeeping” systems did not exhibit a significant preference for FFL architectures based

on their noise performance (which can quite naturally be explained by the the dominant role

of other factors in their selection), the observed correlation between the functional roles and

the specific architectures is highly suggestive that noise performance may play a significant

role in shaping the ability of biological systems to respond to distinct environmental

conditions.

Unfortunately, the dynamics of gene regulatory networks are typically nonlinear (due to

cooperativity, bi-molecular reactions, enzymatic processing, etc.), and therefore analytical

expressions for noise performance like (9) generally cannot be found. One way to deal with

such systems is to assume that the system always fluctuates very close to a deterministic

(macroscopic) trajectory or a fixed point. That forms the basis of the so-called linear noise

approximation (LNA) based on the Ω-expansion Van Kampen (1992). Using this approach,

a full covariance matrix of molecular fluctuations can be computed from the chemical

master equation Elf and Ehrenberg (2003); Paulsson (2004). If, however, the system does

not remain close to a fixed point but performs a large excursions away from fixed points or

deterministic trajectories, using LNA or its variants is not appropriate. In these

circumstances, researchers typically resort to numerical simulations of the underlying

biochemical reactions. One particularly important type of such strongly nonlinear and

stochastic biological behavior is “genetic switches” that control cellular decisions in

uncertain environments. This type of noisy dynamics is described later in Section 2.5.
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Another important class of gene circuits with non-trivial dynamical behavior are gene

oscillators. Clocks play a key role in coordinating biological processes on multiple spatial

and temporal scales, from individual cells to whole organisms, and from fast electrical

oscillations in neurons to respiratory, glycolytic oscillations, cell division cycles to circadian

rhythms. Native biological clocks are usually rather complex, with multiple layers of

regulation Zhang and Kay (2010), although core gene circuits containing just a few elements

have been identified in a number of cases (note however that not all native clocks are based

on gene regulation, e.g. circadian clock in cyanobacteria entirely relies on phosphorylation

processes Golden and Canales (2003)). In parallel to theoretical and modeling studies of

native clocks, there has been a significant recent progress in forward engineering of small

genetic networks generating oscillations, beginning from the seminal repressilator, in which

three genes form a small loop in which one gene expressed the transcription factor that

repressed expression of next one Elowitz and Leibler (2000). An even simpler 2-gene design

based on a combination of one positive and one negative feedback loop was shown to

exhibit robust and highly tunable oscillations Stricker et al. (2008) (see Fig. 6a). Such small

circuits allow us to study the mechanisms of oscillations in greater depth and develop

meaningful, yet analytically treatable models Mather et al. (2009). However, small gene

oscillators they are prone to large stochastic variability of amplitudes and periods (Fig. 6c).

This variability can be effectively reduced be using cell-cell coupling to coordinate the

oscillatory activity of individual cells within a population. Such strategy is often used in

natural settings, for example, in synchronization of oscillators driving embryo segmentation

Horikawa et al. (2006). Danino et al. (2010); Prindle et al. (2011) used two modes of inter-

cellular communication (quorum sensing machinery within individual micro-colony and

redox signaling coupling colonies together) to achieve long-range synchronization of

synthetic oscillators within a whole microfluidic device (Fig. 6b). As expected, the

synchronized oscillations also have much higher temporal coherence (Fig. 6d).

2.4. Information transmission in signaling cascades

Life depends on the ability of organisms to receive, process, and transmit information.

Information flows occur on all scales, from population-wide social interactions and whole-

organism sensory signals, all the way down to inter- and intra-cellular communication.

Capacity of all these information channels is noise-limited, but cell signaling cascades

provide an especially important class of biological networks constrained by intrinsic and

extrinsic stochastic variability.

Until recently, most of the data on signaling response was collected using population-

averaging methods such as Western blots or microarrays, but these approaches can often

mask the important dynamical and stochastic aspects of the system response. For example,

graded average response to an increased concentration of a signaling molecule may be an

indication of a graded response of individual cells or a binary, but heterogeneous response

with increased probability of the “on” state at higher concentration of inducer (Fig. 7). A

graded chemotactic response to a transient cAMP stimulation is usually observed in a

population of amoebae Dictyostelium discoideum. However, recent single-cell microfluidic

experiments Wang et al. (2012) showed that the graded population-averaged response is, in

fact, cased by a continuum increase of the fraction of “on” cells in an essentially bimodal
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population of cells. Another example of qualitatively different single-cell and population-

wide signal response is presented by the NFκB immune response system: individual cells

exhibit strong oscillations in nuclear localization of NFκB molecules however these

oscillations are strongly dampened in the bulk because they are not phase-synchronized

Paszek et al. (2010).

Generally, one can view a signaling cascade as an input-output system with one or more

inputs (signal, S) and outputs (response, R). The fidelity of signaling cascades can be

characterized using information-theoretic concept of the mutual information (MI) between

the signal and the response Shannon and Weaver (2002). If the joint probability distribution

of signal and response is P(S, R), and P(S), P(R) are the marginal distributions of S and R,

the MI is defined as

(10)

It can also be expressed as I = H(R) − H(R|S), the difference between the entropy of the

output signal

(11)

and the entropy of the input signal conditioned by the input signal

(12)

It is easy to see from definition (10) that MI is symmetrical with respect to permutation S ↔
R and so alternatively can be defined as I = H(S) − H(S|R). MI measures (in bits when the

logarithm is base 2) how much uncertainty about the input signal can be eliminated from

measuring the response. The maximum possible MI is the entropy of the input signal itself,

(13)

that is reached when the input completely determines output, so H(R|S) = H(S|R) = 0. Any

uncertainty in the response for a given input signal due to inevitable noise in the

transmission channel leads to reduction of MI below this upper bound. The maximum MI

for a given channel over all possible inputs patterns constitutes the information capacity of

the channel. It is tempting to think that maximizing information capacity is one of the

important factors that directs the evolution of cellular signaling networks. A number of

recent publications have explored this intriguing possibility by analyzing the information

capacity of cellular signaling cascades.

If a signaling channel is defined by set of biochemical reactions, then evidently a simple

increase of the number of signaling molecules would reduce noise and thus increase

information capacity. However, such trivial “optimization” would come at a corresponding

metabolic cost. Non-trivial optimization has to strike a balance between energy consumption
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and information flow. Tkačik et al. (2009); Walczak et al. (2010); Tkačik et al. (2012)

analyzed this balance by computing optimal mutual information in several basic types of

small gene networks under a constraint of a limited number of signaling molecules. They

assumed that an inducible expression of a single gene activated by a “input” transcription

factor c, is Gaussian, with the mean number of “output” molecules Nmg(c) characterized by

the Hill function,

(14)

where Nm is the maximum possible number of output molecules produced by an infinitely

strong signal. There are two distinct sources of stochastic fluctuations in the output, the

stochastic fluctuations of the input level amplified by the gene circuit and the intrinsic noise

within the gene circuit itself due to discrete transcription, translation, and degradation

processes. Assuming that both these sources of noise are Poissonian, with the variance that

scales linearly with the levels of input and output molecules, the CV of the output level (the

variance of the number of output molecules normalized by ) in the steady state can be

computed in the small-noise approximation. It is given by a sum of two terms

(15)

which reflects the additive contributions of the two above-mentioned sources of noise. The

relative magnitude of these contributions is determined by the input concentration scale c0 =

Nm/(Dlτ), where D is the diffusion constant for protein within the cell, l is the characteristic

size of the binding site on the gene promoter, and τ is the output “measurement” time. For a

variety of cells and transcription factors, this scale is ~ 15 − 150 nM. Balance of these two

sources of fluctuations determines the optimal structure of the single-gene transmission

circuit. Assuming that the noise is small and Gaussian, Tkačik et al. (2009) computed the MI

(10) under the hard constraint of a limited maximum number of input molecules cmax

(16)

(a similar formula can be obtained assuming a fixed mean concentration of input molecules).

The analysis of this expression shows that a maximal information transmission can be

achieved at particular values of dissociation constant K and Hill coefficient n if cmax ~ c0.

However, optimization is absent if cmax is much smaller or much greater than c0. Intuitively

it makes sense, because for very small input signals the circuit capacity is dominated only by

the single, input source of noise, and for very large input compared to output, only the

intrinsic circuit noise is the limiting factor. Obviously, the MI increases monotonously with

cmax, however increasing cmax much above c0 does yield rapidly diminishing returns since it

remains limited by the intrinsic noise. Reassuringly, concentrations of most transcription

factors fall within the same range ~ 15–150 nM, thus gene expression circuits indeed appear

to operate effectively from the information-theoretical standpoint.
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The same information-theoretical approach yields non-trivial predictions about the structure

of more complex gene networks, such as multiple genes controlled by the same transcription

factor Tkačik et al. (2009); Cheong et al. (2011), feed-forward circuits Walczak et al.

(2010), positive and negative feedback loops Ziv et al. (2007); Tkačik et al. (2012), etc. Ziv

et al. (2007) numerically compared all possible 3-gene transcriptional signaling cascades

with various positive and negative feedback loops. Computing maximal achievable input-

output mutual information (channel capacity) for three binary inputs (3 bits) and a single

output under biologically relevant constraints on protein abundance and time scales of

decision-making, they found that all circuits can be tuned to transmit more than 2 bits of

information, i.e. they perform significantly better than a binary switch. Among all 24

possible circuits, the negative-feedback architectures had a slight edge that may be caused

by their intrinsic noise-suppressing properties (see Sec. 2.3). In a small-noise approximation,

Tkačik et al. (2012) found that feedback generally increases achievable channel capacity of

single-gene input-output circuits, in that for cmax < c0 (“genetic amplifier”) the positive-

feedback circuit is optimal, and for cmax > c0 (“genetic attenuator”) self-repression yields

optimal performance.

