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Abstract: Examination of associations between specific disorders and physical properties of function-
ally relevant frontal lobe sub-regions is a fundamental goal in neuropsychiatry. Here, we present and
evaluate automated methods of frontal lobe parcellation with the programs FreeSurfer(FS) and
TOADS-CRUISE(T-C), based on the manual method described in Ranta et al. [2009]: Psychiatry Res
172:147-154 in which sulcal-gyral landmarks were used to manually delimit functionally relevant
regions within the frontal lobe: i.e., primary motor cortex, anterior cingulate, deep white matter, pre-
motor cortex regions (supplementary motor complex, frontal eye field, and lateral premotor cortex)
and prefrontal cortex (PFC) regions (medial PFC, dorsolateral PFC, inferior PFC, lateral orbitofrontal
cortex [OFC] and medial OFC). Dice’s coefficient, a measure of overlap, and percent volume difference
were used to measure the reliability between manual and automated delineations for each frontal lobe
region. For FS, mean Dice’s coefficient for all regions was 0.75 and percent volume difference was
21.2%. For T-C the mean Dice’s coefficient was 0.77 and the mean percent volume difference for all
regions was 20.2%. These results, along with a high degree of agreement between the two automated
methods (mean Dice’s coefficient 5 0.81, percent volume difference 5 12.4%) and a proof-of-principle
group difference analysis that highlights the consistency and sensitivity of the automated methods,
indicate that the automated methods are valid techniques for parcellation of the frontal lobe into func-
tionally relevant sub-regions. Thus, the methodology has the potential to increase efficiency, statistical
power and reproducibility for population analyses of neuropsychiatric disorders with hypothesized
frontal lobe contributions. Hum Brain Mapp 35:2009–2026, 2014. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

The ability to examine associations between specific dis-
orders and physical characteristics of functionally relevant
frontal lobe sub-regions is a fundamental goal in neuro-
psychiatry. The frontal lobe is the region of the brain asso-
ciated with executive control and planning, including
functions such as response inhibition, working memory
and motivational aspects of behavior and high-order
motor control [Alvarez and Emory, 2006; Ashe et al., 2006;
Graziano and Aflalo, 2007; Tekin and Cummings, 2002].
Due to this wide range of complex brain functions, abnor-
malities in frontal lobe structure and function have been
hypothesized to contribute to many neuropsychiatric dis-
orders, including obsessive-compulsive disorder (OCD)
[Tekin and Cummings, 2002], depression and bipolar dis-
order [Tekin and Cummings, 2002], schizophrenia [Shad
et al., 2006; Suzuki et al., 2005; Yamasue et al., 2004],
Down syndrome [Pinter et al., 2001; Porter et al., 2007],
Rett syndrome [Carter et al., 2008], fragile X syndrome
[Gothelf et al., 2008; Kates et al., 2002a], idiopathic autism
[Acosta and Pearl, 2004; Courchesne et al., 2007], Tourette
syndrome [Fredericksen et al., 2002; Marsh et al., 2007],
and Attention-Deficit=Hyperactivity disorder (ADHD)
[Kelly et al., 2007; Mostofsky et al., 2002; Nigg and Casey,
2005; Shaw et al., 2006, 2007; Sowell et al., 2003]. In view
of the size and functional heterogeneity of the frontal lobe
[Fuster, 1997], it is likely that abnormalities in distinct
functional regions are preferentially associated with a par-
ticular disorder or with a specific aspect of that disorder.

While gyral-sulcal landmarks define cytoarchitectoni-
cally and functionally relevant discrete regions in many
cortical areas (e.g., angular gyrus=area 39 of Brod-
mann=posterior inferior parietal lobule) [Bouret and Rich-
mond, 2010; Geyer et al., 2000; Tekin and Cummings,
2002; Zilles, 1990; Zilles et al., 1997], the major frontal gyri
traverse multiple cytoarchitectonic and functional regions
[Fischl et al., 2008; Sanides, 1972]. Therefore, frontal gyral
regions may not correspond to functional regions. Previ-
ous frontal lobe parcellation protocols have often used
only the most prominent sulcal landmarks due to concerns
about rater reliability and image resolution, preserving
most of the major frontal gyri as frontal subdivisions and
leading therefore to predominantly anatomical parcellation
schemes [Buchanan et al., 1998; Convit et al., 2001; Crespo-
Facorro et al., 1999, 2000; Desikan et al., 2006; Destrieux
et al., 2010; Heckemann et al., 2010; Howard et al., 2003;
John et al., 2006; Wible et al., 1997]. For example, the
approach proposed by Rademacher et al. [1992] and its
subsequent revisions [e.g., Kennedy et al., 1998] defined 14
frontal lobe sub-regions with boundaries defined by multi-
ple sulci and landmark-based planes extended through the
brain volume (cut planes), using techniques similar to ours
[Kates et al., 2002b]. However, the resulting parcellation
units were predominantly gyri or portions of them with
limited correspondence to functional regions [Kennedy
et al., 1998; Rademacher et al., 1992]. Significantly, two of
the Rademacher sub-regions, corresponding to the supe-
rior and middle frontal gyri, included several Brodmann
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areas each, including regions from both prefrontal and
premotor areas whose divergent functions are well estab-
lished [Alvarez and Emory, 2006; Graziano and Aflalo,
2007; Tekin and Cummings, 2002].

In this protocol, frontal lobe sub-regions were delineated
on the bases of consistent sulcal=gyral landmarks chosen
because of their relationships to functional boundaries
indicated by cytoarchitectonic, electrophysiological, mag-
netic stimulation, and functional imaging findings [Gesch-
wind, 1979; Geyer et al., 2000; Tekin and Cummings, 2002;
Zilles, 1990]. To balance the competing priorities of valid-
ity and reliability, sulcal contours were used when appro-
priate for defining a functional area and cut planes were
used where functional and sulcal divisions diverged or
when the level of anatomical detail in MR images or
degree of intersubject variability made the use of standard
anatomical landmarks excessively difficult. The theoretical
foundations for the divisions used in our protocol include
the sometimes divergent relationships between
gyral=sulcal landmarks and cytoarchitectonical and func-
tional organization of the cortex [Fischl et al., 2008; Geyer
et al., 2000; Ongur et al., 2003; Zilles, 1990; Zilles et al.,
1997] and the increasing body of information on the func-
tional relevance of discrete frontal sub-regions for neuro-
psychiatric disorders. The premotor and prefrontal
modules are divided into several anatomo-physiologic
sub-regions based on the foundations of traditional and
more recent anatomical and functional literature [Bouret
and Richmond, 2010; Costafreda et al., 2006; Graziano and
Aflalo, 2007; Howard et al., 2003; Lacerda et al., 2003;
McGlinchey-Berroth et al., 1995; Mostofsky et al., 2007;
Ongur et al., 2003; Rushworth et al., 2007; Rypma, 2006;
Tekin and Cummings, 2002; Tzourio-Mazoyer et al., 2002].

