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Abstract The growing public awareness of nutrition and
health care research substantiates the potential of phytochem-
icals such as polyphenols and dietary fiber on their health
beneficial properties. Hence, there is in need to identify newer
sources of neutraceuticals and other natural and nutritional
materials with the desirable functional characteristics. Finger
millet (Eleusine coracana), one of the minor cereals, is
known for several health benefits and some of the health
benefits are attributed to its polyphenol and dietary fiber
contents. It is an important staple food in India for people of
low income groups. Nutritionally, its importance is well
recognised because of its high content of calcium (0.38%),
dietary fiber (18%) and phenolic compounds (0.3–3%). They
are also recognized for their health beneficial effects, such as
anti-diabetic, anti-tumerogenic, atherosclerogenic effects,
antioxidant and antimicrobial properties. This review deals
with the nature of polyphenols and dietary fiber of finger
millet and their role with respect to the health benefits
associated with millet.
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Introduction

The incidence of diabetes and obesity are increasing in an
exponential manner globally and to combat them, a raise in
demand for food containing complex carbohydrates with
higher levels of dietary fiber and health beneficial phyto-
chemicals has been in demand (Shobana et al. 2007).
Fortification of diets with food materials rich in phenolic
acids was shown to impart antimutagenic, antiglycemic, and
antioxidative properties, and this can be exploited in
developing health foods (Friedman 1997). Utilization of
Wholegrain cereals in food formulations is increasing
worldwide, since they are rich sources of phytochemicals
and dietary fiber which offer several health benefits (Jones
and Engleson 2010). Millets are important crops in semiarid
and tropical regions of the world due to their resistance to
pests and diseases, short growing season, and productivity
under hardy and drought conditions when major cereals
cannot be relied upon to provide sustainable yields. Millets
are underutilized in many developed countries. There is an
immense potential to process millet grains into value-added
foods and beverages in developing countries. Furthermore,
millets, as they do not contain gluten and hence are advisable
for celiac patients (Chandrasekara and Shahidi 2010).

Finger millet (Eleusine coracana L.) is important millet
grown extensively in various regions of India and Africa,
constitutes as a staple food for a large segment of the
population in these countries. It ranks sixth in production
after wheat, rice, maize, sorghum and bajra in India. It is a
naked caryopsis with brick red-coloured seed coat and is
generally used in the form of the whole meal for
preparation of traditional foods, such as roti (unleavened
breads or pancake), mudde (dumpling) and ambali (thin
porridge). Epidemiological studies have demonstrated that
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regular consumption of whole grain cereals and their
products can protect against the risk of cardiovascular
diseases, type II diabetes, gastrointestinal cancers and a
range of other disorders (McKeown 2002). Since the millets
are normally prepared from the whole meal, the dietary
fiber, minerals, phenolics and vitamins concentrated in
the outer layer of the grain or the seed coat form the part
of the food and offer their nutritional and health benefits
(Antony et al. 1996). In case the millet is processed to
separate out the seed coat matter as is normally done in
millet malting and milling (Malleshi et al. 1995; Malleshi
2003), it could be used as an adjunct in special food
applications.

Nutritional potential of millets in terms of protein,
carbohydrate and energy values are comparable to the
popular cereals like rice, wheat, barley or bajra (Tables 1
and 2). Finger millet contains about 5–8% protein, 1–2%
ether extractives, 65–75% carbohydrates, 15–20% dietary
fiber and 2.5–3.5% minerals (Chethan and Malleshi 2007a).
It has the highest calcium content among all cereals
(344 mg/100 g). However, the millet also contains phytates
(0.48%), polyphenols, tannins (0.61%), trypsin inhibitory
factors, and dietary fiber, which were once considered as
“anti nutrients” due to their metal chelating and enzyme
inhibition activities (Thompson 1993) but nowadays they
are termed as neutraceuticals. The seed coat of the millet is
an edible component of the kernel and is a rich source of
phytochemicals, such as dietary fiber and polyphenols (0.2–
3.0%) (Hadimani and Malleshi 1993; Ramachandra et al.
1977). It is now established that phytates, polyphenols and
tannins can contribute to antioxidant activity of the millet
foods, which is an important factor in health, aging and
metabolic diseases (Bravo 1998). Although considerable
literature is available on the nutritional and processing

aspects of the millet, the information on the health benefits
of its polyphenols and dietary fiber has not been reviewed.

Polyphenols

Nowadays, there has been a renewed interest in polyphenols
as “life span essentials” due to their role in maintaining body
functions and health throughout the adult and later phases of
life (Chandrasekara and Shahidi 2010). Polyphenols are a
large and diverse class of compounds, many of which occur
naturally in a range of food plants. Phenolics (hydroxyben-
zenes) especially polyphenols (containing two or more
phenolic groups) are ubiquitous in plant foods consumed
by human and animals and one of the widest groups of a
dietary supplements marketed worldwide (Ferguson 2001).
The main polyphenols in cereals are phenolic acids and
tannins, whilst flavonoids are present in small quantities
(Rao and Muralikrishna 2002). Although, these compounds
play no known direct role in nutrition (non-nutrients), many
of them have properties, including antioxidant (Sripriya et al.
1996), anti-mutagenic, anti-oestrogenic, anti-carcinogenic and
anti-inflammatory, antiviral effects and platelet aggregation
inhibitory activity that might potentially be beneficial in
preventing or minimising the incidence of diseases (Ferguson
2001). The tiny finger millet grain has a dark brown seed
coat, rich in polyphenols compared to many other continental
cereals such as barley, rice, maize and wheat (Viswanath et al.
2009).

Phenolic compounds

Efforts have been made towards identification of the
polyphenols in different anatopical parts of the millet seed

Table 1 Nutrient composition of cereal grains

Cereals Protein (%) Fat (%) Crude fiber (%) Ash (%) Starch (%) Total dietary
fiber (%)

Total phenol
(mg/100 g)

Wheat 14.4 2.3 2.9 1.9 64.0 12.1 20.5

Rice 7.5 2.4 10.2 4.7 77.2 3.7 2.51

Maize 12.1 4.6 2.3 1.8 62.3 12.8 2.91

Sorghum 11 3.2 2.7 1.8 73.8 11.8 43.1

Barley 11.5 2.2 5.6 2.9 58.5 15.4 16.4

Oats 17.1 6.4 11.3 3.2 52.8 12.5 1.2

Rye 13.4 1.8 2.1 2.0 68.3 16.1 13.2

Finger millet 7.3 1.3 3.6 3.0 59.0 19.1 102

Pearl millet 14.5 5.1 2.0 2.0 60.5 7.0 51.4

Proso millet 11 3.5 9.0 3.6 56.1 8.5 –

Foxtail millet 11.7 3.9 7.0 3.0 59.1 19.11 106

Kodo millet 8.3 1.4 9.0 3.6 72.0 37.8 368

Source: Saldivar (2003)
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using histochemical as well as chemical analysis of milling
fractions. Phenolics are not equally distributed in the grain,
and are mainly concentrated in the outer layers, namely, the
aleurone layer, testa, and pericarp, which form the main
components of the bran fraction. Histochemical examination
of the millet kernel indicates that nearly 60% of the
polyphenols of the millet are concentrated in the seed coat
tissue which accounts for about 12% of the seed mass. The
method for preparation of polyphenol rich seed coat fractions

of the millet (Fig. 1) has been worked out (Chethan and
Malleshi 2007a). Phenolic compounds in grains exist as free,
soluble conjugates and insoluble bound forms. According to
Hilu et al. (1978), majority of the phenolic compounds
present in the millet exist in the form of glycosides, whereas
Rao and Muralikrishna (2002) reported ferulic acid as the
major bound phenolic acid (18.60 mg/100 g) and proto-
catechuic acid as the major free phenolic acid (45.0 mg/100 g)
of the millet. The major bound phenolics present in finger

Table 2 Mineral and vitamin composition of cereal grains

Cereals Ca (%) P (%) K (%) Na (%) Mg (%) Fe (%) Mn (%) Zn (%) Thiamin
(mg/100gm)

Riboflavin
(mg/100gm)

Nicotinic acid
(mg/100gm)

Wheat 0.04 0.35 0.36 0.04 0.14 40.1 40.0 30.9 0.57 0.12 7.40

Rice 0.02 0.12 0.10 0.00 0.03 19.0 12.0 10.0 0.07 0.03 1.60

Maize 0.03 0.29 0.37 0.03 0.14 30.0 5.0 20.0 0.38 0.14 2.80

Sorghum 0.04 0.35 0.38 0.05 0.19 50.0 16.3 15.4 0.46 0.15 4.84

Barley 0.04 0.56 0.50 0.02 0.14 36.7 18.9 23.6 0.44 0.15 7.20

Oats 0.11 0.38 0.47 0.02 0.13 62.0 45.0 37.0 0.77 0.14 0.97

Rye 0.05 0.36 0.47 0.01 0.11 38.0 58.4 32.2 0.69 0.26 1.52

Finger millet 0.33 0.24 0.43 0.02 0.11 46.0 7.5 15.0 0.48 0.12 0.30

Pearl millet 0.01 0.35 0.44 0.01 0.13 74.9 18.0 29.5 0.38 0.22 2.70

Proso millet 0.01 0.15 0.21 0.01 0.12 33.1 18.1 18.1 0.63 0.22 1.32

Foxtail millet 0.01 0.31 0.27 0.01 0.13 32.6 21.9 21.9 0.48 0.12 3.70

Kodo millet 0.01 0.32 0.17 0.01 0.13 7.0 – – 0.32 0.05 0.70

Source: Saldivar (2003)