Lestas et al. (2010) demonstrated that finite channel information capacity imposes

fundamental limits on the magnitude of fluctuations in genetic regulatory systems with

rather general topology. They considered a system in which a species X1 activates synthesis

of a signaling species X2 which in turn activates an arbitrary complex “controller” that in

turn determines the synthesis rate of X1. This system can be described by three biochemical

reactions

(17)

where x1,2 are numbers of X1,2 molecules, τ1 is the average lifetime of X1 molecules, f(x1) is

the birth rate of the signaling molecules X2, and u(x2(−∞, t)) is the output of an arbitrary

control network that may depend on the whole past history of x2. Assuming that the

dynamics of x1 is continuous and governed by a Langevin equation, the relation between the

feedback channel capacity C and the lower bound of the Fano factor of x1 fluctuations can

be deduced

(18)

The feedback channel capacity itself depends on the magnitude of fluctuations of the

synthesis function f(x1), i.e. on fluctuations of x1. This creates a lower bound for the

magnitude of fluctuations of x1 which for linear function f(x)αx can be expressed in the

following form

(19)
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Here N1 = 〈x1〉 and N2 = α〈x1〉τ1 is the number of molecules of X1, X2 synthesized during

time τ1. This formula shows that for a low-amplitide feedback controller, N2 ≪ N1,

, and for a large-amplitude feedback control N2 ≫ N1, CV ≥ (N1N2)−1/4. Thus,

feedback control of gene expression noise is fundamentally inefficient: the noise magnitude,

at best, decays as a quartic root of the number of signaling molecules. For example, to

reduce noise in X1 ten times via negative feedback control, one would have to produce at

least 104 more signaling molecules X2 than X1.

Mutual information provides a useful characterization of strongly nonlinear signaling

cascades when simple linear correlation analysis is not applicable. It was used for

reconstructing gene regulatory networks from microarray data Basso et al. (2005); Margolin

et al. (2006) However, standard MI measures fail to address certain important questions

regarding the dynamics of complex biological networks. In particular, since MI between two

variables x and y is symmetric with respect to permutation X ↔ Y, it cannot identify the

predominant direction of the information flow between two nodes. Schreiber (2000)

proposed a generalization of the MI concept called transfer entropy which quantifies how

much uncertainty about the future of X is eliminated by the knowledge of the current state of

Y and vice versa. It generalizes the so-called Wiener-Granger causality that characterizes

how much Y improves the prediction of future X using linear regression Barnett et al.

(2009). The transfer entropy has been recently used to infer the structure of the gene

regulatory data from the time series microarray data for genes involved in human cell cycle

Tung et al. (2007). Even more general approach Smith et al. (2002) uses dynamic Bayesian

networks to inference the direction of information flows that goes beyond quantifying pair-

wise interactions within a network. This method has been applied to inferring directed gene

regulatory Husmeier (2003) and neural Smith et al. (2006) networks from time series data.

An overview of these and many other computational methods of inferring cellular networks

from experimental data can be found in Markowetz and Spang (2007).

Perhaps the first experimental estimation of the channel capacity of a genetic regulatory

system was done by Tkačik et al. (2008) for the gene circuit controlling morphogenesis in

Drosophila melanogaster embryo using experimental measurements by Gregor et al. (2007)

(this system is discussed further in Sec. 3.3). The maximal MI between the concentrations of

the two main morphogens, bicoid and hunchback, was estimated to be 1.7 bits “per

measurement”, which is close to the theoretical maximum information transmission rate

(obtained in the small noise approximation) for a given number of signaling molecules.

Cheong et al. (2011) characterized the channel capacity of NF-κB signaling cascade in

mammalian cells in response to the step-wise stimulation by tumor necrosis factor (TNF)

directly from experimental data. They found that in a single cell the average MI of the NF-

κB cascade is about 1 bit. Therefore, a cell appears to only be able to distinguish between

two levels of input (“on” or “off”) and not the strength of the stimulation. They also found

similar results for other canonical signaling cascades, such as G-protein associated receptors

and epidermal growth factor pathway. However, these calculations assume that cells only

measure a level of a single scalar output at a single time point. It appears likely that in order

to improve information transmission capacity, biological systems employ various strategies,
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such as spatial or temporal averaging, using multi-branch pathways, or exploiting temporal

structure of input signals. Indeed, NF-κB pathway is believed to employ sophisticated

temporal coding, so different time courses of the TNF input activate different subsets of

target genes and elicit distinct immune response programs Behar and Hoffmann (2010).

2.5. Noise in decision-making

Cells collect and process information to adapt to changing environmental conditions. This

adaptation often takes the form of nearly-discontinuous switches in specific cell function.

Abrupt phenotype changes can also be pre-programmed in the genetic blueprint of the

organism development. Biology is replete with examples of drastically different phenotypes

among cells with identical genomes. All cells in a human body have the same set of genes,

however they code for many different cell types. The accepted view is that qualitatively

different cell phenotypes are usually produced by different stable states of the underlying

gene regulatory network. The developmental program forces cells to differentiate into these

states. One particularly important type of strongly nonlinear gene networks is a “genetic

switch” that can drastically alter the pattern of gene expression under a small change in

environmental conditions. Sometimes these switches can be flipped by random intrinsic and

extrinsic fluctuations, especially when the environmental conditions bring the system close

to the threshold for a transition. To minimize undesirable “back-and-forth” switching and

ensure phenotypic stability when the system tethers near the critical state, genetic switches

usually employ positive feedback motifs that render them bistable (and hence, hysteretic) in

a certain parameter range. This endows the cells with a form of memory, since the cellular

state becomes history-dependent. Examples of bistable switches are abundant in cell biology

at all levels from th simplest viruses and bacteria to mammalian cells. A number of such

systems have been studied in great detail: lysogeny-lysis switch in λ phage Ptashne (1992),

lactose utilization network in E. coli Ozbudak et al. (2004), galactose utilization network in

budding yeast Acar et al. (2005), progesterone-controlled transition between two maturation

stages of the Xenopus oocytes Xiong and Ferrell (2003), etc. (see Balázsi et al. (2011) for a

recent review).

If the cells in a population were identical, the environmental conditions uniform, and the

genetic switches deterministic, one would expect that all these cells should be in the same

phenotypic state and would all switch simultaneously to another state under suitable change

of environment. However there is much experimental evidence that even in isogenic

populations under nearly identical environmental conditions, the cells may exhibit

drastically different phenotypes. There is a certain well-defined fraction of λ-phage infected

E. coli cells choosing lysogeny instead of lysis that depends on nutritional and other

conditions Kourilsky (1973). Arkin et al. (1998) used Gillespie’s algorithm to simulate

intrinsic stochastic fluctuations in biochemical reactions comprising the genetic switch in λ-

phage and demonstrated that this probabilistic mechanism alone can satisfactorily explain

the observed lysogeny/lysis fractions.

An interesting example of probabilistic decision-making involves multipotent differentiation

of bacteria under unfavorable environmental conditions such as starvation, heat, toxic

chemicals, etc. Bacteria deploy a number of strategies to cope with stress, including changes
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in motility patterns, secretion of antibiotics to compete with other microbes, etc. If all these

strategies prove insufficient, as a last resort the bacteria may choose to sporulate. However,

experiments in an isogenic population of Bacillus subtilis Schultz et al. (2009) showed that

this transition is probabilistic in nature, and only about 50–70% of all cells make irreversible

commitment to sporulation that involves lysis of cells and the release of their genetic

material. The transition to sporulation is controlled by the level of phosphorylation of the

master regulator Spo0A, and for a long time it was thought that heterogeneity of sporulation

transition is caused by the bimodality of phosphorylated Spo0A expression due to bistability

in the positive feedback loops present in the Spo0A phosphorylation pathway Dubnau and

Losick (2006); Veening et al. (2008). However, more recently Chastanet et al. (2010) and de

Jong et al. (2010) found that the distribution of phosphorylation activity of Spo0A was not

bimodal but rather broadly heterogeneous. Similar unimodality was found in all other

proteins forming the phosphorelay de Jong et al. (2010). Furthermore, Chastanet et al.

(2010) showed that all positive feedback loops within the Spo0A phosphorelay were

operating in a monostable regime. Presumably, the 4-component cascade that transfers

phosphate groups acts as a noise generator responsible for stochastic cell-to-cell variability

in timing of the sporulation entry. It can be argued that this asynchronicity is beneficial for

the population as a whole in fluctuating environmental conditions.

Interestingly, in the face of the same environmental stress, a small fraction of B. subtilis

cells (3–15% of the colony depending on the strain) follow an alternative scenario and

switch to a competent state in which a bacterium can take up exogenous DNA from already

dead nearby cells. This exogenous DNA can be used for DNA repair or as mutation material

to survive stressful conditions. The transition to competence is controlled by the key

transcription factor protein ComK which is low in normal, non-competent cells and high in

competent cells Samoilov et al. (2006); Veening et al. (2008). It was found that this

transition mainly occurs within the first two hours after cells enter the stationary phase,

which could be explained by the variations in basal ComK expression Leisner et al. (2007);

Maamar et al. (2007). The gene circuit that controls comK gene expression contains both a

positive and a negative feedback loop (see Fig. 8a). The positive feedback loop in ComK

synthesis can in principle lead to bistability, and in the presence of stochastic fluctuations -

to the experimentally observed bimodality in comK gene expression Maamar and Dubnau

(2005). However, single-cell experiments showed that the competent state is only transient.

After about 20 hours, cells spontaneously switch back to the vegetative state and continue

their progress towards sporulation Süel et al. (2006); Süel et al. (2007). While this

observation does not exclude a possible bistable nature of the transition, it favors an

alternative model that the competence circuit operates in an excitable regime and relatively

small stochastic fluctuations of comK expression can produce large “bursts” of ComK.

The dynamics of competence can be described by two differential equations for ComK and

ComS concentrations, K and S, respectively:

(20)
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where αk and βk are basal and fully-activated levels of ComK synthesis, βs is the synthesis

rate of ComS in the absence of ComK, k0 and k1 are concentrations of ComK at which the

synthesis of ComK (ComS) is increased (reduced) by 50%. Powers n and p indicate the

cooperativity of ComK, ComS synthesis regulation by ComK transcription factor. Random

fluctuations in ComK and ComS synthesis are modeled by Gaussian noise terms ξk(t) and

ξs(t). The phase plane of Eqs.(20) with two nullclines is shown in Fig. 8b, it has a structure

typical for an excitable system. Numerical simulations show that fluctuations of either

ComK or ComS can lead to large excursions that correspond to the transient competent

states observed experimentally.