In two prior studies [Kates et al., 2002b; Ranta et al.,
2009], we presented a manual frontal lobe parcellation pro-
tocol that relies on sulcal-gyral landmarks to delineate
functionally distinct frontal sub-regions: i.e., primary
motor cortex, anterior cingulate, deep white matter, pre-
motor cortex regions (supplementary motor complex
[SMC], frontal eye field [FEF], and lateral premotor cortex
[LPM]) and prefrontal cortex (PFC) regions (medial PFC,
dorsolateral PFC [DLPFC], inferior PFC, lateral orbitofron-
tal cortex [OFC] and medial OFC) (see Figs. 1 and 2, Table
I). Instead of relying only on prominent gyri and sulci,
this protocol utilizes both major and minor anatomical
landmarks along with cut planes along the trajectories of
sulci or at sulcal intersections and turning points in order
to define more “functionally relevant” frontal lobe sub-
regions, by which we mean regions that approximate as
closely as possible functionally distinct areas of the frontal
lobe. In addition, the definition of deep white matter
(DWM) allows for a distinction between short (gyral white
matter) and long or projecting association fibers [Makris
et al., 1999], increasing the relevance of regional measure-
ments. These functional divisions allow for more detailed
examinations of the pathophysiology of disorders in which
behavioral deficits and previous findings predict selective
frontal lobe involvement. In this article, we present the
next stage in the development of this technique: automa-
tion of the frontal lobe parcellation protocol.

The use of automated parcellation of MR (magnetic reso-
nance) brain scans is of growing interest in neuropsychia-
try. Important contributions to the study of
neuropsychiatric disorders have been made with MR auto-
mated parcellation studies since their introduction, notably
in Alzheimer disease [Desikan et al., 2009, 2010; Oliveira
et al., 2010; Scheinin et al., 2009; Westman et al., 2011],

Figure 1.

Manual (top row) and FreeSurfer automated (bottom row) parcellation of the left frontal lobe of

an 8.2-year-old girl on dorsal, lateral, ventral, and medial surfaces. The deep white matter region

is not visible on the surface of the brain.
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schizophrenia [Kikinis et al., 2010; Kuperberg et al., 2003;
Nesvag et al., 2008; Voets et al., 2008], depression [Bergoui-
gnan et al., 2009; Dotson et al., 2009; Nifosi et al., 2010],
Parkinson disease [Tinaz et al., 2010], ADHD [Almeida
et al., 2010; Wolosin et al., 2007], autism [Ecker et al., 2010;
Hadjikhani et al., 2006], and bipolar disorder [Nery et al.,
2009]. Continuing debate on the best methods for evaluat-
ing the relative reliability, sensitivity, and validity of man-
ual versus automated parcellations exists. However, in
papers that have addressed the question it is generally
agreed that automated methods provide important gains in
efficiency, consistency, statistical power, and reproducibil-
ity compared to manual parcellation, which is inherently
time-consuming and subject to rater error [Barnes et al.,

2007; Cherbuin et al., 2009; Dewey et al., 2010; Fischl et al.,
2002; Hasboun et al., 1996; Lehmann et al., 2010; Morey
et al., 2009; Pardoe et al., 2009; Tae et al., 2008].

In pursuance of the goal of examining the roles of func-
tionally relevant frontal lobe regions in a variety of neuro-
psychological disorders, we have incorporated the Ranta
et al. [2009] parcellation scheme into two automated pro-
grams: FreeSurfer (FS) [Fischl et al., 1999, 2004] and
TOADS-CRUISE (T-C) (Topology-preserving, Anatomy-
Driven Segmentation-Cortical Reconstruction Using
Implicit Surface Evolution) [Bazin and Pham, 2008; Han
et al., 2004; Wan et al., 2008]. We selected two programs in
order to allow a more powerful examination of validity
and reliability of the automated methods.

MATERIALS AND METHODS

Participants

The subject group consisted of 113 children for whom
the manual Ranta et al. [2009] frontal lobe parcellation
method was applied to MR brain scans. The group was
comprised of 48 typically developing (TD) children (23
girls), 24 children with autism spectrum disorder (ASD)
(all boys) and 41 children with Attention-Deficit Hyperac-
tivity Disorder (ADHD) (20 girls). The subjects were 8.10
to 13.34 years old with a mean age of 10.30 years (61.39).

Participants were recruited from outpatient clinics at the
Kennedy Krieger Institute and from local pediatricians,

Figure 2.

Manual (top row) and TOADS-CRUISE automated (bottom row) parcellation of the left frontal

lobe of a 10.7-year-old boy in a series of axial cross-sections. Images from left to right move

from more inferior to more superior positions in the brain.

TABLE I. Frontal lobe parcellation regions and

abbreviations

Primary Motor Cortex
Anterior Cingulate
Deep White Matter (DWM)
Supplementary Motor Complex (SMC)
Frontal Eye Field (FEF)
Lateral Premotor Cortex (LPM)
Medial Prefrontal Cortex (Medial PFC)
Dorsolateral Prefrontal Cortex (DLPFC)
Inferior Prefrontal Cortex (Inferior PFC)
Lateral Orbitofrontal Cortex (Lateral OFC)
Medial Orbitofrontal Cortex (Medial OFC)
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local chapters of Children and Adults with Attention-Defi-
cit=Hyperactivity Disorder and the Autism Society of
America, schools, social=service organizations and adver-
tisements in the community. Written assent was obtained
from all subjects and their parent=guardian under ap-
proval of the Johns Hopkins Institutional Review Board.

