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The dendritic arbors of the larval Drosophila peripheral class IV
dendritic arborization neurons degenerate during metamorphosis
in an ecdysone-dependent manner. This process—also known as
dendrite pruning—depends on the ubiquitin–proteasome system
(UPS), but the specific processes regulated by the UPS during prun-
ing have been largely elusive. Here, we show that mutation or
inhibition of Valosin-Containing Protein (VCP), a ubiquitin-depen-
dent ATPase whose human homolog is linked to neurodegenera-
tive disease, leads to specific defects in mRNAmetabolism and that
this role of VCP is linked to dendrite pruning. Specifically, we find
that VCP inhibition causes an altered splicing pattern of the large
pruning gene molecule interacting with CasL and mislocalization
of the Drosophila homolog of the human RNA-binding protein
TAR–DNA-binding protein of 43 kilo-Dalton (TDP-43). Our data
suggest that VCP inactivation might lead to specific gain-of-function
of TDP-43 and other RNA-binding proteins. A similar combination of
defects is also seen in a mutant in the ubiquitin-conjugating enzyme
ubcD1 and a mutant in the 19S regulatory particle of the protea-
some, but not in a 20S proteasome mutant. Thus, our results high-
light a proteolysis-independent function of the UPS during class IV
dendritic arborization neuron dendrite pruning and link the UPS
to the control of mRNA metabolism.

To achieve specific connections during development, neurons
need to refine their axonal and dendritic arbors. This often

involves the elimination of neuronal processes by regulated re-
traction or degeneration, processes known collectively as pruning
(1). In the fruit fly Drosophila melanogaster, large-scale neuronal
remodeling and pruning occur during metamorphosis. For ex-
ample, the peripheral class IV dendritic arborization (da) neu-
rons specifically prune their extensive larval dendritic arbors (2,
3), whereas another class of da neurons, the class III da neurons,
undergo ecdysone- and caspase-dependent cell death (3). Class
IV da neuron dendrite pruning requires the steroid hormone
ecdysone (2, 3) and its target gene SOX14, encoding an HMG
box transcription factor (4). Class IV da neuron dendrites are
first severed proximally from the soma by the action of enzymes
like Katanin-p60L and Mical that sever microtubules and actin
cables, respectively (4, 5). Later, caspases are required for the
fragmentation and phagocytic engulfment of the severed den-
drite remnants (6, 7). Another signaling cascade known to be
required for pruning is the ubiquitin–proteasome system (UPS)
(2, 7, 8). Covalent modification with the small protein ubiquitin
occurs by a thioester cascade involving the ubiquitin-activating
enzyme Uba1 (E1), and subsequent transfer to ubiquitin-conju-
gating enzymes (E2s) and the specificity-determining E3
enzymes (9). Ubiquitylation of a protein usually leads to the
degradation of the modified protein by the proteasome, a large
cylindrical protease that consists of two large subunits, the 19S
regulatory particle and the proteolytic 20S core particle (10).
Several basal components of the ubiquitylation cascade—Uba1
and the E2 enzyme ubcD1—as well as several components of the
19S subunit of the proteasome have been shown to be required

for pruning (2, 7, 8), as well as the ATPase associated with di-
verse cellular activities (AAA) ATPase Valosin-Containing
Protein (VCP) (CDC48 in yeast, p97 in vertebrates, also known
as TER94 in Drosophila) (11), which acts as a chaperone for
ubiquitylated proteins (12). Interestingly, autosomal dominant
mutations in the human VCP gene cause hereditary forms of
ubiquitin-positive frontotemporal dementia (FTLD-U) (13) and
amyotrophic lateral sclerosis (ALS) (14). A hallmark of these
diseases is the occurrence of both cytosolic and nuclear ubiq-
uitin-positive neuronal aggregates that often contain the RNA-
binding protein TAR–DNA-binding protein of 43 kilo-Dalton
(TDP-43) (15). We previously proposed that ubcD1 and VCP
promote the activation of caspases during dendrite pruning via
degradation of the caspase inhibitor DIAP1 (7, 11). However,
mutation of ubcD1 or VCP inhibit the severing of class IV da
neuron dendrites from the cell body (7, 11), whereas in caspase
mutants, dendrites are still severed from the cell body, but
clearance of the severed fragments is affected (6, 16). This
indicates that the UPS must have additional, as yet unidentified,
functions during pruning.
Here, we further investigated the role of UPS mutants in

