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The elicitation of scientific and technical judgments from experts, in the form of subjective probability distributions, can be a valuable addition
to other forms of evidence in support of public policy decision making. This paper explores when it is sensible to perform such elicitation and
how that can best be done. A number of key issues are discussed, including topics on which there are, and are not, experts who have
knowledge that provides a basis for making informed predictive judgments; the inadequacy of only using qualitative uncertainty language; the
role of cognitive heuristics and of overconfidence; the choice of experts; the development, refinement, and iterative testing of elicitation
protocols that are designed to help experts to consider systematically all relevant knowledge when they make their judgments; the treatment
of uncertainty about model functional form; diversity of expert opinion; and when it does or does not make sense to combine judgments from
different experts. Although it may be tempting to view expert elicitation as a low-cost, low-effort alternative to conducting serious research
and analysis, it is neither. Rather, expert elicitation should build on and use the best available research and analysis and be undertaken only
when, given those, the state of knowledge will remain insufficient to support timely informed assessment and decision making.

Society often calls on experts for advice that
requires judgments that go beyond well-estab-
lished knowledge. In providing such judgments,
it is common practice to use simulation models,
engineering—economic assessment, and similar
tools. Although such analytical strategies can
provide valuable insight, they can never hope
to include all relevant factors. In such situations,
the community of applied decision analysis has
long used quantitative expert judgments in the
form of subjective probability distributions that
have been elicited from relevant experts. Most
such applications have been undertaken in sup-
port of decisions being made by private parties
(1-4). Sometimes the resulting distributions are
used directly, and sometimes they are fitted to
formal functions and used in various Bayesian
decision models (2, 5).

The use of expert elicitation in public sector
decision making has been less common. Several
studies have explored issues such as the health
impacts of fine particle air pollution (6-12) and
of lead pollution (13), the likely nature and ex-
tent of climate change (14-16), the various
impacts that may result from climate change
(17, 18), herbicide-tolerant oilseed crops (19),
and the likely cost and performance of various
energy technologies (20-24). The Environmental
Protection Agency (EPA) has begun to make use
of elicitation methods to address uncertain issues
in environmental science (25), and those who
work in both the Department of Energy and
the Food and Drug Administration (FDA) have
expressed interest in possibly using the method.

Done well, expert elicitation can make a valu-
able contribution to informed decision making.
Done poorly it can lead to useless or even
misleading results that lead decision makers
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astray, alienate experts, and wrongly discredit
the entire approach. In what follows, I draw on
relevant literature and 35 y of personal experi-
ence in designing and conducting substantively
detailed expert elicitations, to suggest when
it does and does not make sense to perform
elicitations, how they should be designed and
conducted, and how I believe the results should
and should not be used. In contrast to much of
the literature in Bayesian decision-making and
applied decision analysis, my focus is on
developing detailed descriptions of the state
of understanding in some field of science or
technology.

First, Are There Any Experts?

To conduct an expert elicitation, there must be
experts whose knowledge can support informed
judgment and prediction about the issues of
interest. There are many topics about which
people have extensive knowledge that provides
little or no basis for making informed predictive
judgments. For example, the further one moves
away from questions whose answers involve
matters of fact that are largely dependent on
empirical natural or social science and well-
validated models into realms in which individual
and social behavior determine the outcomes of
interest, the more one should ask whether ex-
pertise, with predictive capability, exists. For
example, given a specified time series of future
radiative forcing and other relevant physical
variables, in my view, it is reasonable to ask
climate scientists to make probabilistic judg-
ments about average global temperature 150 y
in the future. I am far less persuaded that it
makes sense to ask “experts” questions that
entail an assessment of how the stock market,
or the price of natural gas will evolve over the
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next 25y, or what the value of gross world
product will be 150 y in the future.

The Interpretation of Probability

A subjectivist or Bayesian interpretation of
probability (5, 26-28) is used when one makes
subjective probabilistic assessments of the
present or future value of uncertain quantities,
the state of the world, or the nature of the pro-
cesses that govern the world. In such situations,
probability is viewed as a statement of an indi-
vidual’s belief, informed by all formal and in-
formal evidence that he or she has available.
Although subjective, such judgments cannot
be arbitrary. They must conform to the laws
of probability. Further, when large quantities
of evidence are available on identical repeated
events, one’s subjective probability should con-
verge to the classical frequentist interpretation
of probability.

Partly as a result of their different training
and professional cultures, different groups of
experts display different views about the ap-
propriateness of making subjective probabilistic
judgments, and have different levels of willing-
ness to make such judgments. Although every
natural scientist and engineer I have ever inter-
viewed seemed to think naturally in terms of
subjective probabilities, others, such as some
experts in the health sciences, have been far
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Fig. 1. The range of numerical probabilities that re-
spondents attached to qualitative probability words in the
absence of any specific context are shown. Note the very
wide ranges of probability that were associated with some
of these words. Figure redrawn from Wallsten et al. (30).

less comfortable with such formulations. For
example, some years ago, my colleagues and
I conducted an expert elicitation among a
group of different types of health experts in
an effort to gain insight about health damages
that could result from chronic exposure to
submicron sulfate air pollution. One of our
experts, an inhalation toxicologist, tried re-
peatedly to answer our questions to provide a
subjective probability distribution on the slope
of a health damage function, but simply could
not bring himself to provide such answers. After
framing our questions in several different ways,
and always reaching an impasse, we suspended
the elicitation. Some days later the expert came
back to us saying he had been thinking about it,
that the questions we had been asking made
sense, and that he wanted to try again. However,
when we did that, he once again found that he
could not bring himself to make the necessary
quantitative judgments. Although this may be
an extreme case, I believe that it also reflects a
broader difference among fields.