Moist condition, equilibration, pulverize, sieve (180µm) 

Pulverize and sieve  
(Process repeat two times) 

Wash with excess water and dry 

Micropulverize and sieve (180 µm) 

Finger millet

- 180 µm fraction Tailings 
+ 180 µm fraction 

Seed coat fraction  
(+ 180 µm fraction)

Refined flour fraction 
(RFF) 

- 180 µm fraction 

Residue 

Overtails 
(+ 180 µm fraction) 
Rich in polyphenols

Eliminate 
(- 180 µm fraction) 

Fig. 1 Protocol for preparation
of polyphenol rich seed coat
fractions of finger millet
(Chethan and Malleshi 2007a)
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millets are ferulic acid and p-coumaric acid, and the bound
phenolic fraction account for 64–96 and 50–99% of total
ferulic acid and p-coumaric acid contents of millet grains,
respectively.

Acidic methanol (1% HCl in methanol) has been shown to
be very effective solvent for extraction of themillet polyphenols
(Ramachandra et al. 1977; Sripriya et al. 1996; Chethan and
Malleshi 2007a). The millet phenolics are heat stable but pH
sensitive and are largely unstable under alkaline conditions
(Chethan and Malleshi 2007a). Fractionation of the poly-
phenols extracted by high performance liquid chromatogra-
phy (HPLC) showed that the analytics were derivatives of
benzoic acid (gallic acid, proto-catechuic acid and p-hydroxy
benzoic acid) and cinnamic acid (p-coumaric acid, syringic
acid, ferulic acid and trans-cinnamic acid) and a flavanoid
compound (quercetin) (Table 3). Benzoic acid derivatives
accounted for about 85% of the total phenolic compounds
(Chethan et al. 2008b) (Fig. 2). In addition to these phenolic
compounds, direct infusion electrospray ionisation mass
spectrometry of the seed coat extract showed the presence
of naringenin, kaempferol, luteolin glycoside, phloroglucinol,
apigenin, (+)-catechin/(-)-epicatechin, trans-feruloyl- malic
acid, dimer of prodelphinidin (epi/gallocatechins; 2GC),
diadzein, catechin gallates, trimers and tetramers of catechin
(Shobana et al. 2009).

Finger millets varieties are also reported to contain
proanthocyanidins, also known as condensed tannins (Dykes
and Rooney 2006). Procyanidins, are high-molecular weight
polyphenols that consist of polymerized flavan-3-ol and/or
flavan-3,4-diol units. They are biologically active and when
present in sufficient quantities, may lower the nutritional
value and biological availability of proteins and minerals
(Chavan et al. 2001). Several in vivo assays have demon-
strated their anti-inflammatory, antiviral, antibacterial and
antioxidant properties. Condensed tannins are generally more
potent antioxidants than their corresponding monomers.
Among the millet varieties studied, finger (local) millet had
the highest content (311.28±3.0 μmol of catechin equiva-
lent/g of defatted meal) followed by finger (Ravi), foxtail,
little, pearl, and proso millets. The values reported for millets

were higher than those for barley (Chandrasekara and
Shahidi 2010).

Varietal variations in polyphenol contents

Total phenolics and tannin contents varied across finger millet
grain genotypes (Table 4). Light-coloured grain types contain
much lower total phenolics and tannins compared to brick
red pigmented types. The pigmented testa in the red coloured
varieties is known to contain much tannin content and the
tannins were located in the said tissue of the grain (Siwela et
al. 2007). Studies conducted with respect to the contents of
phenolic acids and tannins in different varieties of the millet
indicate considerable differences, with respect to the poly-
phenol contents of the seven popular high yielding Indian
cultivars. They observed that brown varieties contained (1.2–
2.3%) higher proportions of polyphenols than white (0.3–
0.5%) varieties (Ramachandra et al. 1977). Likewise, among
85 Indian finger millet varieties, considerable differences
(0.19–3.37%) in the total polyphenol contents (as catechin
equivalents) has been reported (Shankara 1991). Tannin
content was also estimated in hilly region varieties and found
to be less compared to base region varieties (Wadikar et al.
2006). The noticeable difference between polyphenols
content in white and brown varieties could be due to the
presence of the red pigments, such as anthocyanins, which
are generally polymerized phenolics present in brown
cultivars.

Influence of processing on polyphenols contents
and their characteristics

Processing technologies such as decortication, soaking,
germination, fermentation, puffing and cooking of the
millet are known to reduce the levels of tannins and
phenols and thereby increase the bioavailability of proteins,
starch and minerals. Nutrient composition and polyphenols
content changes during processing are listed in Table 5.
Decortication of the millet reduces the total polyphenol
content of millet by 74.7% and also causes significant

Table 3 Phenolic compounds identified in finger millet

Class Basic skeleton Compounds References

Phenolic acids
Hydroxybenzoic
acid derivatives

C6–C1 Gallic acid, protocatechuic acid,
p-hydroxybenzoic acid,
vanillic acid, syringic acid

McDonough et al. (1986),
Rao and Muralikrishna (2002),
Chethan and Malleshi (2007a),
Chethan et al. (2008a, b),
Shobana et al. (2009)

Hydroxycinnamic
acid derivatives

C6–C3 Ferulic acid, trans—cinnamic acid,
p- coumaric acid, caffeic acid,
sinapic acid,

Flavonoids C6-C3–C6 Quercetin Chethan et al. (2008a, b), Dykes
and Rooney (2006), Chandrasekara
and Shahidi (2010)

Proanthocyanidins
(Condensed tannins)
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reduction in tannin content (Ramachandra et al. 1977;
Shobana and Malleshi 2007). Studies on the changes in free
and bound phenolic acids during malting of finger millet
revealed that malting for 96 h decreased bound caffeic,
coumaric, and ferulic acid levels by 45%, 41%, and 48%,

respectively (Rao and Muralikrishna 2001). On the other
hand, the level of gallic, vanillic, coumaric, and ferulic
acids, the free phenolics increased considerably after 96 h
of malting (Rao and Muralikrishna 2002). Rao and
Deosthale (1988) reported 0.91% tannin contents in
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Fig. 2 Structure of major phe-
nolic compounds present
in finger millets

Table 4 Total polyphenol con-
tent in few brown and white
finger millet varieties

ND—not detected

Number of Varieties Polyphenols (%) Tannins (%) References

Brown

26 0.08–2.44 0.12–3.47 Ramachandra et al. (1977)

1 – 0.36 Rao and Prabhavati (1982)

3 0.55–0.59 0.17–0.32 McDonough et al. (1986)

12 – 0.35–2.39 Rao and Deosthale (1988)

1 0.1 – Sripriya et al. (1997)

5 1.3–2.3 – Chethan and Malleshi (2007a)

18 0.34–1.84 0.02–2.08 Siwela et al. (2010)

White

6 0.06–0.09 0.04–0.06 Ramachandra et al. (1977)

1 0.003 – Sripriya et al. (1997)

2 0.3–0.5 – Chethan and Malleshi (2007a)

4 ND-0.09 ND Siwela et al. (2010)

Hilly region

3 – 0.34 Wadikar et al. (2006)

Base region

7 – 0.53 Wadikar et al. (2006)
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ungerminated millet, which decreased by 72% on 72 h
germination, whereas Sripriya et al. (1996) reported 35%
decrease in the total polyphenols on germination and 34%
increase on fermentation. Increase in polyphenols during
fermentation of millets may be due to microbial activity,
which may hydrolyse the condensed tannins to lower
molecular weight phenolics (Khetarpaul and Chauhan
1991). In contrast, Antony and Chandra (1998) reported
that phenolics decrease by 26–29%, while tannins show a
more marked reduction of 44–52% by 48 h of fermentation
and they attributed that the reduction may be due to the
release of fiber bound tannins and polyphenol oxidase
activity by fermenting microbes. Chethan et al. (2008a)
reported nearly 44% of loss of polyphenols of the millet
during the first 24 h and about 80% after 120 h of
germination. Tannin content was reduced significantly
after 24 and 48 h germination respectively. The reason
for the decrease in the bound phenolics might be due to
the action of esterase developed during germination,
which decreases the various phenolic acid esters linked
either to arabinoxylans or other non-starch polysacchar-
ides (Maillard et al. 1996).