This model is further corroborated by the measurements of the competence transitions in

genetically modified cells Süel et al. (2006) which incorporated additional inducible

production of ComK (in the model it can be characterized by the increased basal rate αk)

and ComS (increased αs). The basal transcription rates of comK and comS genes could be

modulated independently by chemical inducers. The measurements Süel et al. (2007)

showed that the probability of switching to competence Pint (which was about 3% in their

wild-type strain) was highly dependent on the basal transcription rate of comK gene but the

mean duration of the competence phase was independent of it. On the other hand, Pint was

independent of the basal expression level of comS but the duration of the competence

markedly increased with that (see Fig. 8c,d). Furthermore, decreasing the effective

transcriptional noise level by increasing the cell size also reduced Pint in agreement with the

“excitable” model of competence, Fig. 8e. Still, the duration of competent state appears to

be highly variable Çağatay et al. (2009b), which may still suggest a role for the stochastic

switching mechanism back to the non-competent state, i.e. bistability. In fact, elevated levels

of ComS, ComK expression can lead to a bifurcation towards bistability, or even oscillatory

regimes Espinar et al. (2013).

Both sporulation and competence are caused by the same environmental conditions.

Therefore, it is not obvious how one of these two developmental programs is ultimately

selected by a particular cell. As described above, individual cells exhibit large variability in

expression of master regulators ComK and Spo0A. Therefore, only single-cell

measurements can unambiguously answer these questions. Until recently, it was believed

that cells strongly cross-regulate these pathways, and once one pathway is selected, the other

one is automatically repressed Schultz et al. (2009); Ben-Jacob and Schultz (2010).

However, recent work Kuchina et al. (2011) showed that slow progression to sporulation

and excursions to competence occurs independently and concurrently up to a certain

irreversible decision point, and the choice of the phenotype depends on the outcome of a

“molecular race” between the two independently progressing differentiation programs:

whichever program reaches the decision point first, wins. On the other hand, the decision

circuit itself appears to have non-trivial oscillatory that transiently open so-called “windows

of opportunity” for competence Schultz et al. (2013).

In order to understand the key mechanisms of cellular memory, a number of synthetic

bistable gene circuits were recently constructed that implemented positive (or double-

negative) feedback motif. In fact, one of the first two papers that heralded the dawn of the

new field of synthetic biology described an implementation of a synthetic toggle switch
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based on mutual repression of two genes borrowed from the λ-phage genome Gardner et al.

(2000).

One should be very careful inferring bistability of the underlying dynamical model from the

apparent bimodality of the monoclonal population-based distributions of observed

quantities. It has been shown that in some biologically relevant systems, bimodality occurs

just due to stochastic effects in systems which deterministically are unimodal Samoilov et al.

(2005). One ubiquitous example of such systems is so-called enzymatic futile cycle, in

which two enzymes counter-act to convert two substrates into each other (see Fig. 9,a).

There are many examples of such cycles and their cascades in biology: phosphorylation/

dephosphorylation by kinase/phosphatase pairs, GTPase cycles, NAD+/NADH conversion

in catabolism, etc. Such bidirectional enzymatic reactions are known to give rise to the zero-

order ultrasensitivity Goldbeter and Koshland (1981) and are usually thought to be

evolutionary selected for rapid and switch-like response to external signals. More surprising

is that, when the levels of enzymes are driven by certain extrinsic noise sources, these

enzymatic cycles may exhibit complex dynamical behaviors. Samoilov et al. (2005) solved

the Fokker-Planck equation for the enzymatic futile cycle in which the concentration of the

forward enzyme Ef is driven by a stochastic process. They showed that if the noise source is

nonlinear (i.e. its strength depends on the enzyme concentration itself), the stationary

distributions of substrates X,X* can be bimodal. The mode of the distribution in a certain

parameter domain becomes multi-valued (Fig. 9,b), even though for a constant level of Ef

the system is always single-valued (which implies monostability). Direct numerical

simulations of the underlying stochastic model reveal stochastic switches between two meta-

stable states with a characteristic switching frequency that is determined by the escape rate

from the corresponding basins of attractions. A similar effect of stochastic bimodality in

deterministic monostable system was found by Artyomov et al. (2007) in a toy model of

competing agonism/antagonism in immune response of T-cells to binding peptide-MHC

complexes. This system is believed to be controlled by counteracting positive and negative

feedback loops that in deterministic limit show no bistability in all parameter ranges, but

intrinsic stochasticity due to small copy numbers of the molecules leads to distinct

bimodality of the immune response.

2.6. Enzymatic queueing and inter-pathway crosstalk

Biological systems have developed robust strategies that regulate allocation of limited

resources Lodish et al. (2012). On an intra-cellular level, this often leads to a significant

crosstalk between pathways sharing the same limited resource. Different systems can

compete for nutrient sources as well as for enzymes needed for transcription, translation, and

degradation of mRNAs and proteins. This competition may lead to apparent downstream

coupling Buchler and Louis (2008); Chapman and Asthagiri (2009); Genot et al. (2012) as

well as retroactivity that affects upstream components Del Vecchio et al. (2008); Kim and

Sauro (2010); Cookson et al. (2011); Kim and Sauro (2011); Rondelez (2012). On the other

hand, cells sometimes use resource distribution itself as a global regulatory mechanism

controlling cooperation among various metabolic or signaling pathways. Understanding the

specific mechanisms of this regulation is far from complete Grigorova et al. (2006); Klumpp

and Hwa (2008).
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Correlated fluctuations in different intracellular components or pathways usually serve

either as evidence of direct coupling among these components or as a signature of a common

source of extrinsic noise. However, it is becoming increasingly clear that strong correlations

within the cells can often be due to entirely different, implicit type of coupling that occurs

due to limitations in common enzymatic resources shared by multiple substrates. In

intracellular signaling and metabolic systems, enzymes often interact with multiple

substrates, which may represent different pathways or branches of the same pathway. A

ubiquitous example of this type of coupling is ribosomes that bind to and translate many

different mRNA. When the number of mRNAs becomes so large that ribosomes cannot keep

up with translation, a significant translational crosstalk ensues Mather et al. (2013).

Downstream coupling due to common degradation machinery has recently been

experimentally observed in a synthetic system where yellow and cyan fluorescent reporters

were tagged for fast degradation by a common protease ClpXP Cookson et al. (2011), see

Fig. 10,a. In this study, it was shown that a rate-limited interaction can lead to strong

coupling between the two fluorescent reporters.

A theoretical description of such enzymatic correlations can be developed on the basis of the

queueing theory (see for example, Bhat (2008)). Queueing theory provides a probabilistic

description of waiting lines of randomly arriving and leaving customers at so-called service

stations. In the biological context, molecules of different species can be thought of as

“customers” that are randomly synthesized and processed or degraded via certain

biochemical reactions. In recent years, queueing theory has been used to describe a cellular

processes in metabolic and regulatory networks Arazi et al. (2004); Levine and Hwa (2007).

However, single-class queuing models studied in Arazi et al. (2004); Levine and Hwa

(2007) allow only a description of a single chemical species processed by a given enzyme,

and cannot be directly applied to the analysis of inter-species correlations. Since individual

enzymes can be involved in multiple biochemical reactions, enzymatic coupling can form a

network of interconnected queues, an active area of research in the queueing literature

known as the theory of multi-class queues Kelly (1979). Rate-limited processing can couple

the numbers of different job types in a queue. If the total arrival rate exceed the processing

rate, the servers become overloaded, the queue lengthens dramatically, and the numbers of

jobs of different kinds competing for the attention of the servers become tightly correlated

Bramson (1998); Williams (1998).

A prototypical queueing model of enzymatic correlation was considered by Mather et al.

(2010). A system with m protein species X1, …, Xm is governed by the following set of

biochemical reactions. For i = 1, …, m,

(21)

Here Di stands for DNA producing Xi at a constant rate λi, Xi binds/unbinds with the

enzyme E with reaction rate constants η±, the enzyme E degrades Xi with reaction rate

constant μ, and Xi is diluted in both its bound (XiE) and unbound form with rate constant of

γ. All reactions are assumed to be Poissonian (with exponentially distributed reaction times)

and the reaction rate constant η is supposed to be so large that the associated reactions are
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effectively instantaneous. An illustration of this model for m = 2 is shown in Fig. 10,b and

typical time series of the numbers of proteins X1,2 for different production rates λ1,2

corresponding to underloaded, balances, and overloaded conditions are shown in Fig. 11,a–

c.

The stochastic behavior of this system may be described as follows. New molecules of

species i (i = 1, …, m) are produced via an independent Poisson process with rate λi > 0. It

is assumed there are fixed L > 0 copies of the enzyme, and when one of the L copies

becomes available, it selects a protein molecule at random, binds to it instantly and begins to

degrade it. The degradation time is exponentially distributed with mean 1/μ where μ > 0. In

addition, the molecules can be “diluted” as follows. Each protein molecule remains in the

system for at most an exponentially distributed amount of time with mean 1/γ where γ > 0.

A molecule may be removed from the system by degradation before its dilution “lifetime” is

up, or vice versa.

Mapping this stochastic biochemical model onto a corresponding queueing system allows

one to find exact (in the limit of K ≡ η−/η+ = 0) or accurate approximate (for arbitrary non-

zero K) expressions for steady-state joint probability distributions of different substrates and

its moments in a closed form. In particular, the cross-correlation between the concentrations

of the two protein shows a characteristic non-monotonous behavior as a function of the

synthesis rate(Fig. 11,d,e). The correlation is small for very small and very large total

synthesis rate (λ1 + λ2) and reaches maximum near the balance point, when the total

synthesis rate of the proteins is equal to the the maximum processing capacity of the

protease, i.e. where λ1 + λ2 = Lμ. In the limit of zero dilution, the correlation at the balance

point becomes perfect (ρ = 1). This result is somewhat counterintuitive, because often it is

tacitly assumed that correlations are a signature of direct interactions.