Children in the study had a full scale IQ (FSIQ) of 80 or
higher based on performance on the Wechsler Intelligence
Scale for Children (WISC)– 3rd edition [Wechsler, 1991]
(n 5 15) or the WISC– 4th edition [Wechsler, 2003] (n 5

98). For three subjects, although FSIQ was below 80, signif-
icant discrepancies between IQ sub-indices existed and
one or both of the Perceptual Reasoning Index (PRI) and
Verbal Comprehension Index (VCI) scores was above 85.
None of the children had a history of speech=language
disorder or a reading disability, and all had a basic read-
ing standard score of 84 (14th percentile) or higher on the
word reading subtest from the Wechsler Individual
Achievement Test, First Edition (WIAT) [Wechsler, 1992]
(n 5 15) or Second Edition (WIAT–II) [Wechsler, 2002] (n
5 98). TD children were excluded from the group if they
had a history of neurological, developmental, or psychiat-
ric disorders based on responses from the Diagnostic Inter-
view for Children and Adolescents- 4th edition (DICA-IV)
with the exception of simple phobia, which was allowed
(n 5 4) [Reich et al., 1997].

The DICA-IV structured parent interview, and ADHD-
specific and broad behavior rating scales (Conners’ Parent
and Teacher Rating Scales-Revised CPRS-R, CTRS-R, long
form) [Conners, 1997] were used to confirm ADHD diag-
nosis. TD children with T-scores greater than 60 on the
ADHD (Diagnostic and Statistical Manual of Mental Disor-
ders (DSM)-IV Inattention, DSM-IV Hyperactivity) sub-
scales of CPRS-R were excluded from the study. The
CPRS-R and DSM IV criteria were used to evaluate ADHD
subtype. Of the 41 ADHD subjects in the study, 16 were
Predominantly Inattentive, 1 was Predominantly Hyperac-
tive-Impulsive and 24 were combined subtype. ADHD
subjects with co-morbid conduct disorder, mood disorder,
generalized anxiety disorder, separation anxiety disorder,
or obsessive–compulsive disorder were excluded from the
study. ADHD children with Oppositional Defiant Disorder
(ODD) and=or simple phobia were included; ODD was
present in 12 of the ADHD subjects and simple phobia
was present in eight, including three subjects with both.

Twenty-two children with ADHD, 12 girls and 10 boys,
were being prescribed stimulant medications at the time of
the study (there was no significant difference by gender in
medications prescribed at the time of study: X2 5 4.698,
P 5 0.583). Stimulant medications were discontinued the
day before and day of study participation. Children with
ADHD were excluded from the study if they were taking
long-acting psychoactive medications. One boy with
ADHD had an unknown drug history.

Children with ASD met criteria based on the DSM, sub-
sequently confirmed using both the Autism Diagnostic

Observation Schedule-Generic (ADOS-G) [Lord et al.,
2000] and the Autism Diagnostic Interview-Revised (ADI-
R) [Lord et al., 1994]. The ADOS-G, ADI-R, and DICA-IV,
along with the clinical judgment of the examiners, the
Principal Investigator, and a neuropsychologist, were all
factors in determining final diagnosis. Ten subjects in the
study group were diagnosed with high functioning autism
(HFA) and 14 with Asperger’s syndrome, as distinguished
by the presence of delayed language development in HFA.
Children with identifiable causes of ASD (e.g., fragile X
syndrome) and known neurological disorders, including
epilepsy, were excluded [Welner et al., 1987]. On the
DICA-IV examination, eight ASD subjects met criteria for
one or more co-morbidities: ADHD (n 5 6), ODD (n 5 5),
simple or social phobia (n 5 5), Obsessive Compulsive
Disorder (n 5 2) or Generalized Anxiety Disorder (n 5 2)
and past depression (n 5 1). Four ASD subjects did not
have a DICA examination on record.

Seven boys with ASD were being prescribed psychoac-
tive medicines at the time of the study: two were taking
stimulants, one was taking a selective serotonin reuptake
inhibitor (SSRI), one was taking atomoxetine, one was tak-
ing a stimulant and an SSRI, one was taking a stimulant
and buspirone, and one was taking buproprion and a neu-
roleptic. Two subjects with ASD had unknown drug his-
tories. Stimulant medications were discontinued the day
before and day of study participation.

MRI Image Acquisition and Preprocessing

T1-weighted 3D-volume MPRAGE images of the brain
(matrix size 5 256 3 256, echo time 5 3 ms, repetition
time 5 7 ms, field of view 5 260 mm, slice thickness 5 1.2
mm, flip angle 5 8 degrees) were acquired using a 1.5T
Philips Gyroscan NT (Royal Philips Electronics, Amster-
dam, The Netherlands) for each subject in the study.

For each subject, manual parcellation of the frontal lobe
was completed using the MIPAV (Medical Image Process-
ing, Analysis and Visualization) software package [McAu-
liffe et al., 2001] from the Center for Imaging Technology
(CIT) of the National Institutes of Health (NIH, Bethesda,
MD, USA) and the previously published manual parcella-
tion protocol [Ranta et al., 2009]. As reported in Ranta
et al. [2009], inter- and intra-rater reliability results for the
manual protocol were calculated using intraclass correla-
tion coefficients (ICC). Raters were blind to diagnosis and
left and right hemisphere regions were evaluated inde-
pendently. Intra-rater ICC for the 22 frontal sub-regions
ranged from 0.778 to 0.997 with a mean of 0.952; inter-
rater ICC for the 22 frontal sub-regions ranged from 0.724
to 0.997 with a mean of 0.919. Full manual parcellation
protocol results are presented in Ranta et al. [2009].

The fully automated standard FS processing stream was
implemented for each subject using version 4.0.4 on a
Linux platform (http:==surfer.nmr.mgh.harvard.edu=). FS
uses a fully automated method to perform preprocessing
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steps including Talairach alignment, intensity normaliza-
tion, removal of skull and non-brain tissue with a hybrid
watershed=surface deformation procedure, separation of
the cerebellum and brainstem from the cerebrum and
splitting of the left and right hemispheres [Dale et al.,
1999; Fischl et al., 2001; Segonne et al., 2004, 2005]. A de-
formable surface algorithm was used to define inner (gray-
white) and outer or pial (gray-CSF) cortical surfaces [Dale
et al., 1999; Fischl and Dale, 2000]. Automated topological
correction, surface inflation and registration to a spherical
atlas were also included in the processing stream [Dale
et al., 1999; Fischl et al., 1999]. Total cerebral volume
(TCV) for each subject was estimated using the FS pial
surface.

For our FS automation technique, we primarily used the
surface-based cortical techniques available in FS. A
method for defining white matter regions associated with
each defined cortical gray matter region exists, however
the volume-based regions thus defined were not analogous
to our manual definitions. Therefore, FS protocol automa-
tion and manual to automated comparisons within FS
were carried out on cortical surface parcellations and corti-
cal volumes and did not include the DWM region. Manual
parcellations were sampled to the FS surfaces for all
comparisons.