Total phenolics reduced during cooking of millet flours
probably due to thermal degradation and also due to the
changes in chemical reactivity or formation of insoluble
complexes with food components such as proteins. Enzy-
matic treatments of untreated, cooked, soaked, germinated
millet with phytase and tyrosinase for 24 h resulted in 20,
40, 26, 32% decrease of total polyphenols content and may
be due to condensation of phenolic compounds (Matuschek
et al. 2001). Extrusion cooking is one of the most efficient
and versatile food processing technologies that can be used
to produce pre-cooked and dehydrated foods. During
preparation of uji, a thin porridge prepared from maize-
finger millet blend, tannin contents reduced by 40% after
extrusion of the unfermented blend and further to 10% after

fermentation and extrusion. Extrusion of the blends with
lactic or citric acids also counteracted thermal degradation
of tannins and results in decrease of tannin content
(Onyango et al. 2005). Puffing of millets is a well known
traditional method of processing. It is generally carried out
by conditioning of grains to higher moisture content and
roasting in hot sand. Puffing of finger millet varieties (3
varieties from hilly region and 7 varieties from base region)
leads to 3–18% decrease in tannin content. Decreases in
tannin content during puffing were less in hill than base
region varieties and nutritional quality of finger millet were
improved (Wadikar et al. 2006).

Effect of phenolics on the millet grain and malt quality

Chethan et al. (2008a) suggested that phenolics in finger
millet grain are detrimental to its malt quality, as they
inhibited malt amylases. Siwela et al. (2010) determined
type of phenolics type, fungal load, germinative energy
(GE) and the malt quality of finger millet grains differing in
colour and phenolic contents and reported that phenolics
influenced malt quality positively by contributing to
attenuation of the fungal load on the germinating grain.
Finger millet types with higher level of phenolics had
superior malt quality than the low-phenol varieties, with
respect to diastatic power (DP), and α- and β-amylase
activities. According to them, GE, DP and α-amylase
activity positively correlated with total phenolics and the
phenolics content (p<0.05) and negatively correlated with
total fungal count (p<0.01).

Functional role of polyphenols

Polyphenols offer several health beneficial and antifungal
activities and the beneficial properties of phenols present in
finger millets are outlined in Table 6.

Table 5 Nutrient composition and polyphenol content changes during processing of finger millet (g/100 g)

Parameter Whole flour Husk 3% flour 5% flour 7% flour Hyrdrothermally
processed

Decorticated

Moisture 7.7 8.7 8.7 8.9 9.70 11.10 10.46

Protein 7.4 15.4 5.7 4.9 3.50 6.90 4.43

Fat 1.2 3.0 1.1 1.0 0.90 1.40 0.9

Acid insoluble ash 0.3 0.5 0.1 0.1 0.10 0.08 0.07

Dietary fiber 22.5 53.3 9.9 6.0 4.20 21.10 14.7

Starch 71.1 30.1 77.8 82.3 89.10 65.00 74.0

Phenolic content 7.3 12.6 4.3 3.6 3.30 1.19 0.52

Calcium 0.34 0.64 0.28 0.24 0.14 0.31 0.18

Phosphorus 0.25 0.49 0.19 0.15 0.08 0.157 0.109

Iron 0.003 0.003 0.002 0.002 0.002 0.006 0.003

Source: Shobana and Malleshi (2007), Viswanath et al. (2009), Dharmaraj and Malleshi (2010)
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Antimicrobial properties

Plant phenolics have been implicated for minimising the
intensity of several diseases and also to inhibit the in vitro
growth of an assortment of fungal genera (Baranowski et al.
1980; Bravo 1998). Seetharam and Ravikumar (1994)
indicated that finger millet grain phenolics including
tannins may be involved in resistance of the grain to fungal
attack. Phenolic compounds, particularly tannins in the
outer layers of the grain serve as a physical barrier to the
fungal invasion. The acidic methanol extracts from the seed
coat showed high antibacterial and antifungal activity
compared to whole flour extract due to high polyphenols
content in seed coat (Viswanath et al. 2009). Siwela et al.
(2010) reported that the fungal load (total fungal load and
infection levels) of the unmalted millet grain and its malt,
were negatively correlated (p<0.05) with total phenolics
and phenolic type (condensed tannins, anthocyanins and
flavan-4-ols). Oxidation of microbial membranes and cell
components by the free radicals formed, irreversible
complexation with nucleophilic amino acids leading to
inactivation of enzymes are major biochemical benefits of
polyphenols towards the antifungal activity. Besides, loss of
their functionality and also the interaction of phenolic
compounds, especially tannins with biopolymers such as
proteins and polysaccharides and complexing with metal
ions making them unavailable to micro-organisms are some

of the mechanisms involved in the inhibitory effect of
phenolic compounds on microorganisms (Cowan 1999;
Scalbert 1991). The extremely good storage property of
finger millet and its processed foods could be attributed to
its polyphenol content.

Antioxidant properties

Antioxidant compounds are gaining importance due to their
main roles as lipid stabilizers and as suppressors of
excessive oxidation that causes cancer and ageing (Namikii
1990). Their stable radical intermediates prevent the
oxidation of various food ingredients, particularly fatty
acids and oils (Cuvelier et al. 1992; Maillard et al. 1996).
Phenolic acids and their derivatives, flavonoids and tannins
present in millet seed coat are of multifunctional and can
act as reducing agents (free radical terminators), metal
chelators, and singlet oxygen quenchers (Shahidi et al. 1992;
Sripriya et al. 1996). The potency of phenolic compounds to
act as antioxidants arise from their ability to donate hydrogen
atoms via hydroxyl groups on benzene rings to electron-
deficient free radicals and in turn form a resonance-stabilized
and less reactive phenoxyl radical. Studies were carried out
on the natural antioxidants in edible flours of small millets.
Total antioxidant capacity of finger, little, foxtail and proso
millets were found to be higher and their total carotenoids
content varied from 78–366 mg/100 g in the millet varieties.

Table 6 Beneficial properties of finger millet polyphenols

Properties Functional Role References

Antimicrobial
properties

(i) Seed coat phenolic extract—active against Bacillus cereus, Aspergillus niger Viswanath et al. (2009)

(ii) Fermented finger millet extract—suppress growth of Salmonella sp., Escherichia coli Antony et al. (1998)

(iii) Germinated and ungerminated millet phenol extract—against Bacillus cereus,
Staphylococcus aureus, Yersinia enterocolitica, Escherichia coli, Listeria monocytogenes,
Streptococcus pyogenes, Pseudomonas aeruginosa, Serrtia marcescens, Klebsiella pneumonia

Chethan and Malleshi
(2007b)

Antioxidant
properties

(i) Whole flour methanol extract—Antioxidant activity through β-carotene—linoleic acid assay,
DPPH radical, hydroxyl quenching action—27%, 94%, 77% respectively

Viswanath et al. (2009),
Sripriya et al. (1996)

(ii) Seed coat methanol extract—Antioxidant activity (β-carotene—linoleic acid assay)—86% Viswanath et al. (2009)

(iii) DPPH scavenging effect IC50 (μg/ml)—Crude phenolic extract—90.12; Gallic acid—26.9;
Protocatechuic acid—77.63; p—Hydroxy benzoic acid—183.7; p-coumaric acid—112.01;
Vanillic acid—176.5; Syringic acid—155.6; Ferulic acid—189.1; Trans-cinnamic acid 96.7;
Quercetin—56.8

Chethan et al. (2008a)

Anti diabetic
properties

in vitro studies

(i) millet phenolics inhibits—Malt amylase, α—glucosidase, pancreatic amylase—reduce
postprandial hyperglycemia by partially inhibiting the enzymatic hydrolysis
of complex carbohydrates

Shobana et al. (2009),
Chethan et al. (2008b)

(ii) Inhibits—Aldose reductase—prevents the accumulation of sorbitol—reduce the risk
of diabetes induced cataract diseases

Chethan et al. (2008a)

(iii) Methanolic extract—prevents glycation and crosslinking of collagen—reduce
complication of diabetes and aging due to presence of free radical scavangers

Hegde et al. (2002)

in vivo studies

(i) Whole grain millet meal flour protect against hyperglycemic and oxidative stress Hegde et al. (2005)

(ii) Finger millet feeding controls blood glucose level, improve antioxidant status
and hastens the dermal wound healing process in diabetic rats

Rajasekaran et al. (2004)
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Total tocopherol content in finger and proso millet varieties
were higher (3.6–4.0 mg/100 g) than in foxtail and little
millet varieties (~1.3 mg/100 g). HPLC analysis of
carotenoids for the presence of β-carotene showed its
absence in the millets, and vitamin E indicated a higher
proportion of γ-and α-tocopherols; however, it showed
lower levels of tocotrienols in the millets. Edible flours of
small millets are good source of endogenous antioxidants
(Asharani et al. 2010).