We already mentioned that a ubiquitous source of potential crosstalk is the competition for

the resources needed for the production of proteins. For example, it is known that σ-factor

competition for a finite pool of RNA polymerases leads to significant changes in RNA

polymerase partitioning between transcription of housekeeping genes versus stress response

genes under stress conditions Grigorova et al. (2006); Fredriksson et al. (2007). The copy

number of ribosomes appears to be limiting for protein synthesis at the whole cell level

Warner et al. (2001); Mauro and Edelman (2002, 2007); Shachrai et al. (2010); Scott et al.

(2010); De Vos et al. (2011); Chu et al. (2011), in which case competition for a common

pool of ribosomes by mRNAs can lead to crosstalk when large systematic changes in

transcript abundance occur. More surprisingly, pronounced and functionally important

crosstalk has been shown to arise from competition between a small number of different

transcripts in the galactose utilization network of S. cerevisiae Bennett et al. (2008);

Baumgartner et al. (2011), which presumably cannot overload the whole pool of ribosome in

the cell. Apparently the crosstalk in this case caused by transcripts competing for a spatially-

localized subset of ribosomes. Direct measurements Baumgartner et al. (2011) showed

spatial co-localization of different mRNAs in the neighborhood of a nuclear pore where

presumably they are being cotranslated by the same small pool of ribosomes.
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The competition between mRNA molecules for translational processing resources was

recently studied theoretically by Mather et al. (2013) using the methods of queueing theory.

A toy stochastic model for translational crosstalk includes two different types of mRNA and

a limited set of identical ribosomes. It was assumed that mRNAs instantly bind to available

ribosomes, and there may be a higher probability of re-binding of a ribosome to the same

mRNA than to any other after termination of translation. The analytical solution of the

queueing problem for the fixed mRNA and ribosome numbers shows that again the strength

of the crosstalk strongly depends on whether the ribosomes are underloaded (more

ribosomes than mRNAs) or overloaded (more mRNAs than ribosomes). The model in the

underloaded case recovers much of the phenomenology predicted by standard models for

protein production, including a lack of crosstalk between the production rates of protein

species, while the two protein species in the overloaded state exhibited substantial crosstalk.

Without preferential re-binding of a ribosome to the same mRNA there is a weak positive

correlation between proteins due to the finite pool or upstream mRNAs. When the number

of mRNAs is allowed to fluctuate slowly or there is strong mRNA-ribosome rebinding

probability, the system exhibits a negative correlation resonance (minimum) slightly above

the balance point, where the number of ribosomes is equal to the total number of mRNAs.

This downstream resonance is analogous, though opposite in sign, to a positive correlation

resonance found upstream from a processing bottleneck as in shared degradation pathways

Mather et al. (2010).

3. Noise in Developmental Biology

3.1. Developmental noise

In the previous section we touched upon the crucial role that noise plays in decision-making

processes that affect the phenotypic state of unicellular organisms such as bacteria switching

from normal to competent state or becoming a spore. This can be considered a part of a

developmental program for these organisms, however more commonly developmental

biology deals with higher multi-cellular organisms. Development of a multicellular

organism from a single cell is a fascinating process during which a very complex and robust

program is executed which combines growth, differentiation, and patterning Schwank and

Basler (2010); Lander (2011). This program leads to sequential partitioning of an initially

homogeneous cell mass into a hierarchy of smaller and smaller units which comprise the

grown organism. As a result, during development of a multicellular organism, a “fossil

record” of fluctuations can become “frozen” into the emerging structure of the adult

organism, and therefore generate phenotypical diversity on a population level. Furthermore,

during development, living organisms go through a sequence of decision-making

“checkpoints” that can not only relay, but amplify microscopic stochastic fluctuations to the

meso- and macroscopic levels of organization.

Most of salient characteristics of multicellular organisms are determined genetically. For

example, a wild-type nematode worm C. elegans always develops into an adult organism

with 959 somatic cells with precisely defined functions. The height, head shape, and eye

color of humans are also genetically encoded. And yet many characteristics vary greatly

even in isogenic animals. The life span of C. elegans can vary from 10 to 30 days Finch and
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Kirkwood (2000). While the number of neuronal cells is often conserved with a very high

precision, the neuroanatomy of genetically identical species of lower animals such as locusts

Steeves and Pearson (1983), fish Levinthal et al. (1976) and worms White et al. (1976) is

non-identical. This combination of high precision in some aspects of developments (e.g.

growth and regeneration of tissues and organs Lander et al. (2009)) with relatively lax

regulation of others (e.g. life span and details of synaptic connections) poses interesting

questions about the role of evolution in shaping the control of developmental variability.

Waddington (1957) defined developmental noise (DN) as a phenotypical diversity among

individuals which is not caused by genetic factors. A more recent, and narrower definition of

the developmental noise that excludes effect of extrinsic fluctuations is phenotypical

diversity among individuals with identical genotypes under nearly identical environmental

conditions Yampolsky and Scheiner (1994).

One of the often cited and studied manifestations of DN in higher organisms is a random

deviation from symmetry between between bilateral organs (such as kidney size, finger

length, etc.), known as fluctuating asymmetry Waddington et al. (1956); Parsons (1990).

While fluctuating asymmetry can be caused by genetic, hereditary effects, there is solid

evidence that most of the fluctuating asymmetry is caused by environmental or other

epigenetic fluctuations during development. In normal conditions fluctuating asymmetry is

rather small. For example, left and right limbs in humans on average are equal in length up

to 0.2% Wolpert (2010). To explain this remarkable developmental stability Waddington

(1942) introduced the idea of canalization, i.e. the insensitivity of the phenotype to changes

in either genetic mutations or intrinsic stochastic fluctuations during development, and

hypothesized that evolutionary pressures shaped the epigenetic landscape in a specific way

to account for the canalization property. Still, given the level of stochastic fluctuations in

gene expression and growth on the intra-cellular level, it is hard to imagine that such

stability can be achieved without some sort of feedback control. Despite decades of

intensive research, the mechanisms underlying the robustness and stability of this program

are still not completely understood. One common mechanism of feedback control appears to

be based on growth-dependent synthesis of specific molecules, chalones, that regulate the

proliferation rate of cells in tissues and organs. Several members of the TFG-β family of

proteins, in particular growth and differentiation factors (GDF) 8 and 11, as well as activin B

have been implicated in control of growth and regeneration of the mammalian olfactory

epithelium Wu et al. (2003); Lander et al. (2009).

3.2. Incomplete penetrance

An interesting example of large variability emerging during development is the phenomenon

of incomplete penetrance that was independently discovered in Drosophila fimebris by

Romaschoff (1925) and Timoféeff-Ressovsky (1925). They demonstrated that genetic

mutations only result in mutant phenotype in a certain part of the population, whereas other

organisms exhibit wild-type phenotype. This ambiguity persists even if the population is

grown in identical conditions, which rules out the role of environmental fluctuations.

Raj et al. (2010) recently studied mechanistic origins of the incomplete penetrance of the

intestinal specification in mutants of the nematode C. elegans. In a wild-type C. elegans, the
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intestine consists of 20 cells which proliferate from a single E cell during embryonic

development. The differentiation into intestinal cells is controlled by a small gene circuit

which is activated by skn-1 transcripts (see Fig. 12,a). However, in a skn-1 mutant with

homozygous alleles zu67, zu129 or zu135, the number of intestinal cells in late embryos

shows high variability. The accurate counting of mRNA transcripts of the genes comprising

the network using fluorescent in situ hybridization (FISH) showed that this mutant contained

no med-1 and med-2 transcripts, and a much smaller number of end-3 transcripts than the

wild type, thereby effectively eliminating half of the regulation for the regulator end-1 (Fig.

12,b). The expression of elt-2 was strongly bimodal, whereas the expression of the upstream

gene controlling it, end-1, was still unimodal as in the wild type, but much more broadly

distributed (Fig.12,c). They also observed a strong positive correlation between the level of

end-1 and elt-2 in individual cells. This implies that the activation of elt-2 requires end-1 to

reach a certain threshold (of the order a 150–250 transcripts per cell). Wild-type E cells have

a tightly controlled number of end-1 transcripts which is above this threshold and follow the

prescribed developmental fate and become intestinal cells, but a large fraction of mutant E-

cells fail to cross this threshold and therefore fail to differentiate into the intestinal cells.

3.3. Precision of morphogenesis

The early organism development presents an interesting and still unsolved puzzle of how

embryos robustly develop in a multi-cellular organisms in the face of biological noise and

cell-to-cell variability. The fundamental limits of accuracy and reproducibility of

development were addressed in relation to the classical problem of morphogenesis in the

early stages of embryo growth of the fruit fly Drosophila melanogaster Gregor et al. (2007).

The spatial pattern formation in early embryos of D. melanogaster is driven by the gradient

of the morphogen proteins Bicoid. Its mRNA transcripts are maternally deposited and

translated near the anterior pole, and the Bicoid protein subsequently diffuses throughout the

embryo, creating a nearly exponential concentration profile with a characteristic scale λ ≈
100µm. Bicoid activates the transcription of the hunchback (hb) and other so-called gap

genes involved in the early embryo anterior segmentation. Unlike Bicoid, the profile of

Hunchback concentration along the embryo is strongly nonlinear, with a sharp drop near the

middle of the embryo and a smaller cap near the posterior pole (see Fig. 13). The levels of

Hb in the anterior part of the embryo are quite variable, but precision with which the drop in

the Hunchback concentration profile is positioned in the middle of the embryo is staggering.

Expression of other gap genes (krüppel, knirps, giant, etc) is limited by similarly sharp and

stable boundaries. About 3 hours after fertilization the embryo is still a single syncytial cell

of about 500 µm long, and contains approximately 70 “layers” of nuclei. Nonetheless, even

neighboring layers of nuclei have clearly distinguishable (and highly reproducible) levels of

gap gene expression. It is easy to estimate that given the exponential profile of Bicoid, the

difference between its concentration at the locations of adjacent nuclei is only about 10%.

Despite this rather small difference, the adjacent nuclei reliably give rise to different cell

fates, which could imply that the gene circuitry within the nuclei (in particular, hunchback

genes coding for the Hb protein) can measure the absolute concentration of Bicoid with at

least 10% accuracy. On the other hand, in embryos of significantly different sizes the Bicoid

profiles are scaled by the length of the embryo, so the differentiation proceeds in perfect

accord with the embryo size. This observation raised questions about the actual role of
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diffusion in forming the Bicoid gradient and the role of the absolute levels of morphogens in

morphogenesis. Further experiments showed that simple linear diffusion through the

cytoplasm plays a minor role in distributing Bicoid throughout the embryo, and direct

exchange among nuclei is perhaps the main factor controlling the morphogen propagation

and subsequent differentiation.