Fifteen years ago, the Presidential/Congres-
sional Commission on Risk Assessment and Risk
Management (29), almost all of whose members
were medical professionals, argued that natural
scientists should provide probabilistic assess-
ments of exposures, and economists should
provide probabilistic assessments of damages,
but that health experts should provide only a
deterministic treatment of the health damage
functions associated with environmental expo-
sures. This reticence to engage in making quan-
titative subjective judgments has led some to
draw an overly sharp distinction between vari-
ability and uncertainty—with the claim that only
the former should be described in terms of
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distributions (i.e., with histograms). Although
there are certainly situations in which it is
important to distinguish variability from un-
certainty, there are also many decision con-
texts in which distinguishing between the two
simply adds unnecessary complication.

Qualitative Uncertainty Words Are Not
Sufficient

There is clear evidence that without some
quantification, the use of qualitative words such
as “likely” and “unlikely” to describe uncertainty
can mask important, often critical, differences
between the views of different experts. The
problem arises because the same words can
mean very different things to different people, as
well as different things to the same person in
different contexts. Fig. 1 summarizes the range
of quantitative values that respondents attached
to various probability words, independent of
any specific context, in a study conducted by
Wallsten et al. (30). Wardekker et al. (31) re-
port similar findings in more recent studies
undertaken in The Netherlands to improve the
communication of uncertainty in results from
environmental assessments. Fig. 2 summarizes
the range of quantitative values that members
of the EPA Science Advisory Board attached to
probability words used to describe the likeli-
hood that a chemical agent is a human car-
cinogen. Such results make a compelling case
for at least some quantification when assessing
the value of uncertain coefficients or the like-
lihood of uncertain events. The climate assess-
ment community has taken this lesson seriously,
providing mappings of probability words into
quantitative values in most assessment reports
(34-36).

Cognitive Heuristics and Bias
We humans are not equipped with a competent
mental statistical processor. Rather, in making
judgments in the face of uncertainty, we un-
consciously use a variety of cognitive heuristics.
As a consequence, when asked to make prob-
abilistic judgments, either in a formal elicitation
or in any less formal setting, people’s judgments
are often biased. Two of the cognitive heuristics
that are most relevant to expert elicitation are
called “availability” and “anchoring and adjust-
ment.” These heuristics have been extensively
studied by Tversky and Kahneman (37, 38).
Through the operation of availability, people
assess the frequency of a class, or the probability
of an event, by the ease with which instances or
occurrences can be brought to mind. In per-
forming elicitation, the objective should be to
obtain an expert’s carefully considered judg-
ment based on a systematic consideration of all
relevant evidence. For this reason one should
take care to adopt strategies designed to help the

expert being interviewed to avoid overlooking
relevant evidence.

When presented with an estimation task, if
people start with a first value (i.e., an anchor)
and then adjust up and down from that
value, they typically do not adjust sufficiently.
Kahneman and Tversky call this second heu-
ristic “anchoring and adjustment” (37, 38). To
minimize the influence of this heuristic when
eliciting probability distributions, it is standard
procedure not to begin with questions that ask
about “best” or most probable values but rather
to first ask about extremes: “What is the highest
(lowest) value you can imagine for coefficient
X?” or “Please give me a value for coefficient X
for which you think there is only one chance in
100 that actual value could be larger (smaller).”
Having obtained an estimate of an upper
(lower) bound, it is then standard practice to
ask the expert to imagine that the uncertainty
about the coefficient’s value has been resolved
and the actual value has turned out to be 10%
or 15% larger (smaller) than the bound they
offered. We then ask the expert, “Can you offer

|
& & By
& ) S
W S &
P &
R
.\\\\‘){\
&
S
SAB members;

I
|
 —
Other meeting participants:
L ]
I
L | 1 | 1 1 1 1 | 1 1 1 |
;aaaaeggggég
Probability that the material
is a human carcinogen
Fig. 2. Results obtained by Morgan (32) when mem-

bers of the Executive Committee of the EPA Science
Advisory Board were asked to assign numerical proba-
bilities to uncertainty words that had been proposed for
use with EPA cancer guidelines (33). Note that even in
this relatively small and expert group, the minimum
probability associated with the word “likely” spans 4
orders of magnitude, the maximum probability associ-
ated with the word “not likely” spans more than 5 orders
of magnitude, and there is an overlap of the probabilities
the different experts associated with the two words.
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of the respondent's assessed 98% confidence interval.

Fig. 3. Summary of the value of the surprise index
(ideal value = 2%) observed in 21 different studies in-
volving over 10,000 assessment questions. These results
indicate clearly the ubiquitous tendency to overconfidence
(i.e., assessed probability distributions that are too nar-
row). A more detailed summary is provided in Morgan
and Henrion (39).

an explanation of how that might be possible?”
Sometimes experts can offer a perfectly plau-
sible physical explanation, at which point we
ask them to revise their bound. After obtaining
estimates of upper and lower bounds on the
value of a coefficient of interest, we then go on
to elicit intermediate values across the proba-
bility distribution [“What is the probability that
the value of X is greater (less) than Y?”]. If
results seem to be unduly scattered, changing
the question format may help: “Give me a value
of X such that the odds that the true value is
greater (less) than 1 in Z (or probability P).”