dendrite pruning. We show that vcp mutation leads to a specific
defect in ecdysone-dependent gene expression, as VCP is re-
quired for the functional expression and splicing of the large
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ecdysone target gene molecule interacting with CasL (MICAL).
Concomitantly, we observe mislocalization of Drosophila TDP-
43 and up-regulation of other RNA-binding proteins, and ge-
netic evidence suggests that these alterations contribute to the
observed pruning defects in VCP mutants. Defects in MICAL
expression and TDP-43 localization are also induced by mutations
in ubcD1 and in the 19S regulatory particle of the proteasome, but
not by a mutation in the 20S core particle, despite the fact that
proteasomal proteolysis is required for dendrite pruning, indi-
cating the requirement for multiple UPS pathways during class IV
da neuron dendrite pruning.

Results and Discussion
VCP Mutant Pruning Phenotypes Are Linked to Ecdysone Signaling.
Class IV da neurons have long and branched dendrites at the
third instar larval stage (Fig. 1A). In wild-type animals, these
dendrites are completely pruned at 16–18 h after puparium for-
mation (h APF) (Fig. 1B). We next generated VCP mutant class
IV da neurons by the Mosaic Analysis with a Repressible Cell
Marker (MARCM) technique for clonal analysis (17). Mutant
vcp26-8 class IV da neurons displayed strong pruning defects and
retained long dendrites at 16 h APF (Fig. 1C). As previously
shown (11), expression of an ATPase-deficient dominant-negative
VCP protein (VCP QQ) under the class IV da neuron-specific
driver ppk-GAL4 recapitulated the pruning phenotype and also
led to the retention of long and branched dendrites at 16 h APF
(Fig. 1D). We had previously shown that VCP inhibition also
causes defects in class III da neuron apoptosis (11). This com-
bination of defects in both pruning and apoptosis is reminiscent
of the phenotypes caused by defects in ecdysone-dependent gene
expression (3, 4). Indeed, we noted that overexpression of the
transcription factor Sox14, which induces pruning genes, led to
a nearly complete suppression of the pruning phenotype caused
by VCP QQ (Fig. 1 D–F). This genetic interaction suggested that
VCP might be required for the expression of one or several ec-
dysone target genes during pruning.

VCP Regulates Mical Expression. How could VCP be linked to
Sox14? The suppression of the vcp mutant phenotype by Sox14
overexpression could be achieved in one of several ways. Sox14
could be epistatic to VCP—that is, VCP could be required for
functional Sox14 expression—and this effect would be mitigated
by Sox14 overexpression. However, VCP could also be required
for the expression of one or several Sox14 target genes, and en-
hanced Sox14 expression could overcome this requirement either
via enhanced induction of one or several particular targets or
via enhanced induction of other pruning genes, in which case
Sox14 would be a bypass suppressor of VCP QQ. To distinguish
between these possibilities, we next assessed the effects of VCP
inhibition on the expression of known genes in the ecdysone
cascade required for pruning in class IV da neurons. Class IV
da neuron pruning is governed by the Ecdysone Receptor B1
(EcR-B1) isoform (2, 3), which in turn directly activates the
transcription of Sox14 (4) and Headcase (Hdc), a pruning factor
of unkown function (18). Sox14, on the other hand, activates the
transcription of the MICAL gene encoding an actin-severing
enzyme (4). In immunostaining experiments, VCP QQ did not
affect the expression of EcR-B1 (Fig. 2 A and B), Sox14 (Fig. 2 C
and D), or Hdc (Fig. 2 E and F) at the onset of the pupal phase.
However, the expression of Mical was selectively abrogated in
class IV da neurons expressing VCP QQ (Fig. 2 G and H), or in
vcp26-8 class IV da neuron MARCM clones (Fig. 2I). These data
indicated that VCP might affect dendrite pruning by regulating
the expression of the Sox14 target gene Mical, indicating that
Sox14 might act as a bypass suppressor of VCP QQ.
How could VCP inhibition suppress Mical expression? To