It was also confirmed by direct measurements of Hb concentration that high correlation

between Bcd and Hb is maintained throughout the entire embryo. This is remarkable, since

(as shown by Gregor et al. (2007)) it appears to overcome the fundamental physical limit of

accuracy in estimation the transcription factor concentration This limit was originally

proposed in application to the chemotaxis Berg and Purcell (1977), and is set by the random

collision rates between signaling molecules and the corresponding receptors. Bialek and

Setayeshgar (2005) later generalized this argument by applying the fluctuation-dissipation

theorem for equilibrium chemical kinetic systems to the coupled ligand-receptor binding and

ligand diffusing processes. The resulting estimate for the lower bound of the concentration

measurement precision reads

(22)

where c is the local ligand concentration, D is its diffusion constant, a is the linear receptor

size, and T is the receptor occupancy integration time. Remarkably, this lower bound

remains valid even for clusters of interacting receptors with arbitrary statistics of ligand-

receptor kinetics Bialek and Setayeshgar (2008). Gregor et al. (2007) applied this estimate to

the bicoid (b) measurement accuracy, and using biologically relevant parameters D ~

1µm2/s, b ≈ 5 molecules/µm3, and a ≈ 3 nm, they obtained δb/b ~ (70s/T)1/2. This formula

implies that to reach 10% accuracy, the cell needs to average the receptor occupation for

about 2 hours, which is much longer that the time interval between divisions (nuclear cycle)

when the differentiation decision has to be made. To resolve this apparent paradox, Gregor

et al. (2007) suggested that the cells use local spatial averaging over an area determined by

diffusion of the morphogen during averaging time T, A ~ 4πDT. This yields a different

scaling for the measurement precision as a function of time T, and for the same parameters

one arrives to a much softer estimate δb/b ~ 20s/T. In this way, the observed 10% accuracy

can be realistically reached within ~3 min averaging time, i.e. well within a single nuclear

cycle. However, it is unclear what physical or biochemical mechanism may provide the

required communication and averaging.

More recent experiments provided evidence that this high reproducibility (phenotypical

canalization) could be achieved as a result of sophisticated cross-regulation among several

gap genes Manu et al. (2009a); Surkova et al. (2013). Positional accuracy of Hunchback and

other segmentation proteins’ distributions is significantly diminished in double mutants in

which both krüppel and knirps genes are deleted, which indicates that Hunchback

distribution is not controlled by the Bicoid profile alone. Furthermore, the experiments show

that variability in gene expression patterns is large in early stages of embryo development,

and decreases over time by the onset of gastrulation. The analysis of the mathematical model

of gap genes regulatory network Manu et al. (2009b) shows that the establishment of sharp

and stable boundaries among different gene expression regions can be associated with
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formation of domain boundaries among different attractors in the phase space of the

corresponding multistable dynamical system. This dynamical model also naturally explains

why the positions of gap gene bands are not accurately correlated with the local Bicoid

concentrations but rather scale with the embryo size. The positions of the domain boundaries

in the asymptotic regime are mostly determined by the intrinsic dynamics and the boundary

conditions, and only weakly affected by the distribution of Bicoid. Further experiments and

theoretical analysis will be able to clarify the relationship between the statistical and

dynamical mechanisms of developmental canalization.

3.4. Morphogenesis via symmetry breaking

Another generic mechanism of pattern formation is based on an interplay between

activation, inhibition, and diffusion in a spatially uniform system through a symmetry-

breaking instability with respect to finite-wavenumber perturbations. The first conceptual

model of this sort was proposed by Alan Turing (1952) and is considered the starting point

of the field of pattern formation. Turing believed that his local self-activation/long-range

inhibition model could explain stripes and spots in skin patterns of many animals, however

experimental verification of this hypothesis proved difficult. Only recently, direct

experimental evidence of the Turing-like mechanisms playing a role in developmental

patterning started to emerge.

Nakamasu et al. (2009) studied the development of stripes on the body of zebrafish. There

are three distinct types of pigment cells forming zebrafish skin patterns: melanophores

(black), xanthophores (yellow), and iridophores (reflective). Using laser ablation in vivo,

Nakamasu et al. (2009) showed that disrupted stripe patterns slowly regenerate themselves

in a manner very reminiscent of the classical reaction-diffusion model systems. By applying

controlled local perturbations, they found that xanthophores and melanophores mutually

suppress each other in close proximity, however they interact cooperatively at larger

distances. While the molecular basis of these interactions is still unknown, Nakamasu et al.

(2009) developed a conceptual 3-field mathematical model of this system. In addition to the

slowly-diffusing densities of melanophores and xanthophores, they hypothesized that the

long-range coupling is provided by a fast-diffusing factor. This model exhibits a pattern-

forming instability that produces stripes or round spots in certain parameter ranges. Since

the characteristic width of the zebrafish stripes is only about 10 cell diameters across, the

discreteness of the system and fluctuations can be expected to play a significant role in the

development of stripes. Interestingly, a hybrid discrete-continuous version of the model,

where discrete cells move probabilistically on a lattice in response to the diffusible signaling

fields, still exhibits robust patterning despite significant noise.

A very important signaling mechanism often leading to developmental patterning in higher

organisms is provided by the Delta-Notch system Bray (2006). When receptor Notch binds

ligand Delta on the cell membrane, it initiates a chain of intracellular events that lead to the

activation of a number of target genes. While both Delta or Notch genes are present in all

cell, their expression is mutually exclusive, in a given cell only one of the two can be

expressed at any given time. Direct contact-based Delta-Notch interaction can provide a

mechanism for either morphogen gradient-mediated pattern formation (similar to described

Tsimring Page 27

Rep Prog Phys. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



in Sec. 3.3), or formation of patterned state through lateral inhibition (Turing-like

mechanism). Surprisingly, mutual cis-inactivation can increase the pace and precision of the

developmental program. Using a discrete cell-based mathematical modeling, Sprinzak et al.

(2011) compared pattern formation with and without mutual cis-inhibition. For the model of

morphogen-generated wing vein formation in Drosophila, they obtained that mutual

inhibition stabilizes the vein width of the interface in a broad range of morphogen gradient.

Furthermore, it is also insensitive to extrinsic noise in the system (while remaining sensitive

to the intrinsic noise). Another variant of the model can describe formation of checkerboard

patterns in Drosophila bristles as well as vertebrate inner ear cells. In this model, Delta-

Notch signaling is used to inhibit neighbors’ growth (lateral inhibition). This mechanism

provides positive feedback and bistability that leads to pattern formation through symmetry

breaking Plahte (2001). Sprinzak et al. (2011) showed that mutual cis-inhibition of Delta and

Notch results in much faster differentiation of high-Delta and high-Notch cells.

Interestingly, mutual inhibition eliminates the need for cooperativity in the lateral inhibition

feedback loop that often is required for the instability.

One of the basic problems in the theory of pattern formation is, even in the presence of the

instability, how do initially disordered structures emerging from small random fluctuations

give rise to regular and highly precise structures in the course of development? It is well

known that uncontrolled growth of patterns usually produces an array of topological defects

that only slowly disappear through mutual repulsion or attraction and annihilation Cross and

Hohenberg (1993). However, specific feedback control mechanisms can significantly

accelerate this process. As it was demonstrated theoretically in a general reaction-diffusion

context Aranson et al. (1996) and for a specific model of amoebae aggregation due to cAMP

signaling Levine et al. (1996), additional slow feedback can dramatically accelerate

coarsening of the overall pattern from initially disordered pattern with many small spirals to

a large single spiral (see Figure 14). Similar mechanisms play a role in other pattern-forming

systems, for example in chemotactic bacteria aggregation in hostile environments Budrene

and Berg (1991); Ben-Jacob et al. (1995); Tsimring et al. (1995).

4. Fluctuations in Population Biology

4.1. Phenotypic diversity

It has long been recognized that phenotypic diversity represents an important survival

strategy in fluctuating environments Philippi and Seger (1989): A phenotypically diverse

population sacrifices its optimal fitness for a static environment to protect itself from

possible future adverse conditions. This bet-hedging strategy would ensure that there is

always a sub-group of individuals which are better prepared for a specific environmental

fluctuation than the bulk of the population. Classically, the phenotypic diversity has been

associated with genetic diversity, however recently it has been found in many isogenic

bacterial populations. One important example of phenotypic variability is called

“persistence” Balaban et al. (2004); Kussell and Leibler (2005); Gefen and Balaban (2009).

Bacterial colonies often keep a small percentage of slowly growing (dormant) cells

(“persisters”) that by the nature of their dormancy are strongly resistant to antibiotic drugs.

This represents a major problem for antibiotic treatments of many serious infectious
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illnesses. Fast-growing bacteria mask the presence of slow-growing persisters under normal

conditions, but in the presence of an antibiotic, persisters survive. After the antibiotic is

“turned off,” most of the progeny of the persisters resume normal fast growth, and the small

percentage ratio of persisters to normal cells is restored. It was shown that the probability to

switch to persistence is controlled by the level of expression of toxin-antitoxin genes, which

both are expressed from the same promoter that is partially repressed by the antitoxin

transcription factor Gerdes and Maisonneuve (2012). Among toxin-antitoxin pairs in E. coli,

the most studied is a a particular two-gene operon hipAB which represents a common toxin-

antitoxin motif, in which both toxin (hipA) and antitoxin (hipB) Black et al. (1991). A

particular mutation (hipA7) leading to the over-expression of hipA leads to a growth arrest

and therefore a much higher percentage of persisters under normal conditions, but that

growth arrest can be rescued by the over-expression of hipB. Nevertheless,

themolecularmechanism of maintaining persistence in a population is still not completely

clear. A recent single-cell study by Rotem et al. (2010) showed that HipA protein only

affects the growth above a certain threshold of level expression (which is HipB-dependent),

and the amount of HipA determines the duration of the dormant phase. Fluctuations in the

levels of toxin above and below this threshold result in the coexistence of normal and

dormant cells.