T-C processing was completed using the May 2010
release. The manual skull stripping performed for use in
the manual parcellation was used for T-C processing.
White and gray matter segmentations were performed
using TOADS [Bazin and Pham, 2008], a topology preserv-
ing classification method that utilizes homeomorphic
growing and thinning to transform a topology template to
align with the structures in the target image. The surface
reconstruction was performed using CRUISE [Han et al.,
2004], which uses fuzzy tissue classification and a topology
preserving geometric deformable surface model to esti-
mate the inner, central and outer surfaces of the cortex.

T-C has cortical surface definition and measurement
capabilities, but is able to accommodate volume-based re-
gional definitions as well. Protocol automation and manual
to automated comparisons within T-C were carried out on
volume-based (combining cortical and sub-cortical) regions
and volumes like those originally delineated using the
manual protocol.

Automation Methods

Manual parcellation masks from 13 mixed-gender, TD
subjects were used as atlases to produce automated parcel-
lations for an additional 100 subjects in FS and in T-C.
Details of atlas selection and application are described
below.

For implementation in FS, the volume-based manual
parcellation masks were mapped to the FS cortical pial
surfaces. Small discrepancies resulted from differences in
skull stripping, leaving a small percentage of the overall

parcellation areas unlabeled, however the resulting unla-
belled area was a very small fraction of the overall area. In
addition, regions that were connected when volume-based
were not always connected as surface labels, as when the
deeper part of a sulcal fold fell to the inside of a plane cut
made through the volume while the parts of the sulcus
closer to the surface of the brain remained outside the cut
plane. When these labels are displayed on a flattened corti-
cal surface the result is a donut shape with the deeper
label in the center and the shallower label surrounding it.
However, the FS parcellation method used the information
provided by multiple atlas subjects, averaging to produce
automated labels that were continuous and complete on
the cortical surface of each brain.

In the FS automation, a cortical surface parcellation atlas
was developed using probabilistic information estimated
from a training set consisting of multiple manual parcella-
tions, a technique described in Fischl et al. [2004]. Labels
were automatically assigned to the cortical surface of indi-
vidual target subjects using the atlas developed from the
manual training set and geometric information derived
from subject-specific cortical geometry [Fischl et al., 2004].
A sample subject’s manual parcellation (mapped onto the
cortical surface) and FS automated parcellation are shown
in Figure 1.

For implementation in T-C, the automated parcellation

was performed using an adaptation of the multiatlas cortical
surface labeling method provided in the T-C Brain Segmen-
tation Tools software package (http:==www.nitrc.org=pro-
jects=toads-cruise=). The automated method begins by
registering each “atlas” brain to the unparcellated target

brain via nonlinear registration. The algorithm used for the
registration was a vectorized adaptation [Chen et al., 2010]
of the adaptive bases algorithm (ABA) presented in Rohde
et al. [2003], which models a deformation field that maps
each atlas image to the target image using a summation of

radial basis functions. The registration algorithm was vali-
dated by replicating the evaluation process performed by
Klein et al. [2009] using two of that analysis’ data sets
(LPA40 and ISBR18), with ABA showing target overlap

results at or above the average of the fifteen algorithms that
were originally tested (full results of the evaluation are pre-
sented in Supporting Information). Image mappings were
applied to the manual parcellation of each atlas resulting in
an approximation of a parcellation for the target image

based on each of the atlas brains.
These approximations were then combined using a

probabilistic label fusion technique presented in Warfield
et al. [2004], which produced a prediction of the correct
parcellation by evaluating the reliability of each atlas rela-
tive to all the other atlases using a calculated probability
term. The method was an iterative algorithm that initially
assumed all atlases were equally reliable. Then, at each
step, it combined all the atlas approximations into one par-
cellation using the reliability measure for each atlas. This
combined parcellation was then used to recalculate the
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reliability of each atlas. The process was repeated until
convergence was achieved, at which point the combined
parcellation represented a better prediction of the correct
parcellation than any individual atlas approximation. A
final automated step was applied to remove small topolog-
ical inaccuracies and straighten the boundaries between
several labels by fitting vertical and horizontal planes to
the results in order to better match the plane cuts used in
the manual protocol to define several of its boundaries. A
sample subject’s manual parcellation and T-C automated
parcellation are shown in Figure 2.

Atlas Size Determination

To determine the optimal number of manually parcel-
lated subjects to be used in our atlas group we carried out
automated labeling on a test group of 30 mixed-gender,
mixed-diagnosis subjects using an atlas group ranging
from 1 to 15 subjects. The atlas groups were composed of
TD children and each was divided as evenly as possible
between girls and boys and included a range of ages and
cerebral volumes representative of the full subject group;
except for verifying that these group requirements were
met, atlas subjects were randomly selected. The test group
consisted of 12 TD (6 girls), 12 ADHD (6 girls), and 6 ASD
(all boys) subjects, randomly selected from each diagnosis-
gender group.

Considering that spatial regional overlap, rather than
agreement in regional volumes is a more suitable measure
of reliability in the present study, we used the Dice’s coef-
ficient (D), an estimate of overlap, to evaluate the reliabil-
ity of the automated labeling for each size atlas group.
Dice’s coefficient is calculated as:

DðA;BÞ5 2jA \ Bj=ðjAj1jBjÞ

where A is the manual parcellation and B is the automated
parcellation [Dice, 1945]. Perfect overlap produces a Dice’s
coefficient equal to 1, while lesser degrees of overlap pro-
duce a Dice’s coefficient greater than 0 but less than 1.
There is no standard level that is deemed acceptable for
Dice’s coefficients, as values are dependent on size and
structure type; e.g., a skull stripping protocol would gener-
ally require a higher Dice’s coefficient to be considered reli-
able than would a lesion identification protocol. However,
the Dice’s coefficient is statistically very similar to Kappa
statistics [Zijdenbos et al., 1994], for which guidelines have
been proposed [Fleiss, 1971; Landis and Koch, 1977].
Landis and Koch [1977] described agreement for Kappa
statistics less than 0.2 as slight, 0.21–0.4 as fair, 0.41–0.6 as
moderate, 0.61–0.8 as substantial, and 0.81–1 as almost per-
fect while Fleiss characterized Kappa statistics below 0.4 as
poor, 0.4 to 0.75 as fair or good, and over 0.75 as excellent.
For FS, where our automation technique was primarily sur-
face based, the overlap comparison was carried out on sur-
face vertices. For T-C, the comparison included all
parcellation voxels, both cortical and subcortical.