answer this question, we next assessed if Mical mRNA could still
be detected in class IV da neurons expressing VCP QQ. To this
end, we used enzymatic tissue digestion and FACS sorting (19)

to isolate class IV da neurons from early pupae (1–5 h APF). We
then extracted total RNA from the isolated neurons and assessed
the presence of Mical mRNA expression by RT-PCR, using
control samples or samples from animals expressing VCP QQ
under ppk-GAL4. The Mical gene is large (∼40 kb) and spans
multiple exons that are transcribed to yield a ∼15 kb mRNA. To
detect Mical cDNA, we used primer pairs spanning several
exons for two different regions of Mical mRNA, exons 14–16
and exons 8–12 (Fig. 3A). [MICAL is on the (–) strand, but the
exon numbering denoted by flybase.org follows the direction of
the (+) strand. Therefore, exons 14–16 are upstream of exons
8–12, and the latter are closer to the 3′ end of MICAL mRNA.]
MICAL mRNA was detectable upon VCP inhibition in these
extracts with a primer pair spanning exons 14–16. The second
primer pair spanning exons 8–12 also detected MICAL mRNA
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Fig. 1. VCP requirement for dendrite pruning is linked to ecdysone sig-
naling. (A) Morphology of the dorsal class IV da neuron ddaC at the third
instar larval stage. (B) ddaC morphology at 16 h APF. All larval dendrites are
pruned (0/38 with dendrites attached to soma). (C) vcp26-8 mutant ddaC
neurons at 16 h APF show severe defects in dendrite pruning (8/8 attached to
soma, P < 0.005). (D) Expression of dominant-negative VCP QQ in class IV da
neurons inhibits dendrite pruning at 16 h APF (18/30 with dendrites attached
to soma, P < 0.005). (E and F) Overexpression of the ecdysone pathway
transcription factor Sox14 suppresses the pruning defects induced by VCP
QQ. (E) Sox14 overexpression does not affect dendrite pruning at 16 h APF
(0/34). (F) Sox14 overexpression suppresses dendrite pruning defects induced
by VCP QQ (0/50). Statistical comparison of attached versus severed dendrites
was with Fisher’s exact test. (Scale bars in A and B, 20 μm.) Arrowheads
denote the positions of class IV da neuron cell bodies.
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in both samples (Fig. 3C), but the RT-PCR product from the
VCP QQ-expressing class IV da neurons had a larger molecular
weight. Sequencing of the PCR products indicated that MICAL
mRNA from VCP QQ-expressing class IV da neurons contained
exon 11, which was not present in Mical mRNA from the con-
trol sample (Fig. 3D). Exon 11 is absent from all predicted
MICAL splice isoforms except for a weakly supported isoform
designated “Mical-RM” (www.flybase.org). It introduces a stop
codon into MICAL mRNA that would lead to the truncation of
the C-terminal 1,611 amino acids from Mical protein. This
portion of Mical protein contains several predicted protein in-
teraction domains such as a proline-rich region, a coiled-coil
region with similarity to Ezrin/Radixin/Moesin (ERM) domains,
and a C-terminal PDZ-binding motif, and is required for the

interaction between Mical and PlexinA (20). In addition, the
truncated region contains the epitope for the antibody used (20)
in the immunofluorescence experiments, thus explaining the
observed lack of Mical expression upon VCP inhibition. Given
that a mutant of Mical with a smaller C-terminal truncation
(compared with the one induced by VCP inhibition) was not
sufficient to rescue the class IV da neuron dendrite pruning
defect of mical mutants (4), disruption of VCP function likely
results in expression of a truncated Mical protein without
pruning activity. Taken together, these data suggest that the
observed defect in MICAL mRNA splicing contributes signifi-
cantly to the pruning defects of VCP mutants.