Free radical quenching potential of six different millets
kodo millet, finger millet, little millet, foxtail millet,
barnyard millet (kudiraivali), great millet (jowar) and their
white varieties by electron spin resonance (ESR) spectro-
scopic studies revealed that kodo millet extract quenched
70% of 1, 1, Diphenyl -2- picrylhydrazyl (DPPH), followed
by great millet, finger millet and other extracts which
showed 15–53%. Processing methods such as cooking by
roasting and boiling, germination and/or fermentation
decreased the free radical quenching activity which might
be due to hydrolysis of tannins and the white varieties of
millets showed lower activity than their coloured counter-
parts, indicating that phenolics in the seed coat could be
responsible for the antioxidant activities (Hegde and
Chandra 2005; Sripriya et al. 1996). The reducing power
of the seed coat extracts was significantly higher than that
of whole flour extract. The antioxidant capacity of phenolic
acids changes during malting of finger millet. Rao and
Muralikrishna (2002) reported that the antioxidant activity
of a free phenolic acid mixture was found to be higher
compared to that of a bound phenolic acid mixture. An
increase in an antioxidant activity coefficient was observed
in the case of free phenolic acids whereas the same
decreased in bound phenolic acids upon 96 h of malting.
Soluble and insoluble-bound phenolic extracts of several
varieties of whole grain millets (kodo, finger, foxtail, proso,
pearl, and little millets) evaluated for their phenolic
contents and antioxidative efficacy using trolox equivalent
antioxidant capacity (TEAC), reducing power (RP), and β-
carotene-linoleate model system as well as ferrous chelating
activity showed high antioxidant activities, although the
order of their efficacy was assay dependent. The potential
of whole millets as natural sources of antioxidants could be
due to varietal differences existed in the contents of
phenolics as well as antioxidant capacities between soluble
and insoluble bound phenolic fractions (Chandrasekara and
Shahidi 2010). The extent of antioxidant activity of phenolics
depends on the position and extent of hydroxylation of the
phenolic rings (Miyake and Shibamoto 1997). Many other
structural features play a significant role in determining the
extent of antioxidant activity (Bravo 1998). Ferulic acid
exhibits very strong antioxidant, free radical scavenging and
anti-inflammatory activity (Castelluccio et al. 1995; Shahidi
et al. 1992).

Glycemic response

Diabetes mellitus is a chronic metabolic disorder characterised
by hyperglycemia, resulting from insufficient or inefficient
insulin secretion, with alterations in carbohydrate, protein and
lipid metabolism. Recent reports indicate that hyperglycemia
could induce non-enzymatic glycosylation of various proteins,
resulting in the development of chronic complications in
diabetes (Lebovitz 2001). Therefore, control of postprandial
blood glucose surge is critical for treatment of diabetes and
for reducing chronic vascular complications (Baron 1998;
Lebovitz 2001) which can be controlled by intake of high
complex carbohydrate and high fiber diet. The millet diet is
known for high sustaining power and is usually recommen-
ded for diabetics. Research has shown that the carbohydrates
present in finger millet are slowly digested and assimilated
than those present in other cereals (Kavitha and Prema
1995). Regular consumption of finger millet is known to
reduce the risk of diabetes mellitus (Gopalan 1981) and
gastrointestinal tract disorders (Tovey 1994) and these
properties were attributed to its high polyphenols and dietary
fiber contents (Chethan et al. 2008b). The beneficial effect of
phenolics is due to partial inhibition of amylase and α-
glucosidase during enzymatic hydrolysis of complex carbo-
hydrates and delay the absorption of glucose, which
ultimately controls the postprandial blood glucose levels
(Shobana et al. 2009). Beneficial effect of dietary fiber is
usually attributed either to slower gastric emptying or
formation of un-absorbable complexes with available carbo-
hydrates in the gut lumen and these two properties might
result in delayed absorption of carbohydrates and in the
reduction of absolute quantity absorbed (Kawai et al. 1987;
Rasmussen et al. 1991).

Ramananthan and Gopalan (1957) studied glucose levels
in the blood of six normal male subjects and two diabetics
(one male and one female) after consumption of meals
made up of cooked rice, parboiled rice, wheat, ragi, rice
starch, or ragi starch. Ragi flour and ragi starch gave the
lowest glycemic response. Ragi starch released less glucose
into the blood than did rice starch while after in vitro
enzymic digestion, the differences between the two starches
disappeared. Feeding of finger millets for 28 days at 55%
level in rat diet supplemented with casein, oil, minerals,
vitamins, and corn starch to Alloxan induced rats increased
body weight by 43% in the control group, by 6% in the
diabetic rats fed corn starch and casein, and by 28% in the
group of diabetic rats fed finger millet. Glycemic index of
the finger millet based diet in diabetic animals was lower
significantly compared to normal diet in the diabetic animal
groups. Glucose level was controlled by whole grain flour
diet rich in phenolic antioxidants, suggesting that millets
can provide valuable health protective properties against
diet-related chronic disease (Hegde et al. 2005). Shobana et
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al. (2007) formulated four different foods from whole
wheat, decorticated ragi, popped, and flaked (expanded)
rice, and a mixture of bengal gram, green gram, and black
gram flours. Spices and condiments including cumin,
pepper, cinnamon, asafoetida, turmeric powder and tamarind
powder, fenugreek, guar gum, amla, and gurmar (Gymnema
sylvestre) were added to a total of 11%. Oil, skimmed milk
powder, and vitamins and minerals were then added in the
extent of 9, 6 and 1% respectively. A 50 g equivalent
carbohydrate portion of the foods in the form of thick
porridge was provided to eight healthy adult subjects and the
postprandial blood glucose response was determined. The
Glycemic Index (GI) values were less for wheat and ragi-
based foods. After the decortication process also, the
glycemic index of ragi was lower than of the two rice
products. Wheat based and finger millet based formulations
are suitable as a food supplement or meal replacer for non
insulin dependent diabetes mellitus (NIDDM) subjects.
Lakshmi Kumari and Sumathy (2002) studied the effect of
consumption of finger millet on hyperglycemia in six
NIDDM men and reported that glycemic responses were
lower in whole finger millet based roti and dosa and
germinated finger millet roti. Geetha and Parvathi (1990)
reported that supplementation of diets with ragi for a month
showed a higher reduction of fasting and post prandial
glucose levels than did supplementation with other millets.
In contrast, Patel et al. (1968) found no reduction in blood
glucose levels when the diets of eight diabetic males (40–
80 years of age) were changed from rice to one with ragi as
the staple grain. Another independent study on the glycemic
response on feeding rice, finger millet, tapioca and wheat
diet on normal humans for 15 days did not alter the GI
values. However, the plasma cholesterol profile was benefited
significantly by finger millet and tapioca (Kurup and
Krishnamurthy 1993).

Shobana et al. (2010) provided evidence for hypogly-
caemic, hypocholesterolaemic, nephroprotective and anti-
cataractogenic properties of finger millet, the ‘health-grain’.
Feeding a diet containing 20% millet seed coat matter
(SCM) to streptozotocin induced diabetic rats for 6 weeks
exhibited lesser degree of fasting hyperglycemia and
partial reversal of abnormalities in serum albumin, urea and
creatinine compared to diabetic control. Hypercholester-
olaemia, hypertriacylglycerolaemia, nephropathy and neu-
ropathy associated with diabetes were notably reversed in
diabetic group fed with the diet containing millet seed coat
matter.

Oxidative stress and glycemic status

ESR spectroscopic studies suggest that patients with diabetes
mellitus (DM) are susceptible to increased levels of oxidative
stress (Davison et al. 2002). Oxidative stress and hypergly-

cemia in diabetes produce reactive oxygen species, which
causes peroxidation of membrane lipids, protein glycation,
and health complications such as retinopathy, neuropathy,
nephropathy, and vasculopathy (Monnier 1990). Antioxi-
dants inhibit glycation by scavenging reactive oxygen
species and superoxide dismutase (SOD) and metal
chelators protect against alloxan-induced diabetes in animals
(Chattopadhyay et al. 1997). Effects of the antioxidant
properties of millet species on oxidative stress and glycemic
status in alloxan-induced rats was investigated by Hegde et
al. (2005). The alloxan induced rats fed with finger millet
enriched diet (55% by weight) showed a greater reduction in
blood glucose (36%) and cholesterol level (13%). Glycation
of tail tendon collagen was 40% in the finger millet–fed rats.
The levels of enzymatic (glutathione, vitamins E and C) and
non-enzymatic antioxidants (superoxide dismutase, catalase,
glutathione peroxidase, and glutathione reductase) and lipid
peroxides were significantly reduced in diabetic animals and
restored to normal levels in the millet-fed groups. This could
be due to the presence of phenolics, tannins, and phytates in
finger millets.