Plots of the mean Dice’s coefficients for manual versus
automated parcellations for each size atlas group are
shown in Figure 3. For both FS and T-C there was an
increase in the accuracy of automated labeling, as meas-
ured by average Dice’s coefficient, up to an atlas size of 13.

To carry out further analysis, the 13 subject, mixed-gen-
der TD atlas group was used to produce automated par-
cellations in FS and in T-C for 100 subjects. The atlas and
analysis groups were matched on gender, age, FSIQ, PRI,
handedness and Hollingshead Socioeconomic Status (SES).
The groups differed on diagnosis (X2 5 19.893, P < 0.001)
and total cerebral volume (TCV) (F 5 4.052, P 5 0.047),
with the atlas group having no ADHD or ASD subjects
and larger TCV than the analysis group. The group differ-
ence in TCV is in part due to the differing number of
ADHD subjects, who have previously been shown to have
lower TCV by 6–7% in this age range [Ranta et al., 2009;
Wolosin et al., 2007]. Comparison of TD subjects alone in
the atlas and analysis group showed no significant differ-
ence in TCV. Information on group composition and de-
mographic characteristics of the 13 subject atlas group and
the 100 subject analysis group are shown in Table II.

Atlas Gender and Diagnosis Composition

Determination

Our initial assumption in carrying out the atlas size test-
ing was that an appropriately sized atlas group composed
of mixed-gender TD subjects would provide enough ana-
tomic variability for successful parcellation of subjects of
both genders and all diagnoses. To test this assumption,
we wanted to see if the automated labeling of any diagno-
sis(DX)-gender group was significantly better or worse (as
measured by manual versus automated Dice’s coefficients)
than that for any other DX-gender group. The way we
tested this was to conduct a multivariate analysis of var-
iance (MANOVA) comparison to look for interactions
between manual versus automated Dice’s coefficients for
each frontal lobe region and DX-gender group. Breaking
down the 100 subject analysis group, the individual DX-
gender groups consisted of 17 TD girls, 18 TD boys, 20
ADHD girls, 21 ADHD boys, and 24 ASD boys.

As a further test of gender and diagnosis neutrality we
wanted to see whether a specific DX-gender group, for
example, girls with ADHD, would have more accurate
automated labels if the atlases used for labeling came from
other girls with ADHD. The way we tested this was to use
five single gender, single diagnosis atlas groups of 13 sub-
jects each to produce automated parcellations for the
remaining subjects of the same diagnosis and gender. The
test subjects were 10 TD girls, 7 ADHD girls, 12 TD boys,
8 ADHD boys, and 11 ASD boys.

Statistical Analysis

Statistical analyses were conducted using the SPSS 18.0
statistical analysis package (SPSS, Inc., Chicago, IL, USA)
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and Microsoft Excel 2007 (The Microsoft Corporation, Red-
mond, WA, USA). A value of P < 0.05 was considered
statistically significant while a value of P < 0.1 was con-
sidered to be significant at trend level.

Dice’s coefficient (see “Atlas Size Determination” Section
for definition), was used to evaluate overlap between
labels. As previously described, for FS, the Dice’s

coefficient calculation was carried out on surface vertices
while for T-C the calculation included all voxels. In gen-
eral, Dice’s coefficients for a three dimensional volume
label and a two dimensional surface label of the same
region can be significantly different (either higher or lower)
depending on the shape of the label within the volume. In
an idealized case, in which the surface is flat and the

TABLE II. Atlas and analysis group characteristics

Atlas group Analysis group

N 13 100
Diagnosisa,b 100% TD 35% TD, 41% ADHD, 24% ASD
Gender 54% male, 46% female 64% male, 37% female
Age (years) 10.37 (1.09) 10.29 (1.43)
FSIQc 116.2 (13.5) 110.9 (14.5)
PRId 114.2 (16.1) 110.5 (14.1)
TCV(mm3)b,e 1,084,394 (92,504) 1,031,374 (88,948)
Handedness 100% right 90% right, 9% left, 1% mixed
SESf 57.7 (6.8) 53.2 (8.6)

aDiagnosis: X2 5 19.893, P < 0.001.
bSignificant difference between atlas and analysis groups.
cFSIQ, full scale IQ.
dPRI, perceptual reasoning index.
eTCV, total cerebral volume: F 5 4.052, P 5 0.047.
fSES, Hollingshead socioeconomic status; seven analysis group subjects did not have SES.

Figure 3.

Mean manual versus automated Dice’s coefficients averaged over 30 test subjects and all frontal

lobe regions for atlas groups composed of 1 through 15 typically developing subjects. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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volume’s contours do not change along the direction per-
pendicular to the surface, Dice’s coefficients for surfaces
and volumes will be identical. The cortical surface is not
flat, but many of the frontal lobe volume labels defined
here have fairly straight boundaries that are approximately
perpendicular to the cortical surface. For regions which are
significantly large compared to sulcal variations, the depth
of the volume labels will have minimal effect on their final
Dice’s coefficient. This allows the volumetric and surface
Dice’s coefficients from our results to be evaluated simi-
larly, although a direct comparison of the two methods
based on Dice’s coefficients alone should be avoided.

Although we consider Dice’s coefficients to be the best
measure of reliability for method validation purposes,
many neuroanatomical studies are only interested in quan-
tifying volumetric changes or overall group differences.
Thus, percent volume difference is also a useful metric for
evaluating our automated parcellations. Percent volume
difference is defined as:

100 3 2jVðMÞ2VðAÞj=ðVðMÞ1VðAÞ

where V(M) is the volume of the manual parcellation and
V(A) is the volume of the automated parcellation.

Pitman’s t-test was used to examine differences in
within population variance between V(M) and V(A).
Diagnosis groups were combined for evaluation; each
frontal sub-region was tested individually. Pitman’s t is
defined as:

t 5 F 2 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2 2ð Þ

p� ��
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 1 2 r2ð Þ

q� �

where variance is the square of the standard deviation, F
is the ratio of the larger variance to the smaller variance,
and r is the correlation value between V(M) and V(A) [Pit-
man, 1939]. A P-value was calculated by evaluating t on
n-2 degrees of freedom.