In stationary conditions, having a finite fraction of persistent cells reduces fitness (average

growth rate) of the population as a whole, however in fluctuating environments that does not

have to be the case. Thattai and Van Oudenaarden (2004); Kussell and Leibler (2005); Patra

and Klumpp (2013) demonstrated theoretically that stochastic switching among different

phenotypes in a monoclonal population confers fitness advantage in a fluctuating

environment. Furthermore, the rate of switching can also be optimized to match the

characteristic time scale of environmental fluctuations. Acar et al. (2008) tested these ideas

experimentally by destabilizing a bistable galactose utilization network in Saccharomyces

cerevisiae, so that it would randomly switch between two distinct phenotypes, one (“off”)

with basal activity of the GAL network (measured by the amount of YFP controlled by Gal1

promoter) and another (“on”) upregulated 100-fold. The key feature of the destabilized GAL

network was the possibility to control the stochastic switching rate by changing the level of

regulatory protein Gal80 externally. Acar et al. (2008) engineered a synthetic gene circuit

that favors growth of “on”-cells in one environment (E1) lacking uracil, and “off”-cells in

the E2 environment where uracil was present. As expected, yeast cells in the “on” state were

outcompeting “off”-cells in E1, and “off”-cells were growing faster in E2. Placing both fast

and slow switchers in oscillating environment showed that fast switchers would out compete

slow switchers in a rapidly fluctuating environment (period of switching between E1 and E2

was ~57h) whereas slow switchers grow faster in slow-changing environment (with period

~200h), see Fig. 15.

Many pathogenic microorganisms exhibit bet-hedging strategies which are believed to have

evolved in response to the diversity and polymorphic nature of their host immune systems

Moxon et al. (1994). Beaumont et al. (2009) demonstrated experimentally that bet hedging

can indeed be acquired in the course of de novo evolution when the population of bacteria

Pseudomonas fluorescens (that natively does not exhibit stochastically switching
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phenotypes) acquired this bet-hedging capability. The populations was repeatedly

transferred between two contrasting environments and subjected to an exclusion rule, such

the phenotype prevalent in a current environment was excluded fro the next round. This

selection rule was accompanied by a bottleneck: only a single phenotype among the

survivors was selected at random at the time of transfer to the new environment. The

exclusion rule provided strong fitness advantage for phenotypic innovation, while the

bottleneck favored diversity by alleviating the cost of bet hedging: maladapted mutants did

not have to compete directly against bacteria better fit for the current environment. As a

result, in two out of 12 replicate lines, the bet hedging trait evolved after just eight

successive rounds of selection. Such rapid de novo evolution of bet hedging in experiment

suggests that it may have emerged as a survival strategy in uncertain and fluctuating

conditions at the earliest stages of natural evolution, prior to more sophisticated regulatory

mechanisms.

4.2. Rare events in population dynamics

Population biology models deal with birth-death processes. These models can be very

complex and include multiple sub-populations, memory effects, complex inter-species and

intra-species interaction rules, spatial population variability. However, in the simplest

approximation they operate on a scalar population size n and include two Markovian

processes n → n+1 and n → n−1 characterized by (generally) n-dependent rates birth and

death rates λn and γn, respectively. Classical population dynamics models assume

deterministic continuous dynamics of the population size n, ṅ = λn−γn. The simplest of the

demographic models is the Malthusian model with constant per-capita birth rate Λ = λn/n

the per-capita death rate Γ = γn/n independently of the population size n. If Λ > Γ, the

population size grows exponentially with the rate Λ−Γ. Obviously, the Malthusian

exponential growth cannot be sustained indefinitely if resources are limited, and so the

population size is saturated either due to the reduction of the birth rate, or increase of the

death rate (or both). An example of the former is the logistic growth model in which λn =

Λn(1 − n/N) and the per-capita death rate Γ is constant, whereas the classical example of the

second kind is the ecological Verhulst model Nåsell (2001), in which the per-capita growth

rate Λ is constant, but the per-capita death rate increases linearly with n, so γn = Γn(1 +

nΛ/NΓ). In both models, the carrying capacity K (defined as the deterministic equilibrium

population size) is K = N(1 − 1/R0) where R0 = Λ/Γ is called the basic reproduction ratio.

For R0 < 1 the population rapidly shrinks and goes extinct. For large N and R0 > 1, the

carrying capacity is large, K ≫ 1.

Due to intrinsic stochastic fluctuations of birth and death processes (called demographic

noise) even large populations would eventually go extinct, however the extinction time can

be very large. It is an important practical question to find a typical time to extinction given

the population size and the environmental conditions. It can be easily shown that in a stable

environment, the mean time to extinction (MTE) scales exponentially with the carrying

capacity K Leigh (1981); Lande (1993). In some exceptional cases, MTE including the

exponential prefactor can be obtained directly from the corresponding master equation as the

mean first passage time (MFP) to the origin (n = 0). For example, the extinction time in the
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stochastic logistic model (λn = R0n(1 − n/N), γn = n) at large N is given by Doering et al.

(2005)

(23)

However, the majority of population dynamics models are not amenable to an exact

analytical solution. A standard approach to finding the mean first passage time is based on

the Fokker-Planck approximation to the master equation, when variable n is assumed to be

continuum. However, this approximation fails to estimate MFP for large fluctuations that

take the population size far away from the carrying capacity. Unfortunately, in case of large

R0 extinction belongs precisely to this class of rare events. Recently, an alternative approach

to finding MTE based on the Wentzel-Kramers-Brillouin (WKB) type approximation for the

master equation has been developed Dykman et al. (1994); Elgart and Kamenev (2004);

Assaf and Meerson (2010). This approximation assumes that the probability distribution

P(n, t) reaches a quasistationary shape that slowly decays due to the leakage to the absorbing

extinction state n = 0. Finding the characteristic decay time amounts to solving an

eigenvalue problem for the quasi-stationary distributions, which in the leading WKB order

in small parameter 1/N is equivalent to finding a zero-energy trajectory of a classical

Hamiltonian. Using this approach, an “optimal path to extinction” can be computed and the

asymptotic expressions similar to (23) derived for a broad class of birth-death models. In all

such cases, for large populations, the predicted mean extinction time rapidly becomes

astronomical, which evidently contradicts the extinction of various species seen in reality.

Note that both FP and WKB approximations treat the population size n as a continuous

variable. However, close to extinction, the population size necessarily gets small, and

therefore discreteness of variable n becomes important. In such cases, the WKB-

approximation can be augmented by a small-n solution of the quasi-stationary master

equation Assaf and Meerson (2010).

The main reason for the failure of standard demographic models to produce realistic

extinction times is the neglect of environmental fluctuations. Environmental (extrinsic)

fluctuations may significantly increase the probability of extinction and therefore reduce

MTE. This was already understood in early work by Leigh (1981); Lande (1993) who

assumed white Gaussian environmental fluctuations and used a Fokker-Planck

approximation to the master equation to demonstrate that for strong environmental

stochasticity the exponential scaling is replaced by the power law. In the recent literature

(see Ovaskainen and Meerson (2010) for review), the effects of correlations in

environmental fluctuations (colored noise) has been taken into consideration. The general

result is that finite correlation time of the environmental noise greatly increases the

extinction probability since the extinction risk can be strongly elevated by a prolonged

period of reduced growth or increased death (i.e. small R0). Most of this this work is

numerical, however some analytical results have recently been obtained in a symmetric

variant of the Verhulst model (λn = n(μ+r−an)/2, γn = n(μ−r+an)/2) with fluctuating

parameter r = r0 + ξ(t) using WKB approximation Kamenev et al. (2008). In particular, for

weak environmental noise (variance vr ≪ μa) and short correlation time of noise (tc ≪ 1/r0)
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MTE still scales exponentially with the carrying capacity K = r0/a, MTE ~ exp(bK) for large

K, however the exponential rate is reduced, b = r0/μ − vrtcr0K2/(2µ2). For strong (vr ≫ μa)

but short-correlated noise, the mean extinction time scales as the power-law (vrtcK/μ)r0/vrtc.

Most surprisingly, for strong and long-correlated noise, the mean extinction time becomes

independent of the carrying capacity and is only dependent on the difference between the

growth and death rate r and the noise intensity ve, .

As mentioned above, real population dynamics feature a number of complicating factors that

make analytical estimations of the extinction probability difficult. In particular, spatial

variability of growth and death parameters may produce strong qualitative effects Meerson

and Sasorov (2011). Furthermore, different species usually do not live in isolation but are a

part of a complex multi-species eco-system. The corresponding master equations for such

multi-specie systems are high-dimensional and are notoriously difficult to analyze except for

some very special cases. An example of a tractable problem is the dynamics of an outbreak

of an infectious disease within the susceptible-infectious-susceptible (SIS) model close to

the extinction threshold R0 ≈ 1 Dykman et al. (2008); Meerson and Sasorov (2009).

4.3. Spatiotemporal population dynamics

Stochasticity can play an essential role in the spatiotemporal dynamics of populations.

Population expansions can occur on many different scales, from microscopic (microbial

biofilms) to global (viral epidemics, human mobility). The expansion speed is determined by

the structure of the leading edge of the population ”wave”, where the density is low and

therefore the discreteness of the populations and the inherent fluctuations are especially

important. This is a particular example of a general problem of the noisy traveling wave

propagation into a linearly unstable domain which is encountered in a variety of contexts,

e.g. spread of advantageous mutations Kolmogorov et al. (1937); Fisher (1937), population

invasion Snyder (2003), chemical kinetics Brunet and Derrida (2001), diffusion-limited

aggregation Brener et al. (1991), etc.