Inhibition of collagen glycation and crosslinking

The chemical reaction between the aldehyde group of
reducing sugars and the amino group of proteins termed non
enzymatic glycosylation is a major factor responsible for the
complications of diabetes and aging. Increased oxidative
stress and hyperglycemia contribute significantly to the
accelerated accumulation of advanced glycation end products
and the cross-linking of collagen in diabetes mellitus
(Monnier 1990). Free radicals play major role in non-
enzymatic glycosylation of collagen and crosslinking
whereas antioxidative conditions and free radical scav-
engers inhibit these reactions (Fu et al. 1992). Hegde et
al. (2002) studied the effects of methanolic extracts of
finger millet and kodo millet on glycation and crosslinking
of collagen. The collagen incubated with glucose (50 mM)
and 3 mg methanolic extratcs of finger millet inhibited
glycation. This may be due to natural antioxidants primarily of
polyphenolic nature and other phytochemicals extracted from
the seed coats of the millet grains. Finger millets could have a
potent therapeutic role as dietary supplements for the
prevention of glycation induced complications, as in diabetes
or aging.

Wound healing process

The process of wound healing is determined by inflamma-
tion (Khodr and Khalil 2001), a vital and protective
response offered by the injured cells at the wound site that
actually starts the process of tissue repair (Adam et al.
1999). The perfect wound healing process is interrupted in
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diseased conditions like diabetes and age associated
biochemical phenomenon due to increased level of reactive
oxygen species (ROS). The diabetic conditions had a
deleterious influence on the wound healing process
through abnormal physiological response. Free oxygen
radicals damage the cells in the zone of stasis, which
lead to necrosis and conversion of superficial wound into
a deeper wound (King 2001). Antioxidants significantly
prevent tissue damage and stimulate the wound healing
process.

Antioxidant effects of finger millet on the dermal wound
healing process in diabetes induced rats with oxidative
stress-mediated modulation of inflammation were studied
by Rajasekaran et al. (2004). They reported that the role of
finger millet feeding on skin antioxidant status, nerve
growth factor (NGF) production and wound healing
parameters in healing the impaired early diabetic rats.
Hyperglycemic rats received food containing 50 g/100 g
finger millet (FM) and the non-diabetic controls and
diabetic controls received balanced nutritive diet. Full-
thickness excision skin wounds were made after 2 weeks
prior to feeding of finger millet diet. They studied the
intensity of wound, levels of collagen, hexosamine and
uronic acid in the granulation tissue, skin antioxidant status
and lipid peroxide concentration. The healing process was
hastened with an increased rate of wound contraction in
hyperglycemic rats fed with finger millet diet and skin
antioxidant levels of glutathione (GSH), ascorbic acid and
α-tocopherol in alloxan-induced diabetic rat was lower as
compared to non-diabetics. Altered activities of superoxide
dismutase (SOD) and catalase (CAT) were also recorded in
diabetic rats. The thiobarbituric acid reactive substances
(TBARS) levels of both normal and wounded skin tissues
were significantly elevated (P<0.001) when compared with
control (nondiabetic) and diabetics fed with FM. Increased
expression of NGF determined by ELISA and immunocy-
tochemical evaluation were observed in hyperglycemic rats
supplemented with FM diet. Histological and electron
microscopic examinations revealed the epithelialization,
increased synthesis of collagen, activation of fibroblasts
and mast cells in FM-fed animals. Increased levels of
oxidative stress markers accompanied by decreased levels
of antioxidants, causes delaying in wound healing of
diabetic rats. Feeding the diabetic animals with finger
millet for 4 weeks, regulated the glucose levels and
improved the antioxidant status, this hastened the dermal
wound healing process and could be due to the structure,
anti-oxidative mechanism and the synergistic effects of
different phenolic compounds. It is attributed that the
phenolic antioxidants present in FM partially protected the
insulin-producing cells from alloxan-mediated cell damage,
and hence promoted the healing process (Rajasekaran
et al. 2004).

Millet phenolics and the enzyme inhibition

Inhibition of malt amylases, pancreatic amylase, intestinal
α-glucosidase

Polyphenols are known to inhibit the activity of digestive
enzymes such as amylase, glucosidase, pepsin, trypsin and
lipases and the subject has been studied extensively (Rohn
et al. 2002). They may act as inhibitors of amylase and
glucosidase (similar to acarbose, miglitol and voglibose)
leading to a reduction in post-prandial hyperglycemia
(Bailey 2001). Synergy between phenolics and dietary fiber
may play a role in mediating amylase inhibition and
therefore, have the potential to contribute to the manage-
ment of type II Diabetes mellitus (Saito et al. 1998; Toeller
1994). Chethan et al. (2008a) studied the mode of inhibition
of finger millet malt amylases by the millet phenolics and
reported that the crude polyphenolic extract exerts mixed
non-competitive type inhibition, whereas the individual
phenolic compounds isolated from the extract exhibit
uncompetitive inhibition. Trans-cinnamic acid exhibited a
higher degree of inhibition (79.2%) as compared to other
phenolic compounds and syringic acid was found to be a
weaker inhibitor (~56% inhibition). Depending on the
structure, the phenolics react with proteins/enzymes and
alter various properties of biopolymers such as the molecular
weight, solubility and in vitro digestibility. It has also been
shown that the decrease in enzyme activity depends on the
concentration as well as the number and position of hydroxyl
groups of the phenolics (Rohn et al. 2002).

The millet polyphenols may affect the amylases in
several ways, for instance, by competing with the substrate
to bind to the active site of the enzyme or by disrupting
irreversibly the catalytic process. The heterogeneity of
phenolics having different structural features in crude
extract may be the reason for the mode of inhibition of
amylases. The mode of inhibition also depends on the
substrate specificity of the enzymes. The inhibitory constant
(Ki) for the crude polyphenol extract was 66.7 μg, but the
dissociation constants (Ki′) of phenolic compounds were in
the range of 4.6×10−7 M–7.3×10−7 M. Kinetics of amylase
inhibition by phenolic compounds indicated the presence of
secondary binding sites in malted finger millet amylases
similar to other cereal amylases. Finger millet phenolics also
showed strong inhibition towards α-glucosidase and pancre-
atic amylase and the IC50 values were 16.9 and 23.5 μg of
phenolics, respectively. Kinetic studies of these enzymes in
the presence of millet phenolics revealed a non-competitive
type of inhibition. The inhibitory constant (Ki) for α-glucosidase
and pancreatic amylase were 5.0 and 10 μg of finger millet
phenolics respectively, whereas the dissociation constant (K′i)
for α-glucosidase and pancreatic amylase were 2.5 and 7 μg of
phenolic compounds respectively. The phenolic compounds
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present in the millet seed coat may regulate the glucose uptake
from the intestinal lumen by inhibiting carbohydrate digestion
and absorption, leading to glucose homeostasis and reduce
postprandial hyperglycemia. Hence finger millet phenolics can
be used as amylase and α-glucosidase inhibitors for modula-
tion of carbohydrate breakdown and regulation of glycemic
index of foods thus reducing the chronic pathologies such as
diabetes mellitus.

Inhibition of aldose reductase

Mode of inhibition of aldose reductase from cataracted eye
lenses by finger millet polyphenols was studied by Chethan et
al. (2008b). Diabetes induced cataract is characterized by an
accumulation of sorbitol, which is mediated by the action of
a key enzyme aldose reductase (AR). The non-enzymatic
glycation (binding of glucose to protein molecule) induced
during diabetes appear to be the key factor for AR mediated
sugar-induced cataract. AR enzyme is crucial in cataracto-
genesis via a polyol pathway (Fig. 3). Crude phenolic
extracts from finger millet exhibited the strong inhibitory
effects on AR activity and showed an IC50 of 60.12 μg/ml.
Mode of inhibition of polyphenols on aldose reductase could
be by preventing either the enzymatic conversion of
glyceraldehyde to glycerol and glucose to sorbitol, thereby

replenishing the depletion of NADPH levels. Phenolic
constituents in finger millet phenolics such as gallic,
protocatechuic, p-hydroxy benzoic, p-coumaric, vanillic,
syringic, ferulic, trans-cinnamic acids and the quercetin was
found to inhibit cataract effectively. Structure and function
analysis revealed that phenolics with hydroxy group at 4th
position is important for aldose reductase inhibitory property.
Furthermore, the presence of neighboring O-methyl group in
phenolics denatured the AR activity. Quercetin is the most
potent AR inhibitory component among the finger millet
polyphenolic constituents with IC50 at 25.23±2.2 μg/ml. The
activity was correlated with antioxidant potency with the
correlation coefficient (r=0.99, p≤0.1) between antioxidant
and AR inhibitory effect of phenolic constituents suggesting
that the proton abstracting ability is responsible for AR
inhibitory effect. Quercetin exhibits non competitive inhibi-
tion on AR enzyme and it may render reversible inhibition by
successfully blocking the polyol pathway leading to cataracto-
genesis. The strong hydrogen abstracting ability of quercetin
may replace the proton donation from AR-Histidine-110/
Tyrosine-48, which is a key step in the NADPH regenerating
potential substantiating the effective AR blockade activity.
AR inhibitions potentially resulted in no or only trace
accumulation of sorbitol, which is beneficial to overcome
the osmotic pressure that may also affect eye lens.