VCP Regulates RNA-Binding Proteins in Class IV da Neurons. How is
VCP linked to alternative splicing of MICAL mRNA? A plau-
sible mechanism for the control of an alternative splicing event
would be the modulation of specific (pre)mRNA-binding pro-
teins. VCP has recently been linked to several RNA-binding
proteins: human autosomal dominant VCP mutations cause fron-
totemporal dementia or ALS with inclusion bodies that contain
aggregated human TDP-43 (14, 15); a genetic screen in Drosophila
identified the RNA-binding proteins Drosophila TDP-43, HRP48,
and x16 as weak genetic interactors of the dominant effects of
VCP disease mutants (21); and HuR (a human homolog of the
neuronal Drosophila RNA-binding protein elav) was recently
shown to bind human VCP (22). Of these, TDP-43 and also elav
have been linked to alternative splicing in various model systems,
including Drosophila (23–25). We therefore used available spe-
cific antibodies to assess the levels and distribution of Drosophila
TDP-43 (hereafter referred to as TDP-43) and elav. TDP-43 has
previously been shown to localize to the nucleus in Drosophila
motoneurons and mushroom body Kenyon cells (26). Surpris-
ingly, TDP-43 was largely localized to the cytoplasm in class IV
da neurons, where it was enriched in a punctate pattern around
the nucleus, with only a small fraction also detectable in the
nucleus (Fig. 4 A and C), a localization pattern that could be
reproduced with transgenic N-terminally HA-tagged TDP-43
(Fig. S1). elav is a known nuclear marker for Drosophila neurons;
in class IV da neurons, it was somewhat enriched in nuclear
punctae (Fig. 4 B and C). We next assessed the effects of VCP
inhibition on these two RNA-binding proteins. elav localization
did not change notably upon VCPQQ expression (Fig. 4 E and F).
Strikingly, TDP-43 became depleted from the cytoplasm of class
IV da neurons and relocalized to the nucleus upon VCP QQ
expression (Fig. 4 D and F). Closer inspection revealed that
TDP-43 in VCP-inhibited neurons was now enriched in nuclear
dots that often also exhibited increased elav staining. The
relocalization of TDP-43 from the cytoplasm to the nucleus was
also observed in vcp26-8 mutant class IV da neuron MARCM
clones (Fig. 4 G–I), and with transgenic, HA-tagged TDP-43
upon VCP QQ expression (Fig. S1). Importantly, quantification
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Fig. 2. VCP inhibition leads to specific down-regulation of the ecdysone
target and pruning factor Mical at the onset of the pupal phase. Expression
of ecdysone pathway components in the class IV da neuron ddaC upon VCP
inhibition was assessed by immunofluorescence with specific antibodies. (A
and B) Expression of EcR-B1 at the white pupal stage (0 h APF) in a control
class IV da neuron (A) or a class IV da neuron expressing VCP QQ. (C and D)
Expression of Hdc at the white pupal stage in (C) control and in (D) neurons
expressing VCP QQ. (E and F) Expression of Sox14 at the white pupal stage: (E)
control and (F) with VCP QQ. (G–I) Expression of Mical at 2 h APF: (G) control,
(H) with VCP QQ, and (I) in a vcp26-8 mutant MARCM ddaC neuron. (Scale bar,
20 μm.) Class IV da neuron cell bodies are outlined by dashed lines.
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and normalization of TDP-43 levels showed that VCP inhibition
did not alter the absolute levels of TDP-43 (Fig. S1), suggesting

that the observed effects were not a consequence of a defect in
TDP-43 degradation. In fact, the only manipulation that resulted
in a mild but significant increase in TDP-43 levels—but without
a change in localization (Fig. S2)—was the expression of an
RNAi directed against the autophagy factor ATG7, perhaps
reflecting the degradation of cytoplasmic RNA granules through
the autophagy pathway (27).
We next asked whether manipulation of TDP-43 would affect

class IV da neuron dendrite pruning. A previously characterized
TDP-43 mutant, TDP-43 Q367X (28), did not display pruning
defects (Fig. 4J), but overexpression of TDP-43 (Fig. 4K) led to
strong dendrite pruning defects at 16 h APF. In support of the
hypothesis that TDP-43 acts in the same or a similar pathway as
VCP during dendrite pruning, we also found that a more weakly
expressed TDP-43 transgene (UAS–TDP-43weak) and VCP A229E,
a weakly dominant-active VCP allele corresponding to a human
VCP disease mutation (29), exhibited a synergistic inhibition of
pruning when coexpressed (Fig. 4L). Interestingly, manipulation of
elav gave very similar results as with TDP-43: elav down-regulation
by RNAi did not affect pruning (Fig. 4M), but elav overexpression
led to highly penetrant pruning defects (Fig. 4N).
To exclude the possibility that the pruning defects induced by