To support such interviews the decision
analysis community has developed adjustable
probability wheels on which the size of a col-
ored pie-slice portion of a wheel can be adjusted
so that respondents can compare their assess-
ments of probability to the size of the slice and
adjust it up and down until the size of the slice
corresponds to their judged probability (1).
Although such aids may be helpful for decision
analysts who are dealing with clients with lim-
ited numeracy, when we have shown such an
aid to an expert in science or technology they
have typically toyed with it in a bemused way
and then set it aside to give direct quantitative
responses.

Only after filling in a number of intervening
points in a cumulative distribution function
does one finally ask for a median or best esti-
mate, sketch the resulting distribution, and
show it to the expert for their assessment and
possible revision.

Ubiquitous Overconfidence

One reason for adopting this rather elaborate
procedure is that there is strong evidence that
most such judgments are overconfident. A
standard measure of overconfidence is the sur-
prise index: the fraction of true values that lie
outside an assessor’s 98% confidence interval
when answering questions for which the true
answer is known (e.g., the length of the Panama
Canal). Fig. 3 reports a summary of results from
21 different studies involving over 10,000 such
assessment questions. Note that none yield the
target value for the surprise index of 2% and
over half yielded values of 30% or more! Lest
the reader infer that such overconfidence is only
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observed in judgments made by lay respond-
ents, Fig. 4 shows the evolution over time of the
recommended values for the speed of light.
Similar results exist for other physical quantities.

Calibration is a widely used measure of the
performance of someone making subjective
probabilistic judgments. Lichtenstein et al. (41)
explain that an assessor (judge) is well cali-
brated “if, over the long run, for all propositions
assigned a given probability, the proportion that
is true equals the probability that is assigned.
Judges’ calibration can be empirically evaluated
by observing their probability assessments, ver-
ifying the associated propositions, and then
observing the proportion that is true in each
response category.” With a few exceptions, such
as weather forecasters who make daily pre-
cipitation forecasts aided by computer models
and receive regular feedback on how well they
are performing (42, 43), most people making
subjective judgments are not very well cali-
brated. Fig. 5 shows examples of very poorly
calibrated results from clinical diagnosis of
pneumonia (44) to very well-calibrated proba-
bilistic precipitation judgments by US weather
forecasters (43).

Lichtenstein et al. (41) found that probability
judgments tend to be too high when questions
are hard, and too low when questions are easy,
where “hard” and “easy” questions were classi-
fied in terms of the percentage of correct
answers made by a reference group. One pos-
sible explanation is that assessors partition their
responses according to some fixed cut-off value.
The hard/easy effect would result if that value
remains constant as the difficulty of the ques-
tion changes. Lichtenstein et al. (41) suggest that

the hard-easy effect may result because of .. .an
inability to change the cutoffs involved in the
transformation from feelings of certainty to
probabilistic responses.”

If an assessor is asked a large enough set of
questions to make it possible to plot a calibra-
tion curve, one might be tempted to simply
adjust his or her assessed probabilities (e.g.
when the expert says P = 0.7, adjust it to 0.8).
Kadane and Fischhoff (45) have shown that for
assessed probabilities that conform to the basic
laws of probability (i.e., are coherent) such a
procedure is not justified.

Developing a Protocol

A primary output of many expert elicitations is
a set of subjective probability distributions on
the value of quantities of interest, such as an
oxidation rate or the slope of a health damage
function (for an example of a simple elicitation
interview, see SI Appendix).

However, often the objective is broader than
that—to obtain an expert’s characterization of
the state of knowledge about a general topic or
problem area in which the elicitation of specific
probability distributions may be only one of a
number of tasks. Either way the development of
a good elicitation protocol requires considerable
time and care, and multiple iterations on format
and question wording. Working with colleagues
who are familiar with the domain and its lit-
erature one can usually build a much longer list
of questions than it is reasonable to have an
expert answer in a session of a few hours or the
better part of a day. If the objectives of the
elicitation have not already been sharply de-
fined, this is the time to do that. A sharp focus
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Published estimates of the speed of light. The light gray boxes that start in 1930 are the recommended values

from the particle physics group that presumably include an effort to consider uncertainty arising from systematic error
(40). Note that for over two decades the reported confidence intervals on these recommended values did not include
the present best-measured value. Henrion and Fischhoff (40), from which this figure is combined and redrawn, report
that the same overconfidence is observed in the recommended values of a number of other physical constants.
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lllustration of two extremes in expert calibration. (A) Assessment of probability of pneumonia (based on

observed symptoms) in 1,531 first-time patients by nine physicians compared with radiographically assigned cases of
pneumonia as reported by Christensen-Szalanski and Bushyhead (44). (B) Once-daily US Weather Service precipitation
forecasts for 87 stations are compared with actual occurrence of precipitation (April 1977 to March 1979) as reported
by Charba and Klein (43). The small numbers adjacent to each point report the number of forecasts.

can help the pruning process and sometimes
the pruning can help to sharpen the focus.