In the continuum deterministic limit, traveling population waves can be described by the

Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation

(24)

where the first two “reaction” terms in the r.h.s. describe the usual logistic growth, and the

last, diffusive term models population spreading due to random motility. It is well known

that FKPP equation admits a continuous family of one-dimensional traveling wave solutions

h(x − V t) with arbitrary wave speeds limited only from below by the minimum value

. According to the marginal stability principle Van Saarloos (1988),

sufficiently steep initial profiles connecting the stable fixed point h = 1 at x → −∞ with the

unstable fixed point h = 0 at x → ∞, approach the asymptotic traveling wave solution

propagating with the minimal wave speed Vmin. However, fluctuations can significantly alter

this picture. The effect of fluctuations can be modeled by adding to the r.h.s. of the FKPP

equation (24) a multiplicative noise term , where η(x, t) is δ-correlated

in space and time Gaussian noise, and ε is a small parameter. This equation approximates
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population dynamics models with finite carrying capacity per unit area K, when the

underlying kinetics of growth, death, and diffusion are discrete, in these cases ε = O(K−1). It

has been shown by Brunet and Derrida (1997) that due to fluctuations the asymptotic front

speed becomes unique, lower than Vmin, and weakly dependent on K. Intuitively, it can be

expected since the fluctuations become important near the leading edge of the population

where the local density of species goes to zero. For discrete birth-death kinetics, the zero

state in front of the wave becomes linearly stable, since there exists a minimal density for

local population growth (at least one individual needed for the birth reaction). This small

O(ε) but essential “cutoff” transforms the problem of a traveling wave between a stable and

unstable state into a problem of a traveling wave connecting two metastable states for which

a unique asymptotic solution with well-defined propagation speed exists. Numerical

simulations, as well as various asymptotic methods yield the following scaling for the front

speed: V = Vmin − C/ log2 K. Similar logarithmic corrections to the wave speed have been

obtained in a number of evolutionary models of fitness growth Tsimring et al. (1996); Desai

et al. (2007); Rouzine et al. (2008); Hallatschek (2011b).

Many interesting spatiotemporal phenomena occur when the motion of individual organisms

is no longer purely diffusive. We already mentioned in Sec. 3.4 highly regular patterns that

are formed by populations of microorganisms in hostile environments due to attractive

chemotaxis Budrene and Berg (1991); Ben-Jacob et al. (2000). These patterns can be

described by deterministic reaction-diffusion systems with nonlinear diffusion and drift

terms Tsimring et al. (1995); Brenner et al. (1998). However, a more realistic description

can be achieved by hybrid models that combine discrete agent-based models for individual

microorganisms and continuum fields for the chemoattractant, nutrients, etc. Ben-Jacob et

al. (1995, 2000).

Recently, a lot of attention has been focused on swarming phenomena in groups of self-

propelled particles that locally exchange directional information. Biology presents a wealth

of examples of such systems on vastly different scales: herds of animals, schools of fish,

flocks of birds, aggregating amoebae, clusters and rippling waves of myxobacteria,

intracellular transport of biomolecules, etc. From the physics point of view, groups of motile

organisms represent a nontrivial example of large out-of-equilibrium systems for which

classical statistical mechanics results are inapplicable. Notably, the Mermin-Wagner

theorem Mermin and Wagner (1966) which states that long-range order cannot be

established at finite temperature in systems with short-range interactions in dimensions less

than three, does not apply. Indeed, a finite-temperature phase transition to a long-range

nematic state has been found in the paradigmatic Vicsek model Vicsek et al. (1995) in which

each particle moves with a constant velocity in a direction that tries to align with the average

direction of motion of neighboring particles within a certain finite range, but also is

perturbed by random fluctuations. Another consequence of the non-equilibrium character of

active spatiotemporal population dynamics is the presence of anomalously large (“giant”)

density fluctuations when the variance σN of the number of objects per unit volume N grows

faster than mean 〈N〉 Ramaswamy (2010). In particular, for nematically interacting driven

particles, the theory Ramaswamy et al. (2003) predicts for a d-dimensional system that σN ~

N1+d, so in two dimensions the standard deviation scales linearly with N and hence the
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fluctuations do not become negligible even in the thermodynamic limit. Examples of giant

density fluctuations in biological and numerical experiments are shown in Fig. 16.

4.4. Stochasticity in evolutionary dynamics of finite populations

Biological evolution is driven by noise. Indeed, fitness gains are achieved by selecting

beneficial mutations and purging the deleterious ones, but, as Salvador Luria and Max

Delbrück showed in their famous experiment on bacteria populations attacked by virus Luria

and Delbrück (1943), mutations themselves are random. Comparing their experimental data

to a simple theoretical model, they were able to rule out the hypothesis of acquired

hereditary resistance that every bacterium has the same chance of survival that would’ve

produced a Poisson distribution of mutants. Instead they found a much broader non-

Poissonian distribution of mutants that proved that bacteria has a constant mutation rate that

mutations are not induced by selective pressure. Furthermore, from the distribution of

mutant virus-resistant bacteria Luria and Delbrück were able to compute the mutation rate. It

is worth mentioning that the giant number fluctuations in Luria-Delbrück distribution (in

which variance scales as the square of the mean) and other ecological models Das et al.

(2012) are reminiscent of the giant density fluctuations found in active matter (previous

section). On the other hand, beneficial mutations can also be lost due to genetic drift

(random fluctuations in the number of offsprings per individual with a given fitness) and

have to occur repeatedly until they reach fixation Hartl et al. (1997). Generally, random

sampling reduces diversity by eliminating rare variants from the gene pool in finite

populations.

Stochasticity strongly affects the spread and fixation of mutations in spatially distributed

populations since the number of individuals at the edge of the mutant sub-population is

always small. Usually, fluctuations tend to slow down the mutation invasion in the similar

way as fluctuations slow down the spread of a growing population (see Sec. 4.2). However,

Hallatschek (2011a) has shown that in some cases genetic drift (random neutral mutations)

can have an opposite effect: it can help the beneficial mutations to invade and fixate. Such

behavior can be observed for example if the mutation changes the growth yield (the biomass

produced per unit of resource), and mutants compete against the wild type for a limited

spatially-distributed resource. The discrete-space discrete-time computational model of

Hallatschek (2011a) assumed that both wild type and the mutant grow with the same per-

capita rate Λ[1 − (n0 + n1)/K], but the carrying capacity of a mixed population of wild-type

and mutants is linearly proportional to the fraction of mutant in a local population (deme): K

= K0[1 + εn1/(n0 +n1)]. In this formula n0 and n1 indicate the numbers of wild-type and

mutant species in the deme. Additionally, a linear diffusion between demes was assumed

with the diffusion constant D.

In the deterministic limit (large carrying capacity), the interface between the wild type and

mutant populations does not move (as expected since the deterministic FKPP theory predicts

the traveling wave speed to be proportional to the square root of the growth advantage and

the diffusion constant), and only widens diffusively. However, in a finite population where

genetic drift is non-vanishing, the more economical mutants outcompete the wild type and

form a traveling wave (see Fig. 17). The mechanism of this noise-driven invasion is that
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mutant species are more likely to be surrounded by other mutants (ancestors or descendants)

and vice versa, so their more effective resource utilization confers preferential advantage on

the mutant subpopulation. In the continuum (well-mixed) limit, this effect is absent.

5. Outlook: pinning down the noise

As we have attempted to demonstrate in this review, noise permeates biology on all levels,

from the most basic molecular, sub-cellular processes to the tissue, organismal, and

population dynamics. The functional roles of noise in biological processes are also very

diverse. Along with standard, entropy-increasing effects of limiting robustness, fidelity, and

channel capacity of signaling relays and eliciting sub-optimal performance, it occasionally

plays more surprising constructive roles, accelerating the pace of evolution, increasing the

fitness of populations in dynamic environments (bet-hedging), enhancing intracellular

transport of biomolecules and increasing information capacity of signaling pathways, etc.

Still, it appears that randomness more often presents a hinderance for the proper biological

function and reaching optimal fitness Wang and Zhang (2011), and therefore biology has

evolved a number of strategies to cope with randomness. An obvious strategy to reduce the

intrinsic intracellular fluctuations is to increase the copy numbers of the molecules.

However, this strategy carries a metabolic cost, so a balance between the cost and the noise

has to be achieved. This balance is different depending on the functional role of a particular

gene product, and so it can be one reason why the abundances of different proteins vary

greatly. Newman et al. (2006) and Bar-Even et al. (2006) performed systematic

measurements of noise in gene expression across a large cross-section of genes and

environmental conditions in yeast and found that noise levels vary along with copy numbers

depending on the function of the corresponding proteins: structural genes are usually less

noisy, whereas stress-response genes that are not required at all times and only have to be

synthesized as necessary, usually exhibit greater amount of noise.

An alternative, less trivial way of confronting noise is to use regulatory systems that can

suppress the noise or at least shape its spectral properties in order to enhance the

performance of downstream cascades without the metabolic cost of overproducing the

intermediate components. We have discussed in this review (Sec. 2.3) that negative auto-

regulatory loops can suppress fluctuations caused by transcriptional translational bursting.

Nested positive feedback loops effectively suppress fluctuations and enhance memory in

decision-making circuits Acar et al. (2005). Non-negligible transcriptional delays can further

reduce the probability of switches in multi-stable gene regulatory networks Gupta et al.

(2013). The new frontier in studies of biological fluctuations is to figure out how the noise

that originates at the gene expression level propagates up the developmental ladder to the

levels of tissues, whole organisms, and populations. Along this ladder there are multiple

layers of regulation, both intra-cellular (transcriptional, post-transcriptional and epigenetic)

and extra-cellular that can shape the characteristics of noise. Analyzing such complex

nonlinear, non-equilibrium, multi-scale systems not only poses serious technical challenges

but calls for new conceptual paradigms. One intriguing possibility that is being currently

explored is that the structure of complex inter- and intracellular networks may have evolved

towards a self-organized critical state in which the networks exhibit high susceptibility to

external perturbations and large degree of correlation among different components Mora and
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Bialek (2011). If the cellular networks are indeed poised near criticality, understanding the

properties and effects of noise in these networks will require development of new theoretical

tools since standard approximations such as moment closure, Poisson, or small-noise may

no longer be valid.