Diabetes

Intracellular sugars Blood glucose 

Increased glycation 

Other chronic complications Altered lens protein 

Lens transparency 
cararactogenesis 

AR activity 
Polyol pathway 

Glucose 

Quercetin

Quercetin 

Sorbitol 

NADPH+H+
NADP+

Tyrosine-48 
Tyrosine+Aldose reductase

a 

b

c 

a- Complications leading to polyol pathway; b- Complication leading to decrease in lens transparency and 

formation of cataract; c- Action of quercetin inhibiting polyol pathway in two modes

Fig. 3 Etiology of complica-
tions of diabetes
(Chethan et al. 2008a)
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Dietary fiber (DF)

Finger millet like any other cereal is a source of dietary
carbohydrates but the proportion of dietary fiber in finger
millet is relatively higher than many other cereals. Finger
millet carbohydrates (72%) comprises of starch as the main
constituent and the non starchy polysaccharides (NSP) which
amounts to 15–20% of the seed matter as an unavailable
carbohydrate. DF, principally the NSP and lignin of the plant
origin, is not digested by endogenous enzymes within the
human intestinal tract, but is an important component of our
diet (DeVries et al. 1999). DF can be divided into two
categories according to their water solubility. Each category
provides different therapeutic effects. Water-soluble fibre
(SDF) consists of NSP, mainly β-glucan and arabinoxylan.
Water-insoluble fibre (IDF) contains lignin, cellulose, hemi-
celluloses (Bingham 1987; Marlett 1990), and NSP such as
water-unextractable arabinoxylan. In millets, NSP form the
quantitatively most important source of both soluble and
insoluble dietary fibers (Bunzel et al. 2001). In cereal
botanical components, the majority of dietary fibres gener-
ally occur in decreasing amounts from the outer pericarp to
the endosperm, except arabinoxylan, which is also a major
component of endosperm cell wall materials.

The health benefits associated with high fibre foods
are delayed nutrient absorption, increased faecal bulk,
lowering of blood lipids, prevention of colon cancer,
barrier to digestion, mobility of intestinal contents,
increased faecal transit time and fermentability character-
istics (Tharanathan and Mahadevamma 2003). SDF
fractions are important in foods because they trap fatty
substances in the gastro-intestinal tract and therefore,
reduce cholesterol level in the blood and lower the risk of
heart disease. SDF in general has a wide range of
functionality due to its ability to absorb water and form
gel like structure, and is almost fully fermented in the large
intestine microflora, bringing about many desired metabolic
effects of fiber (Lopez et al. 1999). The ability of SDF to
retard absorption of glucose in the small intestine is also a
desirable characteristic in the development of foods for
diabetic individuals (Onyango et al. 2004). The increase in
the soluble fibre content of the product has special
nutritional significance because of its physiological advan-
tages in terms of hypoglycemic and hypocholesterolemic
characteristics (Shobana and Malleshi 2007). Soluble fibre
also decreases serum cholesterol, postprandial blood glu-
cose, and insulin contents in the human body. Insoluble fiber
has a major impact on gastrointestinal transit times, binds
water, speeds up intestinal transit, faecal bulk and binds some
carcinogens. It reduces contact time for faecal mutagens to
interact with the intestinal epithelium and also modifies the
activity of digestive microflora and leads to modification or
reduction in the production of mutagens. Some fibers can

adsorb mutagenic agents and are eliminated in the faeces
(Thebaudin et al. 1997).

Formation of the resistant starch (RS) also contributes
towards dietary fibre content and complements the health
benefits of the millet (Shobana and Malleshi 2007). This
residual starch can be quantified in the soluble dietary fiber
residue and is highly susceptible to fermentation in the
large intestine. RS, a functional fiber fraction is also present
in ragi, which escapes the enzymatic digestion imparts
beneficial effects by preventing several intestinal disorders
(Annison and Topping 1994; Gee et al. 1992). Similar to
oligosaccharides, especially fructooligosaccharides, it
escapes digestion and provides fermentable carbohydrates
for colonic bacteria. It has also been shown to provide
benefits such as the production of desirable metabolites,
including short-chain fatty acids in the colon, especially
butyrate, which seems to stabilize colonic cell proliferation
as a preventive mechanism for colon cancer (Englyst et al.
1992). In addition to its therapeutic effects, resistant starch
provides better appearance, texture, and mouth feel than
conventional fibres (Martinez-Flores et al. 1999).

Composition of the millet DF and changes in contents
during processing

Dietary fiber content of finger millet varieties (hilly and
base region) has been extensively studied (Premavalli et al.
2004). Dietary fiber content of ten varieties (3 from hilly
region and 7 from base region) ranged from 7–21.2% and
base region varieties showed higher dietary fiber than hilly
region varieties. The total NSP content in native millet is
17.11 g/100 g in which IDF and SDF contributes 15.70,
1.40 g/100 g respectively (Dharmaraj and Malleshi 2010).
DF profile of ragi such as total dietary fiber (TDF), IDF,
SDF, neutral detergent fiber (NDF), acid detergent fiber,
crude fiber, hemicellulose, lignin content is 17.6, 15.7, 1.8,
15.6, 5.2, 4.0, 10.4, 1.3% respectively (Navita and Sumathi
1992). The compositions of neutral detergent fiber in millet
viz. hemicellulose, lignin, cellulose and cutin & silica are
34.41±0.99, 29.98±0.99, 27.58±0.85, 9.02±0.28 g/100 g
respectively (Thomas et al. 1990).

During processing, the starch molecule undergoes
several physical changes depending on its type and the
processing methods employed (Goni et al. 1996). Changes
in types of dietary fiber viz., TDF, SDF and IDF during
different types of processing methods in millets are listed in
Table 7. Extrusion processing influences the amount of
dietary fiber and resistant starch in foods. Unlu and Faller
(1998) have reported that adding certain forms of starch or
citric acid to corn meal prior to extrusion modifies RS and
dietary fibre. Fermentation of sorghum-based foods before
extrusion has also been reported to counteract the formation
of RS, whereas direct acidification does not (Knudsen and
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Munck 1985). Extrusion cooking of Uji reduced total
dietary fibre by 39–68%, redistributed soluble to insoluble
fibre ratios and had a negligible effect on the formation of
resistant starch (less than 1 g/100 g). In extrusion cooking
the combined effects of shear along with heat and pressure
are mainly responsible for the modification of starch
properties. During the process, maximum gelatinization of
starch occurs at a temperature of 100˚C and a highest feed
moisture content of 23%. As the extrusion temperature
increases, the puffing expansion also increases to a
maximum of 170˚C discharge temperature and the products
will have improved carbohydrate digestibility. This could
probably be the reason for the decreased formation of RS
during extrusion cooking (Mangala et al. 1999).

According to Onyango et al. (2004), extrusion of the
unfermented maize-finger millet increased SDF and reduced
IDF, whereas extrusion of the fermented or acidified blends
reduced SDF and increased IDF fractions. Total NSP
decreased 50% in the unfermented-extruded blend and
further to a range of 10% and 12% in blends that were
fermented or treated with different molarities of lactic or
citric acids before extrusion. The decrease in total NSP is
attributable to the high extrusion temperature and intense
mechanical shear that disrupts glycosidic linkages and weak
bonds between polysaccharide chains of dietary fibre
polysaccharides. The decrease in total NSP after extrusion
was accompanied by a redistribution of SDF to IDF fractions
in all the blends. The proportion of SDF in the raw blend
was 39% and increased to 52% in the unfermented-extruded
blend. Increased SDF fraction after extrusion or canning is
associated with solubilization of some IDF fractions, disrup-

tion of ligno-cellulose links in the cell walls and disintegration
of larger molecules of fibre resulting in the formation of low
molecular weight soluble fragments such as arabinose, xylose,
galactose and glucose (Björk et al. 1984; Fornal et al. 1987;
Periago et al. 1996, 1997). Solubilization of fibre increases
its availability to bacterial flora in the colon making it easier
to ferment than insoluble fibre.

SDF fractions in the fermented, lactic or citric acid treated
maize-finger millet blends decreased on extrusion. The
proportion of SDF in total NSP decreased from 39% in the
raw blend to 19% when the blend was fermented before
extrusion. The ratio of SDF in total NSP decreased from 30%
to 19% and 45% to 30% with increasing molarities of citric
and lactic acids, respectively. Extrusion at acidic conditions
facilitates conversion of SDF to IDF by polymerization of the
short chain fibre fragments to form large insoluble complexes
or Maillard compounds that are consequently analysed as
lignin (Camire 2001). It is also possible that the diverse
bacterial and yeast flora in the backslop fermented blend
may have utilized some SDF for their metabolic processes.
The decrease in SDF and increase in IDF fractions indicates
the increased fibre availability for faecal bulking and water
binding in the colon resulting in more frequent and softer
bowel motions, reduced risk of constipation and increased
volume of waste material (Onyango et al. 2004). In contrast,
extrusion processing increases approximately 10% soluble
dietary fiber than the unprocessed cereal based weaning
foods (Malleshi et al. 1996).