Questions that are posed in an expert elici-
tation should pass what is commonly termed
a clairvoyant test. The question, “What will be
the price of gasoline next year?” fails such a test.
Without specifying the octane, and when and
where that gasoline is to be purchased, a clair-
voyant cannot provide a precise answer to this
question.

The best experts have comprehensive mental
models of all of the various factors that may
influence the value of an uncertain quantity, as
well as which of those factors most contribute
to its uncertainty. However, not all of that
knowledge may be comparably accessible. Be-
cause the objective of an elicitation should be to
obtain each expert’s best-considered judgment,
it is important to help them keep all of those
factors in mind as they answer specific ques-
tions in an elicitation. To assist in that process,
we have often used a variety of graphical aids
such as summary tables and influence diagrams
to illustrate the relation between key factors that
influence the value of interest. For a simple
example see pages 4 and 5 of the protocol used
in Curtright et al. (20) (available at http://pubs.
acs.org/doi/suppl/10.1021/es8014088/suppl_file/
€s8014088_si_001.pdf).

My colleagues and I have also made frequent
use of card-sorting tasks, in which, working it-
eratively with the group of experts before we
visit them, we develop a set of cards, each of
which lists a factor that may influence the value
of interest (blank cards are included so that an
expert can add, modify, or combine factors).
After discussing and possibly refining or mod-
ifying the factors, the expert is then asked to
sort the cards, first in terms of the strength of
influence, and then a second time in terms of
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how much each factor contributes to uncertainty
in the value of the quantity of interest. Such an
exercise helps experts to differentiate between
the strength of influences versus sources of un-
certainty, and to focus on the most important
of the latter in formulating their probabilistic
responses. For an example, see pages 5-7 of
the protocol used in Zickfeld et al. (16) (available
at www.pnas.org/content/suppl/2010/06/28/
0908906107.DCSupplemental/Appendix.pdf).

Similarly, when we have done an elicitation
on a future technology, such as carbon capture
and geological sequestration for coal-fire power
plants, we have taken it apart into component
pieces, rather than simply asking for holistic
judgments about the entire system (46).

In choosing the questions that will be posed,
it is important to draw a clear distinction be-
tween questions of fact and questions whose
answers largely entail normative judgments. It
may be appropriate in some circumstances to
ask experts what they believe a specific group’s
preferences are or will be. However, one should
take care to distinguish such questions from
those in which, using methods similar to those
used in expert elicitation, experts’ own value
judgments are elicited. An example of the for-
mer would be questions of fact, such as the
implicit “value of a statistical life” that a specific
socioeconomic group can be expected to display
in making a well-specified risky decision. An
example of the latter would be normative
questions about what value of a statistical life
society should adopt in making regulatory
decisions. Although it may be interesting to
learn what value of a statistical life an econ-
omist thinks society should adopt, or what
level of protection an ecologist thinks society
should afford a particular species or habitat,
such questions are not about issues of fact,

and thus are more appropriately handled as
part of an opinion survey.

In most of the elicitations I have conducted, I
have involved an excellent postdoctorate or ju-
nior colleague, who has not yet established a
reputation or a professional stake in the field,
but has performed a recent systematic review of
the relevant literature. Upon hearing a particu-
lar response from an expert, they may observe,
“That response would appear to be at odds with
work reported by group X.” Sometimes the
expert will respond “Oh yes, I had forgotten
about that” and adjust his or her answer. More
often he or she says something more along the
lines of, “Yes, I know, but I really discount the
work of group X because I have grave doubts
about how they calibrate their instrument.”
When I have described this proactive procedure
to some colleagues who work in survey research
they have expressed concern that such in-
tervention may inappropriately influence an
expert’s response. Although I am not aware of
literature on this point, in most of the elic-
itations that I have conducted in areas of nat-
ural science, such as air chemistry or climate
change, it is my experience that the experts are
intimately familiar with and have assessed each
others’ work, and it is most unlikely that
anything I or my colleagues say during an
elicitation session will change their judgment
once they have considered all relevant evi-
dence. When that is not the case, care should
be taken ahead of time to provide literature
packets, reviews, and summaries so that all
experts come to the questions with a compa-
rable familiarity with available knowledge.

In contrast to political or similar polling, the
objective of most expert elicitation is not to
obtain a statistically representative sample of the
views of a population. Rather, it is to gain an
understanding of the range of responsible ex-
pert judgments and interpretations across the
field of interest. Thus, in selecting the group of
experts, care must be taken to include people
who represent all of the major perspectives and
interpretations that exist within the community.
This can typically be achieved by a careful
reading of the literature and discussion with
experts who can identify the views of their
various peers. In the elicitations we have con-
ducted, we have often constructed tables of the
experts sorted by background and technical
perspective. Because we have always worked
with a collaborator who was expert in the
field and with the relevant literatures, we have
not felt it necessary to use more formal pro-
cedures for sorting and selecting participants.

When results from an expert elicitation are to
be used as input to regulatory or other public
policy decision making (by EPA, FDA, etc),
perceived legitimacy or fairness become espe-
cially important (47). In such cases, a more
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systematic approach should be used in the
selection of experts. Knol et al. (48) outline a
number of more formal procedures that they
and others have used to select experts. In their
expert elicitation of the health impacts from
submicron particles (PM2.5) conducted for
EPA, Roman et al. (9) used a two-part selec-
tion process that used publication counts and
peer nomination of experts. The EPA White
Paper (25) on expert elicitation provides a
discussion of these issues.