TDP-43 or elav overexpression were due to long-term expression
and aggregation of RNA-binding proteins, we also induced TDP-
43 and elav overexpression acutely (24 h before the onset of
pupariation). Pruning was still inhibited in these cases (Fig. S2).
Also, overexpression of several other RNA-binding proteins did
not cause pruning defects (Table S1), with two exceptions: a
UAS-carrying P-element in the promotor of the adjacent x16 and
HRP48 genes caused a strong pruning defect when expression
was induced in class IV da neurons, and levels of a GFP protein
trap insertion into the x16 gene were also markedly increased in
class IV da neurons expressing VCP QQ (Fig. S2), possibly in-
dicating a role for VCP in x16 degradation. In further support of
an involvement of VCP with RNA-binding proteins during
neuronal pruning processes, we also found that VCP is required
for mushroom body γ neuron axon pruning and induces the ac-
cumulation of boule, an RNA-binding protein that had pre-
viously been shown to inhibit γ neuron axon pruning when
overexpressed (30) (Fig. S3). Thus, our data suggest that VCP
regulates a specific subset of RNA-binding proteins and that this
regulatory role of VCP is associated with its role in pruning.

MICAL and TDP-43 Are Regulated by Ubiquitin and the 19S Proteasome.
As VCP is an integral component of the UPS, we next asked
whether the role of VCP in MICAL regulation and TDP-43 lo-
calization was also dependent on ubiquitylation and/or the pro-
teasome. To address this question, we assessed Mical levels and
TDP-43 distribution in UPS mutants with known pruning defects.
An ubiquitylation enzyme known to be required for pruning is
the E2 enzyme ubcD1 (7). When we assessed TDP-43 localiza-
tion in larval ubcD1D73 mutant class IV da neurons, we found
that TDP-43 was again localized to the nucleus in these cells
(Fig. 5A). Furthermore, we noted a pronounced reduction of
Mical expression in ubcD1D73 mutant class IV da neurons during
the early pupal stage (Fig. 5D), indicating that ubiquitylation
through ubcD1 is involved in the regulation of TDP-43 locali-
zation and Mical expression.
We next assessed TDP-43 localization and Mical expression

in proteasome mutants. We first used a previously characterized
mutant in the Mov34 gene encoding the 19S subunit Rpn8 (8).
TDP-43 was again relocalized to the nucleus in Mov34 mutant
class IV da neurons (Fig. 5B), and Mical expression was absent
fromMov34mutant class IV da neurons at 2 h APF (Fig. 5H). To
rigorously address whether proteasomal proteolysis was also
required for TDP-43 localization and Mical expression, we next
assessed the effect of Pros261, a previously characterized muta-
tion in the 20S core particle subunit Prosβ6 (31). In contrast to
Mov34 mutant class IV da neurons, Pros261 mutant class IV da
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neurons displayed cytoplasmic TDP-43 localization (Fig. 5C),
and we detected robust Mical expression in these neurons at 2 h
APF (Fig. 5I). Thus, although ubiquitylation and the 19S pro-
teasome are both required for Mical expression and normal
TDP-43 localization, proteolysis through the 20S core particle of
the proteasome is not. Importantly, Pros261 MARCM class IV
da neurons showed strong dendrite pruning defects at 16 h APF,
as did expression of RNAi constructs directed against subunits of
the 20S core particle (Fig. S4), thus showing that proteasomal
proteolysis is required for dendrite pruning.
These data indicate that there must be several ubiquitin- and

proteasome-dependent pathways that are required for dendrite
pruning: one pathway requires ubcD1, VCP, and the 19S regu-
latory particle of the proteasome, but not the 20S core particle.
This pathway regulates MICAL expression. A second UPS prun-
ing pathway does depend on proteolysis through the 20S core. In
an E3 ubiquitin ligase candidate screen, we identified cul-1/lin19
as a pruning mutant. Cul-1 encodes cullin-1, a core component of
a class of multisubunit ubiquitin ligases known as SCF (for Skp1/
Cullin/F-box) ligases (32). Class IV da neurons mutant for cul-1
or class IV da neurons expressing an RNAi construct directed
against cul-1 had not pruned their dendrites at 16 h APF (Fig.
S4). However, unlike with VCP, ubcD1, and Mov34, cul-1 mu-
tation did not affect Mical expression at 2 h APF (Fig. S4), in-
dicating that cullin-1 is not a component of the VCP-dependent
UPS pathway involved in splicing and might thus be a compo-
nent of a proteolytic UPS pathway. In support of this notion,
a recent report independently identified cul-1 as a pruning mu-
tant and associated it with protein degradation (33).