Hydrothermal processing of millets results in 39% decrease
in soluble fiber however there is no change in total dietary
fiber. Decortication reduced the dietary fibre content of the
millet by about 33.2% but at the same time, the proportion of
soluble fibre content increased considerably by 170%
(Shobana and Malleshi 2007; Dharmaraj and Malleshi
2010). The total NSP content of native, hydro thermally
processed and decorticated millet was 20.27, 20.11 and
17.11 g/100 g, respectively. The non-starchy polysaccharide
constituents also underwent considerable changes during
hydrothermal processing in their composition but their
content remained almost unchanged. However, decortication
caused qualitative as well as quantitative changes in all the
NSP fractions, mainly because of separation of the cellulose
rich seed coat matter from the HM. The cold-water and the
hot water solubles as well as the hemicellulose-B fractions of
NSP decreased after hydrothermal processing, whereas, the
pectic polysaccharides, the hemicellulose-A and also the
cellulose fractions increased. Decortication results in slight
increase in cold-water solubles, significant increase in hot
water solubles and decrease in hemicellulose A and B
fractions, pectic polysaccharides and cellulosic fraction
(Dharmaraj and Malleshi 2010).

Processing of cereals such as wheat, sorghum, maize, ragi,
bajra into chapathi, rice processed by pressure cooking had no

Table 7 Effect of processing on dietary fiber fractions of finger
millet (%)

Processing TDF IDF SDF

Native flourb 19.8±0.5 18.1±00.4 0.7±0.9

Cookingb 14.9±0.2 13.0±0.2 1.9±0.2

Pressure cookingb 15.7±0.5 14.0±0.2 1.6±0.1

Autoclavingb 15.4±0.1 13.9±0.2 1.5±0.1

Re-autoclavingb 14.7±0.2 12.8±0.1 1.9±0.1

Puffingb 20.3±0.2 19.6±0.2 0.8±0.2

Roastingb 14.7±0.1 13.1±0.4 1.6±0.2

Bakingb 9.7±0.4 8.6±0.2 1.2±0.3

Fryingb 12.2±1.0 11.1±0.9 1.1±0.3

Germinationb 10.7±0.4 8.9±0.3 1.8±0.1

Maltingb 12.0±0.4 8.8±0.1 3.3±0.1

Toasting (Roti)b 13.6±0.3 12.6±0.2 1.1±0.3

Toasting (Dosa)b 11.1±0.2 9.8±0.1 1.3±0.1

Hydrothermally treateda 21.1±1.6 19.1±1.2 2.0±0.6

Decorticateda 14.7±1.8 12.3±1.0 2.4±0.5

Source: a Shobana and Malleshi (2007), b Roopa and Premavalli (2008)
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effect on their TDF, IDF contents with the exception of ragi,
whereas the significant increase in TDF and IDF could be due
to resistant of tannin bound proteins to enzymatic hydrolysis
of proteins (Ramulu and Udayasekhara Rao 1997). Among
the cereal based Indian food preparations viz., chapathi, idli,
pongal, poori, ragi roti, rice roti, rice flakes upma, semolina
idli and upma and the accompaniments such as cooked dhal,
chutney and potato palya, the TDF and IDF were higher in
ragi roti. The TDF, IDF, RS of ragi roti increased with
accompaniment chutney (Sharavathy et al. 2001). Effects of
primary processing on dietary fiber profile of sorghum, bajra,
ragi and wheat showed the highest and lowest total dietary
fiber in ragi and bajra respectively. TDF and IDF contents of
unprocessed and milled processed finger millet flour were
found too high among all millets (Navita and Sumathi 1992).

The starch fractions based on digestibility are nutritionally
recognized as important because of their impact on physio-
logical functions. The starch fractions of 3 hilly and 7 base
varieties of finger millets were extensively studied. Rapidly
digestible starch (RDS) in hilly varieties ranged from 8.4–
11.2%with an average of 10.0±1.4%while in base varieties it
ranged from 8.6–9.9% with an average of 9.2±0.6%. Slowly
digestible starch (SDS) varied from 32–35% and 26–30% in
hilly and base varieties respectively, while total starch (TS)
varied from 44–53% and 39–41% in hilly and base varieties
respectively. Resistant starch was 0.9% in hilly varieties and
ranged from 0.8–1% in base varieties. Relatively, hilly
varieties had higher RDS, SDS, TS while RS was less as
compared to base varieties. In puffed ragi flour, the results
indicated that RDS increased by 5–18.9% and total available
starch decreased drastically which indicated its hydrolysis
during puffing. Relatively, the increase in RDS and decrease
in SDS was higher in hilly varieties than the base ones, while
TS was slightly lower in hilly varieties. RS, decreased in the
range of 19–26% in hilly varieties and 14–31% in the base
ones (Roopa and Premavalli 2008).

RS formation was influenced by different processing
methods. Increase in RS was observed during pressure
cooking and roasting whereas it was decreased in other
process. Repeated autoclaving further decreased the RS
(Roopa and Premavalli 2008). However, Mangala et al.
(1999) showed RS formation was more pronounced in
autoclaving and a drastic increase (five fold) in its content
during repeated autoclaving (heating and cooling) because
the net crystallinity of RS is increased by cooling in
between successive autoclaving cycles. In addition to that,
all the processes-popping, roller drying, extrusion, flaking,
parboiling, malting increased the RS formation both in rice
and ragi flours. Mangala et al. (1999) reported an increase
of RS by 9–10% in popped ragi. In contrast Prachure and
Kulkarni (1997) reported a decrease in RS during roasting,
pressure cooking, frying and cooking methods. In rice,
Sagum and Arcot (2000) reported a reduction in RS during

boiling. During roller drying of cereal flour, starch becomes
fully gelatinized, resulting in a decrease in the molecular
entanglement, hence less formation of resistant starch.
During preparation of Uji, RS was not detected in the raw
blend and only a minimal amount (0.6 g/100 g) was formed
when the unfermented blend was extruded. Formation of
RS was counteracted when the pH of the blends was
lowered either by fermentation or increasing molarities of
lactic or citric acids. Formation of RS is associated with
retrogradation of amylose (Englyst et al. 1992; Shamai et
al. 2003) during which enzyme resistant amylose–amylose
linkages are formed. This implies that starchy foods with
high amylose content are expected to have high RS content
after extrusion.

Structural and functional features of NSP

The NSP includes arabinoxylans, 1-3/1-4 β-D-glucans,
pectins and arabinogalactans (Izydorczyk and Biliaderis
1995). The schematic procedure for isolation of non starch
polysaccharides from the millet is depicted in Fig. 4. Yield of
water-soluble NSP, hemicellulose-B and cellulose polysac-
charides increase upon malting of the millet causing a
substantial decrease in the yield of hemicellulose-A (Rao and
Muralikrishna 2001). Arabinoxylans, along with some
amount of β-D-glucans, are the major components of soluble
dietary fiber. The main water soluble NSP exhibit a wide
range of functional properties and health benefits. They are
known to have many beneficial roles in human nutrition and
health such as lowering cholesterol and fat contents,
reducing the disease symptoms of constipation and the risk
of diabetes, atherosclerosis and colorectal cancer (Morris et
al. 1977; Plaami 1997; Willett 1994). Arabinoxylans are also
proposed to have wound dressing potential. Structural
elucidation of purified arabinoxylans isolated from finger
millet and its malt by methylation followed by fractionation
in GLC–MS, periodate oxidation, Smith degradation, NMR,
IR, optical rotation, and oligosaccharide analysis indicated
that the backbone of the molecule was a 1,4-β-D-xylan, with
the majority of the residues substituted at C-3. The structural
analysis of oligosaccharide generated by endo xylanase
treatment showed that it contained eight xylose and six
arabinose residues, substituted at C-3 (monosubstituted) and
at both C-2 and C-3 carbons (disubstituted) (Rao and
Muralikrishna 2004).

Feraxans are shown to be low molecular weight poly-
saccharides with high amounts of arabinose, galactose, uronic
acid and ferulic acid. Ferulic acid, a major bound phenolic
acid, is known to exist as ester linked mainly to arabinoxylans
and influence their physicochemical properties (Ishii 1997).
Ferulic acid is supposed to have a number of health benefits.
It is known to decrease total cholesterol and increase
bioavailability of vitamin-E, vitality of sperms and offers a
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good protective action against UV radiation–induced skin
damage. It is known to have anti-tumor and anti-cancer
effects (Mori et al. 1999). Apart from dietary fiber, several
reports have proven that ferulic acid is a potential chemo-
preventive agent for colorectal cancer (Kawabata et al. 2000;
Mori et al. 1999). Feruloyl arabinoxylans were shown to be
highly antioxidant, and this property is correlated with their
molecular architecture (Rao and Muralikrishna 2006).