There is no right answer to the question,
“How many experts are needed for a good
elicitation.” The answer depends on the nature
of the field. If virtually all experts adopt similar
basic models of the underlying science, then as
few as five or six might suffice. In most cases,
because experts will have a diversity of opinions
about the underlying science, a larger group will
be necessary to obtain adequate coverage of the
range of opinions.

When we have published the results from
expert elicitations, in most cases, we have
identified the experts involved, but have not
linked individual experts to specific results (al-
though in a few cases experts familiar with the
views of their colleagues have been able to
privately identify who said what). In many
cases, providing such limited anonymity is im-
portant so that experts can provide their con-
sidered judgment unconstrained by corporate,
political, or other considerations. The EPA
White Paper on expert elicitation (25) observes
that given “...current norms within the sci-
entific community, experts may be unwilling to
participate and share their judgments honestly
if they fear a need to defend any judgments
that divert from the mainstream or conflict
with positions taken by their institutions.”
Although I agree, I find troubling the extension
of this argument made by Aspinall (49) who
suggests that an advantage of combining
results elicited from several experts “. . .is that
it encourages experts wary of getting involved
in policy advice: the structured, neutral pro-
cedure, and the collective nature of the result
reassures experts and relieves them of the
burden of sole responsibility.” Experts should
be providing their careful considered judg-
ments, and too much anonymity may result in
their taking those judgments less seriously.

Writing in the specific context of elicitations
done in support of environmental impact as-
sessment, Knol et al. (48) describe a seven-step
approach to developing and conducting expert
elicitations. Despite the title (which sounds like
the authors might be offering a cook book) their
treatment is thoughtful and nuanced. It explores
many of the issues discussed in the preceding
paragraphs, reaching broadly similar conclusions.

Although I have argued that the development
of an elicitation protocol should be an iterative
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process, requiring considerable effort, pretesting
and refining, not everyone agrees. For example,
Aspinall (49) argues that “the speed with
which . .. elicitations can be conducted is one
of their advantages,” and cites a study of the
virulence of biological agents conducted in
just 2 d “with a few days of preparatory work.”
I have no doubt that in this case, in a study
of a very focused topic with an intensive couple
of days of preparation, it was possible to de-
velop a quality study. However, one needs to
be careful not to encourage the development
of “quick and dirty” expert elicitations.

Computer Tools to Support or Perform
Elicitation
A variety of computer tools have been de-
veloped and used in support of expert elicitation
(50). Some of these are quite specific to the
process of elicitation (51, 52); others, such as
tools for constructing influence diagrams and
Bayesian belief nets, are much more general in
nature. For example, in our own work, we have
had experts who chose to perform runs of their
own computer models to gain insights before
answering specific questions we have posed.
Using specialized software tools to summarize
literature or construct influence diagram or
similar aides can also be very helpful.
Although I have found no published litera-
ture that evaluates them, several investigators
have developed software to perform the actual
elicitation, posing questions to establish ranges
and seek probabilistic judgments that allow the
construction of probability distributions. In at
least one case, the software also supports a card-
sorting exercise before performing the elicita-
tion. Such tools might be useful if used in
conjunction with a face-to-face elicitation. It is
an open question whether experts working on
their own will devote the same degree of serious
consideration in responding to an automated
elicitation system that they clearly do when
responding to a well-developed protocol dur-
ing a face-to-face interview with attentive and
technically knowledgeable interviewers sitting
with them in their office.

Uncertainty About Model Functional
Form

A few investigators have conducted studies in
which the assumptions about the functional
form of a set of underlying causal processes are
explicitly identified and experts are asked to
make judgments about the likelihood that each
is a correct description of underlying physical
reality. Evans et al. (53, 54) developed and
demonstrated such methods in the context of
health experts’ judgments about low-dose can-
cer risk from exposure to formaldehyde in en-
vironmental and occupational settings. The
method used the construction of probability

trees that allowed experts to make judgments
about the relative likelihood that alternative
models of possible pharmacokinetic and phar-
macodynamic processes correctly describe the
biological process that are involved. Budnitz
et al. (55-57) have used a set of deliberative
processes designed to support a group of experts
in developing a “composite probability distri-
bution [that] represents the overall scientific
community.” The process they developed is very
labor intensive and uses experts as evaluators of
alternative causal models and their implications
rather than as proponents of one or another
model. It would be highly desirable to apply
procedures such as those developed and dem-
onstrated by Evans et al. (53, 54) and Budnitz
et al. (55, 56) in assessment processes such as
that used by the Intergovernmental Panel on
Climate Change (IPCC). However, resource
constraints and the limited familiarity that most
experts have with decision science, probably
makes such an effort infeasible.

In contrast to integrated assessment models
of climate change that adopt fixed model
structures and fixed functional relationships
among variables, Dowlatabadi and I (58, 59)
populated our integrated climate assessment
model (ICAM) with switches which allow the
user to explore the implications of a wide range
of plausible alternative functional forms. In
addition to alternative assumptions about cli-
mate science and impacts, ICAM also allows
users to explore models that use a variety of
different approaches to time preference, and
allows a variety of different behavioral responses
(e.g, nations may or may not defect from
a global carbon tax regime as tax rates become
high). In exploring a wide range of alternative
model functional forms, it became clear that we
could get an enormous variety of answers
depending on the range of plausible assump-
tions we made about the structure of the model
and which regional decision maker we consid-
ered. Rarely was any emission abatement policy
optimal for all regions. Rarely were any results
stochastically dominant. We concluded that it is
indefensible to use integrated assessment mod-
els that have a fixed functional form in an effort
to find a single globally optimal climate policy.