RESULTS

Comparing Manual and Automated Parcellations

Overlap

For FS, averaging over the 100 subjects analyzed and all
frontal lobe regions revealed a mean manual to automated
Dice’s coefficient of 0.754, with an average of 0.750 in the
left hemisphere and 0.759 in the right hemisphere (see Fig.
4). Dice’s coefficients for the individual sub-regions ranged
from 0.674 to 0.829 except for the left and right FEF, which
were 0.541 and 0.561, respectively. Excluding the FEF, nine
regions had a mean Dice’s coefficient greater than 0.80,
five were greater than 0.75, two were greater than 0.70,
and the remaining two were greater than 0.67.

For T-C, averaging over the 100 subjects analyzed and all
frontal lobe regions revealed a mean Dice’s coefficient of
0.774, with an average of 0.776 in the left hemisphere and
0.772 in the right hemisphere (see Fig. 4). Dice’s coefficients
for the individual sub-regions ranged from 0.725 to 0.878,
except for the left and right FEF, which were 0.618 and

Figure 4.

Mean manual versus automated Dice’s coefficients for each frontal lobe region averaged over

100 analyzed subjects for FS and T-C automated parcellations with standard error bars. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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0.575, respectively. Excluding the FEF, 6 regions had a
mean Dice’s coefficient greater than 0.8, 11 were greater
than 0.75 and the remaining 3 were greater than 0.72.

Volume difference

For FS, averaging over the 100 subjects analyzed and all
frontal lobe regions revealed a mean percent volume differ-
ence of 21.2% between V(M) and V(A) (see Fig. 5). Results
for the individual frontal lobe sub-regions ranged from
12.2% to 28.9% except for the left and right FEF, which were
44.9% and 45.8%, respectively. The mean for the left hemi-
sphere was 21.8%; for the right hemisphere it was 20.6%.
Excluding the FEF, 7 regions had a mean percent volume
difference less than 15%, 4 were less than 20%, 5 were less
than 25% and the remaining 2 were less than 29%.

For T-C, averaging over the 100 subjects analyzed and all
frontal lobe regions revealed a mean percent volume differ-
ence of 20.2% (see Fig. 5). Results for the individual frontal
lobe sub-regions ranged from 11.0% to 25.0% except for the
left and right FEF, which were 41.7% and 36.6%, respec-
tively. The mean for the left hemisphere was 20.6%; for the
right hemisphere it was 19.4%. Excluding the FEF, 6 regions
had a mean percent volume difference less than 15%, 6 were
less than 20%, and the remaining 8 were less than 25%.

Variance

In analyzing differences in within population variance
between V(M) and V(A), we found a smaller range in V(A)

for both FS and T-C when compared to V(M). For FS, the
Pitman’s t-test’s P-value for all frontal lobe regions was less
than 0.01, indicating that the variances in V(M) and V(A) for
all regions were different at a statistically significant level.
For T-C all regions except R SMC and R LPM had a P-value
below 0.01 (R SMC: t 5 1.41, P 5 0.07; R LPM: t 5 1.14, P 5

0.26). The direction of the difference was the same for all
frontal lobe regions for both FS and T-C: the variance was
consistently larger for V(M) than for V(A).

Protocol Implementation—Group

Difference Analysis

As proof-of-principle, and a test of the sensitivity of our
automated frontal lobe parcellation techniques, the results
from the automated FS and T-C methods for 37 girls and
63 boys were used to examine the effect of gender on total
volume in each frontal lobe region. The boys and girls
were matched on age, FSIQ, PRI, handedness and Hol-
lingshead Socioeconomic Status (SES). The groups differed
on diagnosis (X2 5 18.547, P < 0.001) and total cerebral
volume (TCV) (F 5 23.970, P < 0.001), with the girls hav-
ing smaller percentages of ADHD and ASD subjects and
smaller TCV than the boys. A comparison by gender was
chosen for this proof-of-principle analysis because multiple
areas of significantly smaller volume in girls were pre-
dicted due to overall smaller head and brain size in girls
(for this group, the girls’ mean TCV was found to be 8%

Figure 5.

Mean manual versus automated percent volume difference for each frontal lobe region averaged

over 100 analyzed subjects for FS and T-C automated parcellations with standard error bars.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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smaller than the boys’ mean TCV) and because this com-
parison provided the greatest statistical power for the
available data sample [Caviness et al., 1996; Courchesne
et al., 2000; De Bellis et al., 2001; Dekaban, 1978; Giedd
et al., 1999; Sowell et al., 2002]. Two-way ANOVA analysis
was used to compare regional volumes between the boys
and the girls. In this targeted analysis, TCV was excluded
as a covariate despite a known gender difference in order
to maximize statistical power and the number of regions
showing differences, leaving a full analysis of differences
by gender for future investigations.

The results from the manual parcellations identified sig-
nificantly lower V(M) in the group of girls in bilateral
DLPFC, DWM, medial PFC, and primary motor, right infe-
rior PFC and SMC, and left LPM. The automated T-C
method identified significantly lower V(A) in all of the
same regions (L LPM at trend level, P 5 0.079) plus signif-
icant reductions in bilateral medial OFC and lateral OFC
and left FEF. P-values for each parcellation method are
reported in Table III.

After sampling the manual parcellations to the FS surfa-
ces, significant reductions in cortical V(M) were found in
bilateral DLPFC and medial PFC, left LPM, and right pri-
mary motor and SMC. The automated FS parcellation
method identified significantly lower cortical V(A) in all of
the same regions (L LPM at trend level, P 5 0.053) plus sig-
nificant reductions in bilateral lateral OFC, right inferior
PFC, left medial OFC, primary motor cortex and SMC. P-val-
ues for each parcellation method are reported in Table IV.

Comparing FreeSurfer and TOADS-CRUISE

Automated Parcellations

As an additional test of the reliability of our automated
parcellations, we examined the correspondence between
the FS and T-C automated parcellation methods. To put

both automated parcellations into the same space for com-
parison, the volume-based T-C parcellations were
imported into FS space and sampled to the FS surfaces.

Looking at the overlap between the cortical surface
labels for the automated FS and T-C parcellations, the
Dice’s coefficient averaged over 100 subjects and all frontal
lobe regions was 0.81 (see Fig. 6). In the left hemisphere,
the average Dice’s coefficient was 0.80; in the right hemi-
sphere it was 0.83. Dice’s coefficients for individual frontal
lobe regions ranged from 0.75 to 0.86 except for left and
right FEF, which were 0.62 and 0.59, respectively. Exclud-
ing the FEF, 5 regions had a mean Dice’s coefficient
greater than 0.85, 9 were greater than 0.80 and the remain-
ing 4 were greater than 0.75.