Structural characterization of the purified water-soluble
feruloyl arabinoxylans (feraxans) from native and malted
millet was studied in order to correlate the structure-functional
relationship, with specific reference to the bound ferulic acid.
Characterization of feraxans by methylation, followed by
GLC–MS, and also by 1HNMR and 13CNMR spectroscopy,
indicated very high branching and presence of high amounts
of O2 substituted xylans. Malting brought dynamic changes
in the physicochemical/structural features of feraxans and led
to decrease molecular weight (140 kDa to 38.9 kDa) but

increased ferulic acid content (161 μg/g to 950 μg/g) of
feraxans, due to the action of xylanase. The amount of O2, 3
disubstituted xylopyranosyl residues and the arabinose: xylose
ratio was higher in malt feraxans (Rao and Muralikrishna
2007). Water soluble feraxans from the millet exhibited very
strong antioxidant activity, which could be 5000 times higher
than the activity exerted by sulphated polysaccharides. Apart
from phenolic acids, presence of sugars with > C=O
(uronyl/acetyl) groups and degree/nature of polymeriza-
tion impart strong antioxidant activity to the polysac-
charides. The ferulic acid present in cereals exhibited strong
antioxidant activity in its bound form and thus it need not get
digested and be released in the colon through the action of
microflora to exert its activity (Ohta et al. 1994, 1997; Rao
and Muralikrishna 2006).

Functional characteristics of NSP obtained from native
and malted finger millet indicated that the millet can be
incorporated as a source of dietary fiber both in the native

Millet flour 

Water extraction and centrifugation 

Supernatant                  Residue  
(WSP)

                 Starch digestion with glucoamylase
                   (60˚C)

            Supernatant                  Residue 
                 (HWSP) 

               0.5% EDTA extraction
               (80 ˚C)

  Supernatant        Residue 

10% alkali extraction
              in N2 atmosphere 

Supernatant          Residue 
         (AIR) 

        Adjusted pH to 4.5

 Supernatant Precipitate 
(Hemicellulose-A)

           Alcohol precipitation 

                  Supernatant                Precipitate 
)B-esolullecimeH(

AIR - Alkaline-insoluble residue; WSP -water-soluble polysaccharides; HWSP - hot water-soluble 
polysaccharides

Fig. 4 Procedure for isolation
of non starch polysaccharides
from millets (Rao
and Muralikrishna 2001)
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and malted forms, in the preparation of various health
foods, bakery products without affecting the quality of the
end-product. Addition of water-soluble NSP also imparted
positive effect on the properties of wheat dough. It resulted
in increased water absorption, decreased dough develop-
ment time, increase in dough extensibility, improvement in
starch pasting characteristics and good foam stabilization
activity, besides a significant increase in loaf volume and
softness of the bread (Rao et al. 2007).

Potential contribution of dietary fiber to the health
effects of finger millets

DF has gained importance during the last two decades due
to its role in decreasing the risk diseases such as diabetes,
cardiovascular diseases, colon cancer, constipation and
diverticulosis (Ramulu and Udayasekhara Rao 1997).
Physical attributes of the fiber causes change in morphology
of the intestine and these changes could be associated with
functional changes in the gastrointestinal tract through
different mechanisms. Consumption of dietary fiber that are
viscous lowers blood glucose levels and helps to maintain it
and also helps to treat cardiovascular and type II diabetes.
Fibers are incompletely or slowly fermented by microflora in
the colon promotes normal laxation which prevents constipa-
tion, diverticulosis and diverticulitis. Daily intake of fiber is
20–35 g/day for healthy individuals and age plus 5 g/day for
children is recommended.

Dietary fiber has major effects on the rate of gastroin-
testinal absorption; sterol metabolism; ceacal fermentation
and stool weight. Rate of intestinal absorption in the upper
gastrointestinal tract dietary fiber prolongs gastric emptying
time and retards the absorption of nutrients. Both processes
are dependent on the physical form of the fiber, and
particularly on viscosity. The physiological effects of dietary

fiber in relation to functions of intestines are given in Table 8.
An important function of insoluble fibers is to increase
luminal viscosity in the intestine. The inclusion of viscous
polysaccharides in carbohydrate meals reduces the postpran-
dial blood glucose level concentrations in humans. The direct
effect of fiber on sterol metabolism may be through one of
several mechanisms: altered lipid absorption; altered bile
acid metabolism in the cecum; reduced bile acid absorption
in the cecum; indirectly via short chain fatty acids, especially
propionic acid, resulting from fiber fermentation. Fermenta-
tion in colon involves nutrient salvage so that dietary fiber,
resistant starch, fat, and protein are utilized by bacteria and the
end products are absorbed and used by the body. The
functions of dietary fiber in the colon are susceptible to
bacterial fermentation, ability to increase bacterial mass and
saccharolytic enzyme activity and water holding capacity of
the fiber residue after fermentation. The most important
mechanism whereby dietary fiber increases stool weight is
through the water-holding capacity of unfermented fiber
(Eastwood 1992). Potential negative effects of dietary fiber
are reduced absorption of vitamins, minerals and proteins.
Fermentation of dietary fiber by anaerobic bacteria in the
large intestine produces gas such as hydrogen, methane and
carbon dioxide, which causes flatulence problems.

Ragi husk, a natural fiber composed of many types of
indigestible fractions incorporated to 9% protein diet at a level
of 10% promoted better growth in albino rats (Kanchana and
Shurpalekar 1988b). Addition of finger millet husk at 8%
level to 9% protein diet increased the small bowel length; the
villous height in the duodenum and ileum and elevated the
activity of the chymotrypsin in both pancreas and intestine
and no marked difference was seen in pH profile and activity
of trypsin and these results indicated no deleterious effect on
the gastrointestinal tract of the albino rats (Kanchana and
Shurpalekar 1988a). Tovey (1974) and Jayaraj et al. (1976)

Table 8 Physiological effects of DF in relation to intestinal functions

Characteristics Effects Physiological implications

DF and small intestinal functions

Dispersibility in water Increases volume,
dilution of metabolites formed

Slower digestion, promotes nutrient absorption
with reduction of plasma cholesterol

Bulk Increases bulk, alters mixing of contents Alters transit time

Viscosity Slows gastric emptying Alters mixing and diffusion

Adsorption-binding Increases bile acid excretion Reduction in plasma cholesterol

DF and large intestinal functions

Dispersibility in water Provides an aqueous phase
for penetration of microbes

Increased polysaccharide break down by microflora

Bulk Increases bulk/volume Aids laxation

Adsorption-binding Increases bile acid concentration Bile acid excretion increased

Fermentability Growth of microflora, microbial adaptation
to polysaccharide structures

Increased microbial mass and products of metabolism

Source: Barbara (1999)
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found that unrefined wheat, rice bran and certain unrefined
grains (finger millet) had a significant buffering effect in
vitro digestibility and protect rats against experimental
ulceration. NDF has cholesterol lowering action and high
hemicellulose content of the dietary fiber content is positively
correlated with the effect on cholesterol metabolism. Hypo-
cholesterolemic action of ragi NDF fed in rats showed the
lower concentration of cholesterol, triglycerides in serum and
tissues and concentration of hepatic bile acids, faecal bile
acids, faecal sterols are higher compared to isocaloric fiber
free diet fed rats. In vitro binding of NDF with bile acids is
found to be low (Thomas et al. 1990). Whole grains of
foxtail millet and proso millet fed as diet for a period of
5 weeks to hyperlipidemic rats reduced the concentrations of
serum triglycerides and concentrations of serum total, high
density lipoprotein (HDL), and low-density lipoprotein
(LDL)-cholesterol was found to be lower. Levels of C-
reactive protein were significantly lower in the foxtail millet
group than the white rice, sorghum, and proso millet groups
and these millets may prevent cardiovascular disease by
reducing plasma triglycerides (Lee et al. 2010).

Conclusion

Increased nutritional awareness challenges the food industries
in developing new food products with special health-
enhancing characteristics. The dietary fiber and polyphenols
in finger millet are known to offer several health benefits such
as antidiabetic, antioxidant, hypocholesterolaemic, antimicro-
bial effects and protection from diet related chronic diseases to
its regular consumers. The millet polyphenols is a complex
mixture of benzoic acid and cinnamic acid derivatives and
exhibit enzyme inhibitory and anti-cataractogenic activities
also. The non starchy polysaccharides of the millet form bulk
of its dietary fiber constituents and offer several health
benefits including delayed nutrient absorption, increased
faecal bulk and lowering of blood lipids. Regular consump-
tion of finger millet as a food or even as snacks helps in
managing diabetes and its complications by regulation of
glucose homeostasis and prevention of dyslipideamia. This
review provides a scientific rationale for the use of finger
millet as a therapeutic and health building food.
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