Finally, Refsgaard et al. (60) have suggested
a variety of different strategies that can be used
to explore the implications of what they term
“uncertainty due to model structure error.”

Confidence, Second Order Uncertainty,
and Pedigree

The nature and quality of the evidence that
experts draw on to make probabilistic judg-
ments is often highly variable. In developing
guidance on the treatment of uncertainty for
IPCC, Moss and Schneider (34) distinguished
between the amount of evidence available to
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support a judgment and the degree of consen-
sus within the scientific community. When
both are high they term the state of knowledge
as “well established.” When evidence is modest
but agreement is high they term the state
“established but incomplete;” when the re-
verse is true they say “there are competing
explanations.” When both evidence and
agreement are low they describe the situation
as “speculative.”

The IPCC has continued to use a 2D for-
mulation. However, for the fifth assessment (61)
the interpretation evolved to (i) confidence in
the validity of a finding, based on the type,
amount, quality, and consistency of evidence
(e.g, mechanistic understanding, theory, data,
models, expert judgment) and the degree of
agreement; and (ii) quantified measures of un-
certainty in a finding expressed probabilistically
(based on statistical analysis of observations or
model results, or expert judgment).

Rather than quantify confidence, the guid-
ance document explains that the level of con-
fidence in a probabilistic assessment should be
expressed using [one of] five qualifiers: very
low, low, medium, high, and very high. The
guidance explains that “levels of confidence are
intended to synthesize author teams’ judgments
about the validity of findings as determined
through their evaluation of evidence and
agreement, and to communicate their relative
level of confidence qualitatively.” In addition,
a mapping is provided between probability
words and probability values. Hence, in the
IPCC’s fifth assessment report (62) one reads
statements such as, “In the Northern Hemi-
sphere, 1983-2012 was likely the warmest 30-y
period of the last 1,400 y (medium confidence).”

In that statement, the IPCC maps the word
“likely” to a probability range of 66-100%.
Statements such as this are basically an al-
ternative to reporting a second-order uncer-
tainty, that is, to reporting an assessment of
the probability that one’s single value assessed
probability is correct. For a graphical display,
see figure 9.2 in Climate Change Science Pro-
gram 5.2 (36).

Funtowicz and Ravetz (63) further refined
these ideas by introducing a five-element vector
to describe uncertain quantities. The elements
in their Numeral Unit Spread Assessment
Pedigree (NUSAP) characterization of an un-
certain quantity are as follows: numeral (typi-
cally a best estimate); unit (the units in van der
Sluijs et al. in refs. 64 and 65 in which the value
is measured); spread and assessment (which
are simple and more complete descriptions of
uncertainty about the value of the quantity);
and pedigree which is intended to “convey
an evaluative account of the production pro-
cess of the quantitative information,” typically
in the form of a matrix of qualitative values.
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Assigning a pedigree to each uncertain
quantity is an appealing idea, but implementing
it in practice becomes rather complicated. In
refs. 64 and 65 several attempts to implement
the NUSAP idea in environmental assessments
have been made. Assessing and propagating
a pedigree matrix of qualitative values through
a quantitative model obviously requires one to
focus on those variables that have greatest in-
fluence on the output of interest. The results
become rather complex and, in my view, their
utility to decision makers remains an open
question.

Diversity in Expert Opinion

It is common in assessment processes such as
those conducted by the IPCC, to convene panels
of experts and ask them to produce consensus
judgments of the value of key uncertain quan-
tities. In most cases, this is done informally.
Whereas the cognitive biases described above
certainly operate in such circumstances, there is
typically no way to assess their impact or con-
trol their influence in such informal settings. In
several of the elicitations of individual experts
that my colleagues and I have conducted on
issues related to climate change, we have
obtained significantly wider ranges of values
than those reported by the analogous IPCC
consensus process.

Fig. 6 compares results from an elicitation
of the values of radiative forcing by aerosols
with the IPCC fourth assessment (66) with
distributions elicited at about the same time
from 24 aerosol experts (15). Note that several
experts place significant probability outside of
the bounds that result if one simply adds the

Individual expert assessments of
total radiative forcing from aerosols
from Morgan et al. (15)

" X|
Total Aerosol Forcing Lowel. :HE:M-MU 7

upper bound of the direct and cloud albedo
estimates from the IPCC fourth assessment.

Fig. 7 compares results from an elicitation of
the values of climate sensitivity (16) with the
IPCC fourth assessment (66) that estimated that
the “equilibrium climate sensitivity is likely to
lie in the range 2-4.5 °C, with a most likely
value of about 3 °C.” IPCC defined likely as
a 0.66-0.90 probability, which in chapter 19 of
Working Group II (68) was interpreted as a
0.05-0.17 probability that climate sensitivity
is >4.5 °C. Ten of the 14 elicited distributions
reported in Fig. 7 placed more than 0.17 of their
probability above 4.5 °C.