The mean percent volume differences between auto-
mated FS and T-C cortical regions, averaged over all sub-
jects and all regions was 12.4% (see Fig. 7). The mean for
the left hemisphere was 12.2%; for the right hemisphere it
was 12.5%. Average percent volume differences for the
individual frontal lobe sub-regions ranged from 5.7% to
19.6%, except for the left and right FEF, which were 23.6%
and 32.1%, respectively. Excluding the FEF, 12 regions had
a mean percent volume difference less than 10%, 3 were
less than 15%, and the remaining 3 were less than 20%.

Using Pitman’s t-test, we found that the variance in
V(A) for the two methods were comparable at the 0.05
level of significance for 14 out of 20 individual regions. Of
the six regions in which variance was significantly differ-
ent, the directions of the differences were mixed: variance
was higher for the T-C V(A) in four regions (bilateral
medial OFC and bilateral LPM) and higher for the FS V(A)
in two regions (R DLPFC, R primary motor).

Qualitatively, visual comparisons of the automated par-
cellations showed that T-C parcellations did not follow
sulci as closely as FS parcellations, which is most impor-
tant for the anterior cingulate and primary motor cortex
definitions, but T-C parcellations were better at replicating

TABLE III. P-values for male versus female ANOVA for manual and automated T-C parcellation volumes

Anterior
cingulate DLPFC DWM FEF

Inferior
PFC

Lateral
OFC

Medial
OFC

Medial
PFC

Primary
Motor SMC LPM

Left Manual 0.574 0.019 <0.001 0.841 0.106 0.216 0.220 0.003 0.009 0.097 0.023
T-C 0.171 0.004 0.003 0.025 0.007 <0.001 <0.001 <0.001 <0.001 0.191 0.079

Right Manual 0.680 0.007 <0.001 0.781 0.027 0.699 0.139 0.006 <0.001 0.024 0.135
T-C 0.381 0.018 0.008 0.298 0.008 <0.001 0.001 0.007 0.001 0.038 0.072

TABLE IV. P-values for male versus female ANOVA for manual and automated FS parcellation cortical volumes

Anterior
Cingulate DLPFC FEF

Inferior
PFC

Lateral
OFC

Medial
OFC

Medial
PFC

Primary
Motor SMC LPM

Left
Manual 0.682 0.020 0.621 0.307 0.412 0.099 0.009 0.069 0.138 0.019

FS 0.976 <0.001 0.085 0.220 0.021 0.021 0.008 0.007 0.002 0.053

Right
Manual 0.831 0.010 0.848 0.059 0.723 0.179 0.015 0.003 0.022 0.192

FS 0.943 0.005 0.217 <0.001 0.004 0.324 0.001 0.002 0.033 0.085
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the cut planes used in the manual protocol to divide
regions where no explicit sulcal boundaries existed.

Comparing a Mixed-Gender TD Atlas Against

DX-Gender Specific Atlases

In the comparisons conducted to examine the use of an
atlas group composed of mixed-gender TD subjects for
labeling of both boys and girls of all diagnoses, results
were somewhat mixed, with a small number of regions
showing better automated labeling for one DX-group over
another or improvement in labeling with a same-gender,
same-diagnosis atlas group. However, the lack of signifi-
cant effects in a much larger number of regions strongly
supported the use of a TD only atlas. For the automated
FS parcellations, two regions showed a significant effect of
DX-gender group on Dice’s coefficient in MANOVA analy-
sis: L LPM (P 5 0.013) and L SMC (P 5 0.042). Tukey’s
post-hoc tests showed that the effect for L LPM resulted
from a trend level higher Dice’s coefficient for ASD boys
(mean 5 0.711) when compared to ADHD girls (mean 5

0.629, P 5 0.054) and TD boys (mean 5 0.627, P 5 0.057).
The effect for L SMC resulted from a higher Dice’s coeffi-
cient for TD boys (mean 5 0.771) when compared to
ADHD boys (mean 5 0.675, P 5 0.034).

For T-C, three regions showed a significant effect of DX-
gender group on Dice’s coefficient: L DWM (P < 0.001), R

DWM (P 5 0.002) and L LPM (P 5 0.047), Tukey’s post-
hoc tests showed that the effect for L DWM resulted from
a higher Dice’s coefficient for ASD boys (mean 5 0.783)
when compared to ADHD girls (mean 5 0.738, P 5 0.003)
and TD girls (mean 5 0.738, P 5 0.005) and a higher
Dice’s coefficient for ADHD boys (mean 5 0.775) com-
pared to ADHD girls (mean 5 0.738, P 5 0.026) and TD
girls (mean 5 0.738, P 5 0.040). The effect for R DWM
resulted from a higher Dice’s coefficient for ASD boys
(mean 5 0.788) when compared to ADHD girls (mean 5

0.739, P 5 0.004) and TD girls (mean 5 0.741, P 5 0.011).
For L LPM no DX-gender group had a significantly higher
Dice’s coefficient than any other group (all P > 0.109).

To test single gender, single diagnosis atlas groups we
calculated the manual versus automated Dice’s coefficients
for same gender, same diagnosis atlas parcellations and
compared them to the Dice’s coefficients for the original
mixed-gender, TD atlas parcellations. Analysis of variance
(ANOVA) revealed that using DX-gender specific atlases
resulted in significantly higher Dice’s coefficients for two
regions for a single DX-gender group in either T-C or FS
automation. However, these results were countered by the
fact that DX-gender specific atlases resulted in significantly
lower Dice’s coefficients for five regions, each for a single
DX-gender group and automation method. The overall
lack of significant evidence for improvement in automated
labeling using same-gender, same-diagnosis atlas groups

Figure 6.

Mean automated FS versus automated T-C Dice’s coefficients for each frontal lobe region aver-

aged over 100 analyzed subjects with standard error bars. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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validated our choice of a group composed of 13 mixed-
gender TD subjects as the final atlas group.

DISCUSSION

The automated implementation of the Ranta et al. [2009]
frontal lobe parcellation protocol is a further step in our
pursuit of a parcellation methodology that provides meas-
ures of functionally relevant frontal components, rather
than primarily or predominantly anatomical components
as in most previously published methodologies. Our anal-
yses show that we have developed a reliable method to
automatically parcellate brain MR data into functionally
relevant frontal lobe sub-regions using two programs for
brain MR segmentation and parcellation (i.e., FS and T-C).
Although the automated methods do not reproduce the
manual results exactly, this is not entirely unexpected nor
undesirable. Overall, the reliability results are reasonably
high, particularly considering that many of the regions
being defined do not have boundaries visible in MR
images, such as a continuous sulcal division or a change
in tissue type, to guide automated parcellation. Addition-
ally, the proof-of-principle application of the protocol to a
cohort of boys and girls provides evidence of the feasibil-
ity and sensitivity of the automated methods and the high
correspondence between the FS and T-C automation

methods is strong evidence for the validity of the auto-
mated results.