We had previously proposed that the E2 enzyme ubcD1 and
VCP would act to activate caspases during pruning (7, 11). How-
ever, the dendrite pruning defects caused by those UPS mutants
are much stronger than the phenotypes caused by caspase in-
activation, which mostly causes a delay in the phagocytic uptake
of severed dendrites by the epidermis (6, 34). Although we
cannot exclude that ubcD1 and VCP contribute to caspase ac-
tivation during pruning, the new mechanism proposed here—
control of RNA-binding proteins and MICAL expression—likely
makes a much stronger contribution to the drastic pruning
phenotypes of UPS mutants.
How precisely do VCP, ubcD1, and the 19S proteasome con-

tribute to MICAL expression? Our data indicate that VCP in-
hibition causes missplicing of MICAL mRNA that likely leads to
the expression of an inactive Mical protein variant. At the same
time, VCP inhibition leads to the mislocalization of TDP-43, and
possibly the dysregulation of a number of other RNA-binding
proteins. The fact that these phenotypes correlate in the vcp,
ubcD1, and Mov34 mutants gives a strong indication that they
are related. TDP-43 had previously been identified as a sup-
pressor of the toxicity induced by a weak VCP disease allele in
the Drosophila eye (21). In class IV da neurons, reducing the
amounts of TDP-43 (with a deficiency) or elav (by RNAi) did
not ameliorate the pruning defect induced by VCP inhibition
[ppk > VCP QQ, 88% pruning defects (n = 35); ppk > VCP QQ,
Df(2R)BSC660/+, 93% pruning defects (n = 16); ppk > VCP
QQ, elavRNAi, 84% pruning defects (n = 12); P > 0.5 for each].
Therefore, we cannot exclude the possibility that the two pro-
teins act in parallel rather than in an epistatic fashion. As VCP
has been shown to remodel protein complexes that contain
ubiquitylated proteins (12) and is structurally similar to the 19S
cap, it is interesting to speculate that VCP and the 19S cap might
alter the subunit composition of ubiquitylated TDP-43–containing
complexes of RNA-binding proteins, and that this activity—rather
than a direct action on TDP-43 (or maybe also elav) alone—might
lead to both MICAL missplicing and TDP-43 mislocalization.
Interestingly, autosomal dominant mutations in human VCP

cause frontotemporal dementia and ALS, a hallmark of which is
the formation of aggregates that contain TDP-43. Most of these
aggregates are cytoplasmic (and contain TDP-43 that has relo-
calized from the nucleus to the cytoplasm), but VCP mutations
also induce TDP-43 aggregation in the nucleus (35), a situation
that might be similar to the situation caused by VCP inhibition in
class IV da neurons. Although human VCP disease mutations
have been proposed to act as dominant-active versions of VCP
with enhanced ATPase activity (29), both the disease allele and
the dominant-negative ATPase-dead VCP QQ mutant cause
class IV da neuron pruning defects and TDP-43 relocalization to
the nucleus of class IV da neurons (Fig. S2) and therefore act
in the same direction. It is thought that VCP can only bind
substrates when bound to ATP, and will release bound substrates
upon ATP hydrolysis (12). Thus, it is conceivable that the phe-
notypic outcome of inhibiting the ATPase (no substrate release)
should be similar to that of ATPase overactivation (reduced
substrate binding or premature substrate release): in both cases,
a substrate protein complex would not be properly remodeled.
Taken together, our results indicate the existence of a non-

proteolytic function of VCP and the UPS in RNA metabolism
and highlight its importance during neuronal development.