Without arguing that these results from in-
dividual elicitations are more appropriate or
informative than IPCC consensus judgments,
the difference does suggest that IPCC and
similar groups might be well advised to adopt
a strategy that uses both approaches. For ex-
ample, after the experts involved in an as-
sessment team have individually reviewed all
of the available evidence, an elicitation of
probability distributions for key parameters of
interest might be performed with each in-
dividual team member. The results could then
be used as inputs to the group deliberations
in which the team develops their collective
assessment.

Oppenheimer et al. (69), Aspinall (49), and
the EPA White Paper (25) all argue that an
advantage of expert elicitation is that results can
clearly display different schools of thought within
an expert community. The EPA (25) writes,

. differences in response may result from dif-
ferent paradigms by which the experts view the

Consensus estimates of radiative
forcing from the IPCC 4™ assessment
(66). The blue bars show the direct
and indirect effects from aerosols:
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Fig. 6. Comparison of individually assessed value of total radiative forcing produced by aerosols (15) (Left) with the
summary assessment produced by the fourth IPCC assessment (66) (Right). Note that many of the individual
assessments reported in Left involve a wider range of uncertainty than IPCC consensus summary. The summary that
was provided in the third assessment (67) included only a portion of the indirect effects and the range was narrower.
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Fig. 7. Individual expert assessments of the value of
climate sensitivity as reported in Zickfeld et al. (16)
compared with the IPCC assessment by Schneider et al.
(68) that there is between an 0.05 and 0.17 probability
that climate sensitivity is >4.5 °C (i.e., above the red line).
The assessed expert distributions place probability of
between 0.07 and 0.37 above 4.5 °C.

world and the data. This often is true when the
experts come from different disciplinary back-
grounds. Experts tend to trust data obtained
through methods with which they have direct
experience. For example, when one is trying
to estimate the relationship between expo-
sure to a substance and increased morbidity
or mortality, epidemiologists may tend to
find epidemiological data compelling while
being more suspect of toxicological studies
on animals. Toxicologists may have the oppo-
site preference. In this situation, the variability
among the findings represents a spectrum of
beliefs and weights that experts from different
fields place on the various types of evidence.
In such cases, reconciling the differences may
be imprudent.

In the context of climate change, Oppen-
heimer et al. (69) argue that “with the general
credibility of the science of climate change
established, it is now equally important that
policy-makers understand the more extreme
possibilities that consensus may exclude or
downplay.”

Fig. 8 provides a striking example of two
quite different schools of thought that existed
just under a decade ago within the community
of oceanographers on the topic of possible
collapse of the Atlantic meridional overturning
circulation (AMOC) in the face of global
warming. After reviewing literature on paleo-
climate change and model simulations, in its
2007 assessment, IPCC Working Group II (68)
wrote, “The third line of evidence, not assessed
by Working Group I, relies on expert elic-
itations (sometimes combined with the analy-
sis of simple climate models). These [A]MOC
projections show a large spread, with some
suggesting a substantial likelihood of triggering
a [A]MOC threshold response within this
century.” However, Fig. 8 was not reproduced
in the report.
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Combining Expert Judgments
There is extensive literature on strategies to
combine experts’ probabilistic judgments, ex-
cellent overviews of which can be found in
the writings of Clemen and Winkler (70, 71).
Clearly, there are circumstances in which
combining the judgments of different experts
is a sensible thing to do. However, if the experts
make very different judgments about the rele-
vant underlying science, or if the uncertain
value that is being assessed will be used as an
input to a nonlinear model, then it is best not to
combine the separate judgments, but rather to
run separate analyses to explore how much the
difference in expert opinions affect the outcome
of interest. For example, in early work on the
health impacts of fine-particle air pollution, we
found that differences among air pollution
experts made relatively little difference in
assessments of health impact compared with
the wide range of different functional models
and views expressed by health experts (6).
Cooke and Goossens (8, 72) have worked
extensively on developing and applying meth-
ods to assess the quality of expert judgments
and support the combining of those judgments.
In an approach they and coworkers term the
“classical method,” experts are asked to make
judgments about a number of “seed” ques-
tions—questions about quantities in the same
general domain as the topic of interest, but for
which true values can be found. By performing
a product of a calibration score and an infor-
mation score (a measure of assessed confidence
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Fig. 8. Expert elicitation can be effective in displaying
the range of opinions that exist within a scientific com-
munity. This plot displays clearly the two very different
schools of thought that existed roughly a decade ago
within the community of oceanographers about the
probability “that a collapse of the AMOC will occur or will
be irreversibly triggered as a function of the global mean
temperature increase realized in the year 2100.” Each
curve shows the subjective judgments of one of 12
experts. Four experts (2, 3, 4, and 7 in red) foresaw
a high probability of collapse, while seven experts (in red)
foresaw little, if any, likelihood of collapse. Collapse was
defined as a reduction in AMOC strength by more than
90% relative to present day. Figure redrawn from Zickfeld
et al. (18).

interval), and dropping those experts whose cali-
bration score is lower than a cutoff value, the
performance of experts is evaluated, and only
those who achieve a high enough score are used
to produce a combined distribution. It remains
an open question just how diagnostic this pro-
cedure is for assessing the quality of expert
judgments on complex scientific questions for
which answers cannot be known for at least
many years in the future. Withholding various
numbers of seed questions and treating them
as the target quantities of interest has allowed
some evaluation of the screening method. On
the basis of an examination of 14 studies that
used the classical method, Clemen (73) con-
cludes, “the overall out-of-sample performance
of Cooke’s method appears to be no better than
EQ [the use of equal weights on all experts];
the two methods have similar median combi-
nation scores, but EQ has less variability and
better accuracy.” Similarly, Lin and Cheng (74)
conclude that although sometimes the perfor-
mance weight method is superior it does not
always outperform EQ. To clarify these issues,
Cooke now has plans to extend such assessment
to a much larger set of data on seed questions.