The past two decades brought about a wealth of new quantitative information about the

properties of noise in biological systems. These rapid advances were enabled by the

explosive progress in developing single-cell and single-molecule tools and techniques,

including novel fluorescent markers and multi-channel, high- spatial and temporal resolution

fluorescence microscopy Fernández-Suárez and Ting (2008), microfluidic technology

Bennett and Hasty (2009) and optogenetics Fenno et al. (2011). On the other hand, now

standard high-throughput microarray-based genome-wide expression data Schulze and

Downward (2001) and recent Next Generation sequencing methods Wang et al. (2009)

provide quantitative multi-channel information about the structure and dynamics of cellular

networks. These developments allow researchers not only characterize the levels of noise

but measure spatial and temporal correlations between fluctuations in different gene

products and pathways in dynamic but well-controlled environmental conditions

Selimkhanov et al. (2012). The multi-channel correlation analysis of gene expression noise

can reveal much about the structure of genetic regulatory networks themselves Dunlop et al.

(2008); Munsky et al. (2012). However, many of these new techniques still suffer from

limited temporal resolution that may filter out important high-frequency components of

stochastic fluctuations and their possible dynamical correlations. To achieve further progress

in understanding stochastic intracellular processes it will be necessary to address these

experimental limitations.

Synthetic biology has recently emerged as a new and powerful tool for tackling fundamental

biological questions Mukherji and van Oudenaarden (2009). The difficulty in analyzing

native gene networks lies in their ultimate complexity, “everything is connected to

everything.” Since synthetic circuits can be engineered to operate in relative isolation from

the rest of intracellular network (they still share transcription, translation, and degradation

machinery with the rest of the cell), they provide an alternative, bottom-up approach to

elucidating the role of circuit architecture on its performance in noisy environments Murphy

et al. (2010). On the other hand, synthetic circuits can be used as well-characterized and

controllable testing elements to perturb cellular networks in prescribed ways and thereby

probe the system response to non-trivial perturbations.

Finally, the future progress in understanding the origins and consequences of biological

noise hinges on the tight integration between quantitative experiments and computational

modeling. The development of reliably predictive computational models of biological

processes that account for their stochasticity is still in infancy. In vast majority of cases,

multiple simplifying assumptions about the biological noise properties are made, such as

Poissonian nature of underlying biochemical reactions, statistical independence among

different reactions and pathways, neglect of epigenetic effects and retroactivity, lack of

multi-scale integration, etc. All these challenges will definitely be in the center of attention

of computational biologists in the coming years.
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Figure 1.
Translational bursting: Time series of the protein concentration in stochastic simulations

using Gillespie algorithm for (a) weak bursting, km = 10, kp = 0.1, γm = 0.1, γp = 0.05, b =

1, and (b) strong bursting, km = 0.1, kp = 1000, γm = 10, γp = 0.5, b = 100. (c,d)

Experimentally measured Fano factor of a GFP distribution in a monoclonal bacterial

population exhibits (c) strong positive correlation with the translational efficiency (ERT3,

25, 27, 29 are four mutant strains with different translation rates), but (d) shows no

dependence on the transcription rate (varied by inducer concentration for a single ERT3

strain) Ozbudak et al. (2002).
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Figure 2.
Dual-reporter method of separation of intrinsic and extrinsic noise: (a) two identical

promoters driving different color fluorescent proteins; (b) scatter plot of two color

fluorescence within a clonal population on a two-dimensional plane. The width of this

distribution along and perpendicular to the diagonal characterizes the levels of extrinsic and

intrinsic noise, respectively.
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Figure 3.
Statistics of gene expression from multiple identical gene-promoter pairs in budding yeast

Volfson et al. (2005): (a) Histograms of GFP measurements for copy numbers varying from

M = 1 to 5; (b) Coefficient of variation for different copy number collapses on a single

curve, which implies an extrinsic source of variability
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Figure 4.
Comparison of two different NFL architectures Çağatay et al. (2009a): (a) Native repressed

activation circuit in the competence system of B. subtilis and a synthetic activated repression

circuit SynEx, (b) Single-cell time series of fluorescence that track competence in native

(black) and synthetic (red) cells.
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Figure 5.
Eight possible architectures of feed-forward loops
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Figure 6.
Synthetic gene oscillators: (a) network diagram os the single-cell gene oscillator Stricker et

al. (2008): Gene araC expresses transcriptional activator AraC that activates its own

transcription and that of the gene lacI and reporter sfGFP. The latter expresses

transcriptional repressor LacI that represses itself, araC, and sfGFP; (b) Network diagram of

the synchronized gene oscillator Prindle et al. (2011): The luxI promoter drives expression

of luxI, aiiA, ndh, and sfGFP genes. The quorum-sensing genes LuxI and AiiA generate

synchronized oscillations in a micro-colony within a single microfluidic chamber
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(“biopixel”) via quorum-sensing molecule AHL. NDH-2 protein generates H2O2 vapor, an

additional activator of the LuxI promoter that migrates among colonies and synchronizes

them; (c) time series of fluorescence in individual cells for the single-cell oscillator showing

strong fluctuations in period and amplitude (adapted from Mondragón-Palomino et al.

(2011)); (d) highly synchronized and regular oscillations in massively synchronized

population of E. coli cells within a microfluidic device Prindle et al. (2011).
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Figure 7.
Two alternative possibilities of producing a graded signaling response in a population: (a) a

typical dose-response curve; (b) uniform graded response of individual cells; (c) binary but

heterogeneous response of individual cells
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Figure 8.
Competence regulation in B. subtilis Süel et al. (2006); Süel et al. (2007): (a) Gene circuit

controlling competence master regulator protein ComK include a positive feedback loop of

autocatalytic synthesis of ComK and negative feedback loop where ComK inhibits synthesis

of ComS protein that in turn inhibits degradation of ComK by the ClpP-ClpC-MecA

protease complex. (b) phase plane of the model (20) with nullclines (thick solid lines), the

vector field (gray arrows) and the stochastic trajectory (thin solid line) showing bursts of

competence; (c)the probability of competence initiation Pint grows with the basal expression

rate of comK gene (αk, red squares), but is only weakly dependent on the comS expression

rate αs (green triangles); (d) Conversely, the duration of the competent state increases with

αs but is weakly dependent on αk; (e) Increasing cell size (that putatively reduces intrinsic

noise) reduces Pint.
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Figure 9.
Enzymatic futile cycle (a) and its bifurcation diagram (b) in deterministic and stochastic

regimes Samoilov et al. (2005). The red hysteretic line shows the mode of the steady-state

distribution of X* for the stochastic model of noisy enzymatic futile cycle and blue

monotone line shows the steady state of the corresponding deterministic model of the

noiseless system
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Figure 10.
a. Schematic network diagram of the synthetic circuit demonstrating coupled enzymatic

degradation of yellow and cyan LAA-tagged fluorescent proteins by ClipXP machinery in E.

coli Cookson et al. (2011). YFP production is controlled by the PLtetO promoter, which is

repressed by tetR in the absence of doxycycline. CFP production is under control of the

Plac/ara promoter, which is activated by araC in the presence of arabinose. Both CFP and

YFP molecules are tagged with identical LAA tags and are targeted for degradation by the

ClpXP complexes. b. Illustration of the prototypical model of coupled enzymatic

degradation Mather et al. (2010) for m = 2 (left) and the corresponding multiclass queuing

model (right). In the stochastic enzymatic degradation model proteins of both species i = 1,2

are added to a volume at different rates λi and are selected at random (without regard to

type) for processing. In an equivalent multiclass queue jobs are analogous to molecules and

servers are analogous to copies of the enzyme. Jobs of type i = 1,2 arrive at rate λi and are

inserted randomly into a queue of jobs awaiting processing; when a server becomes free, a

new job is selected for processing from the head of the queue of waiting jobs.
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Figure 11.
(a–c) Time series of the two proteins in the underloaded, λ1 + λ2 < Lμ (a), balanced λ1 + λ2

= Lμ (b), and overloaded λ1 + λ2 > Lμ (c) regimes. (d–e) correlation resonance between the

two proteins near the balance for different L and K values.
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Figure 12.
Regulation of intestinal specification in C. elegans Raj et al. (2010): (a) Gene circuit

controlling intestinal differentiation in wild-type E cells: master differentiation regulator

gene elt-2 is redundantly activated by both End-1 and End-3 transcription factors, which are

activated by the maternal protein Skn-1 either directly (End-1) or indirectly, via Med-1,

Med-2 and End-3. End-3 also co-regulates expression of end-1; (b) In a mutant skn-1 strain,

med-1, med-2 are not expressed, therefore the indirect activation of elt-2 and co-regulation

of end-1 by end-3 are disabled. (c) Number of transcripts of end-1 and elt-2 vs time
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(measured in the number of nuclei) in the wild type (left) and skn-1 mutant (right).

Misregulation of the intestinal specification circuit results in a highly variable expression of

end-1 and a bimodal distribution of elt-2 transcripts.
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Figure 13.
Morphogenesis precision in D. melanogaster : (a) Exponential profiles of the morphogen

Bicoid concentration (as measured by the raw fluorescent of Bcd-GFP fusion) collected

from 15 different embyos Gregor et al. (2007); (b) 18 profiles of Hunchback concentration

(as measured by staining) 3 min before gastrulation Manu et al. (2009a). The horizontal axis

shows the position along asterior-posterior axis normalized by the embryo length
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Figure 14.
Comparison of the pattern formation in the excitable model of cAMP signaling with (a,c)

and without (b,d) genetic feedback. Top row shows early stage of pattern formation, the

bottom row - late (asymptotic) regime Levine et al. (1996).
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Figure 15.
Competitive growth of fast and slow switchers in oscillating environments Acar et al.

(2008). (a) mean growth rates in a fast-changing environment (20h in E1, 37h in E2), (b) the

same in a slowly changing environment (96h in E1, 96h in E2),
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Figure 16.
a. Myxobacteria form dense clusters on an agar plate due to alignment in the course of

inelastic collisions (image courtesy of M. Alber); b. A snapshot from a simulation of the

Vicsek model Chaté et al. (2008) (image courtesy of H. Chate)
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Figure 17.
Stochastic (left) and deterministic (right) simulations of the the model of competition

between two species (wild type and mutant for common resource Hallatschek (2011a).

Despite the higher growth yield, mutants are only able to invade the wild-type population in

the stochastic simulations. Interestingly, the width of the transition region between mutants

and wild type remains constant in stochastic simulations but grows in the deterministic case.

The parameters of the model are K0 = 30, D = 0.05, ε = 0.01.
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