Materials and Methods
Fly Stocks. For labeling of class IV neurons, we used different ppk-GAL4
insertions on the second or third chromosome (36), ppk-GeneSwitch for
inducible GAL4/UAS expression, or the enhancer fusion ppk-eGFP (37).
GAL4NP21 was used to label mushroom body γ neurons. Constructs for RNA-
binding proteins were UAS-TDP-43 (24), UAS-elav (Bloomington), and x16CB03248

(x16-GFP fusion, Flytrap); additional lines for RNA-binding proteins are listed
in Table S1. Dominant-negative UAS-VCP QQ has been described (11). RNAi
lines against elav, Prosα7, Prosβ5, and cul-1 were from Bloomington (TRiP
JF03008, TRiP HMS00068, TRiP HMS00119, TRiP HM05197). RNAi experiments
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Fig. 5. TDP-43 localization and Mical expression are regulated by ubiq-
uitylation and the 19S proteasome. (A–F) TDP-43 and elav localization were
assessed in MARCM clones of UPS mutant class IV da neurons at the third
instar larval stage. Shown are TDP-43 localization (A–C) and merged TDP-
43/elav stainings (D–F) in class IV da neuron MARCM clones mutant for
ubcD1 (an E2 enzyme) (A and D), Mov34 (a 19S cap subunit) (B and E), and
Pros26 (a 20S core subunit) (C and F). (A and D) TDP-43/elav localization in
ubcD1D73 mutant ddaC neurons. (B and E) TDP-43/elav localization in
Mov34k08003 mutant class IV da neurons. (C and F) TDP-43/elav localization
in Pros261 mutant class IV da neurons. (G–I) Mical expression in class IV da
neurons mutant for components of the UPS at 2 h APF: (G) ubcD1D73 mu-
tant, (H) Mov34k08003 mutant, and (I) Pros261 mutant. Cell bodies of class IV
da neurons are outlined.
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were done with coexpression of UAS-dcr2 (38). ATG7 IR was cloned into
pWIZ, and Sox14 and HATDP-43 were cloned into pUAST attB (for ϕC31-
mediated integration) and injected into flies carrying attP2, attP VK00037,
or attP VK00016 acceptor sites. MARCM clones were generated by a modi-
fied procedure using SOP-FLP to induce mitotic recombination (39). Mutant
chromosomes were FRT42D, vcp26-8/CyOweeP; FRT42D, P[lacW]Mov34k08003/
CyOweeP (Bloomington) (3); FRT82B, ubcD1D73/Tm6b (8); FRT G13, P[lacW]
lin19k01207/CyOweeP (8); FRT2A, Pros261/Tm6b; and TDP-43 Q367X (28).

Live Imaging. Live imaging of da neurons in appropriately staged larvae or
pupae was carried out on a Leica SP5 confocal microscope as described (11).
Images were taken from neurons in abdominal segments A2–A6. In all
images shown, anterior is left and dorsal is up. Fisher’s exact test (GraphPad)
was used for statistical comparisons.

Antibodies and Immunocytochemistry. Larvae or appropriately staged pupae
were dissected as described (11). Antibodies usedwere rabbit–anti-Mical (1:3,000)
(20), rabbit anti–dTDP-43 (1:200) (26), guinea pig anti-Sox14 (1:30) (40), mouse
anti-Hdc (1:10) (41), rat anti-elav 7E8A10 (1:30) (Drosophila Studies Hybridoma
Bank), rat anti-HA 3F10 (1:200), rat anti-mCD8 (1:200; Invitrogen), and chicken
anti-GFP (1:200; Aves Laboratory). Cy2-, Cy5-, or Rhodamine Red X-conjugated

secondary goat or donkey antibodies (Jackson Laboratory) were used at 1:100,
1:50, or 1:200, respectively.

FACS Analysis and RT-PCR. Appropriately staged animals were dissected and
digested with collagenase, and GFP-labeled ppk+ neurons were sorted with
a 488 nm laser on a FACSAria II machine. RT-PCR was performed using the
SuperScript III kit (Invitrogen) according to the manufacturer’s instructions
using the primer pairs GCCAACTGCTTCTGATGGAGTCC and GAGCAGGA-
GAAGCTACATACC for exons 8–12 and GGACAAGCAGCTAAAGGAGGGC and
GTTTGCTTACAGAAGCGGCAC for exons 14–16.
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