While Cooke’s method has been used in
a number of applications (8, 49), it is potentially
problematic in situations, such as the assess-
ment of health damage functions or various
quantities in climate science in which different
experts make very different assumptions about
the nature of the underlying causal mecha-
nisms. As noted above, depending on how the
results will be used, combining the judgments
of experts (by any procedure) may not be
appropriate. It would also be problematic if
one were to exclude some experts who rep-
resent plausible but poorly represented alter-
native views about the science. The history of
science is replete with examples in which the
minority opinion about uncertain science ul-
timately proved to be correct.

A special case in the literature on combining
expert judgments involves the combination of
judgments about binary events (either the event
happens or it does not). In laboratory studies,
Karvetski et al. (75) showed that by eliciting
extra judgments to determine how coherent
a judgment is, adjusting the resulting set of
judgments to make them more coherent, and
then weighting those adjusted judgment on the
basis of original coherence, a significant im-
provement in performance could be achieved.

In the early 1950s, a group of investigators at
the RAND Corporation developed a strategy to
obtain group judgment that they termed the
“Delphi method” (76). This method was first
used in classified studies conducted for the
US Air Force on bombing requirements. When
that work was declassified a decade later (76),
the method became popular as a strategy for
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developing group consensus about the value of
unknown parameters or various normative or
policy issues. Criticisms of the method soon
began to appear. With support from the US Air
Force, Sackman (77), another RAND analyst,
performed an assessment of the technique, the
conclusions of which were highly critical: “Del-
phi consensus is specious consensus.” He rec-
ommended that the use of “conventional Delphi
be dropped ... until its principles, methods and
fundamental applications can be experimentally
established as scientifically tenable.” Fifteen years
later, after an extensive review conducted for the
Dutch government of a much larger body of
literature, Woudenberg (78) reached a very
similar conclusion, writing, “A Delphi is ex-
tremely efficient in obtaining consensus, but this
consensus is not based on genuine agreement;
rather, it is the result of ... strong group pres-
sure to conformity.”

Concluding Thoughts and Advice

Some may find it tempting to view expert
elicitation as a low-cost, low-effort alternative to
doing serious research and analysis. It is neither.
Rather, expert elicitation should build on the best
available research and analysis and be undertaken
only when, given those, the state of knowledge
will remain insufficient to support timely in-
formed assessment and decision making.

If expert elicitation is to obtain careful con-
sidered judgments from the experts involved,
elicitation protocols must be developed through
careful iterative refinement. Draft protocols
should be pilot tested with quasi experts (such
as advanced graduate students or postdoctoral
fellows) to assure that question formulations are
workable and can be understood. Such iterative
refinement is essential because there are always
many more things one would like to ask than
time and experts’ patience will allow. This
process of iterative refinement can often take
several months or longer. In most cases, true
experts are a rare resource that must be con-
served and treated with care. A few shoddy
studies can sour an entire expert community
to participation.

Most of the elicitations my colleagues and I
have performed have been conducted using
face-to-face interviews in experts” offices where
the expert can readily access relevant data and
analytic and model results. In many cases, we
have prepared concise literature summaries or
other materials and have used card sorting and
other tasks to encourage experts to systemati-
cally identify all relevant factors that may in-
fluence a value of interest or contribute to its
uncertainty. Although well-informed experts
obviously know and have thought about all of
these things, it is important to make sure that
they do not overlook any of them when they are
asked to make quantitative judgments. Indeed,
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when an answer seems to be at odds with such
evidence, it is important to push for explan-
ations and justifications. If it becomes clear that
respondents have not thought about some of
the relevant evidence, then care should be taken
to identify the bounds of their expertise and
appropriately limit the use of, and general-
izations drawn from, their judgments.

Because experts are human, there is simply
no way to eliminate cognitive bias and over-
confidence. The best one can hope to do is to
work diligently to minimize its influence. It is
important to acknowledge this, brief experts on
the issue, and design elicitation procedures that
work to achieve this objective. Of course, the
same cognitive biases arise in the deliberations
of less formal consensus panels, but in those
cases they are virtually never acknowledged or
addressed. The performance of consensus ex-
pert panels might be improved if panel mem-
bers first performed individual elicitations
before they begin their group deliberations.

It is tempting to want to combine the judg-
ments of multiple experts to obtain “the” an-

swer. Sometimes this makes sense. However, if
different experts base their judgments on very
different models of the way in which the world
works, or if they produce quite different judg-
ments that will be used as the input to a non-
linear model, then combining judgments does
not make sense. It is always important to re-
member that science is not a matter of majority
vote. Sometimes it is the minority outlier who
ultimately turns out to have been correct. Ig-
noring that fact can lead to results that do not
serve the needs of decision makers.
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