In developing automated parcellation methods based on
our frontal lobe protocol we were seeking a tool for rela-
tively large-scale analyses, with the goal of identifying the
anatomic correlates of a particular neuropsychiatric disor-
der through the application of a protocol to a large number
of subjects. Because of its inherent statistical power, this
approach allows the detection of subtle anatomical differen-
ces even if the protocol used presents some sensitivity or
specificity deficiencies. Moreover, automated methods can,
by definition, apply rules more consistently and objectively
than human raters. Automated MR parcellation methods
currently in use have most often been applied to regions
with relatively clear boundaries, particularly the hippocam-
pus [e.g., Jatzko et al., 2006; Nifosi et al., 2010; Tae et al.,
2008] or to gyral-based cortical surface parcellation [e.g.,
Lemaitre et al., 2010; Li et al., 2009; Lopez-Garcia et al., 2006;
Makris et al., 2005]. For regions like the hippocampus or the
supramarginal gyrus, where relatively explicit boundaries
exist, a carefully defined and executed manual delineation
is generally considered the best possible parcellation
method. However, in the definition of frontal regions, where
sulcal boundaries often do not correspond to functional
boundaries and no equally clear division is visible in MR
scans, the alternate benefits of manual and automated par-
cellations are more open to debate. Furthermore, a true

Figure 7.

Mean automated FS versus automated T-C percent volume difference for each frontal lobe

region averaged over 100 analyzed subjects with standard error bars. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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definition of functional divisions in any individual brain is
only possible with methods beyond MR scanning, such as
detailed electrophysiological mapping or post-mortem
cytoarchitectonic and connectivity studies. Thus, although
our manual protocol definitions are based on a large body
of information from electrophysiological, cytoarchitectonic,
magnetic stimulation and functional imaging findings,
which can be translated onto MR macroanatomy, they are
still only informed approximations of the true functional
divisions for each individual brain. However, this is not a
reason to abandon detailed MR brain parcellation studies.
Rather, in light of the significant contributions to the study
of neuropsychiatric disorders that have been made with MR
parcellation studies, the best methods for applying MR par-
cellations should continue to be refined, especially as stron-
ger MRI scanners and more sophisticated automation
techniques become available.

Our analyses show that for all regions except the FEF, a
mean Dice’s coefficient of at least 0.67 and a percent vol-
ume difference of less than 29% were achieved for both
the FS and T-C automation methods, indicating fairly high
overall reliability between manual and automated labeling.
The lower Dice’s coefficients and higher percent volume
differences for the FEF, although not ideal, are not entirely
surprising. The FEF is the smallest region defined, has a
particularly complicated boundary definition because it
touches neither the medial nor lateral surface of the brain,
and had the lowest intra- and inter-rater reliability results
for the manual protocol application [Ranta et al., 2009]. In
addition, some difficulty in defining the DWM is apparent
in the percent volume difference results for the T-C auto-
mated parcellation but the issues with the DWM are not
as severe as those for the FEF. Moreover, the main goal of
DWM definition is the division of long or projecting asso-
ciation fibers from short association fibers (gyral white
matter with strong associations to particular cortical
regions), more than the measurement of DWM itself.

The decreased variance in automated versus manual
parcellation volumes is worth noting. The regions with
particularly small or large volumes that were produced for
individual subject brains with manual parcellation seem to
be considered extremes which are not permitted in the
automated parcellations. We can speculate that this is due
to decreased sensitivity in the automated protocol, in
which real extremes in anatomical variability are being
ignored, or we can attribute the difference to lower consis-
tency in the manual protocol and the possibility of rater
error. Without additional information available outside of
MR imaging, we cannot know for certain which delinea-
tion is true for any particular parcellation, however, if the
ultimate goal of frontal lobe parcellation is group analysis,
the details underlying the difference may be of lesser im-
portance than the overall consistency of the results.

The proof-of-principle application of the FS and T-C auto-
mated protocols to a cohort of boys and girls provides im-
portant evidence in support of the consistency and possibly
increased sensitivity of the automated parcellation methods

proposed here. Every region for which volume was found
to be significantly different between genders using man-
ually derived volumes was also found to be significantly
different using automatically derived volumes—mostly at
the P < 0.05 level and always at no less than trend level.
Both of the analyses using automatically derived volumes
also identified a number of additional significant volume
differences in frontal lobe regions. Based on previous stud-
ies including subjects in the same age range [Caviness et al.,
1996; Courchesne et al., 2000; Sowell et al., 2002] we
hypothesized that there would be widely distributed vol-
ume reductions in girls compared to boys. None of these
previous studies specifically tested for differences in frontal
lobe sub-regions, however we believe that a relatively even
distribution of lower volumes is likely and that increased
sensitivity, rather than over-identification, in the automated
versus manual methods is a logical, though not certain, con-
clusion. The results are probably influenced by the signifi-
cantly lower between-subject variance in the automated
methods’ results as well, given that variance and statistical
sensitivity are interrelated. Although open to some debate,
these findings are potentially strong evidence of high con-
sistency between automated and manual frontal lobe parcel-
lation methods, as well as of possibly increased sensitivity
of the automated methods.

The inclusion of two distinct automation methodologies
in this study, that is, one cortical (FS) and one volume-based
(T-C), introduces a degree of uncertainty into the evaluation
of the automated FS parcellations and comparisons of the
two automated methods. Some level of distortion is inevita-
bly introduced by sampling from a volume to a surface, as
is some degree of bias due to the manual parcellations hav-
ing been carried out in the volume before being sampled to
the surface for use in FS automation [Klein et al., 2010].
However, we expect these issues to be relatively minor due
to the fact that the volume to surface sampling was done
directly for one subject at a time and consisted of transfor-
mation from a single volume image to surfaces that were
created from the same image and because the majority of
the labeling landmarks were based on surface features. In
addition, the use of two different methodologies allows
users the option to choose the method of parcellation that
best fits their research goals and also enabled a more power-
ful examination of automation validity and reliability.

In comparing the automated FS and T-C parcellations,
we found a high average Dice’s coefficient as well as a
low average percent volume difference. These high levels
of correspondence between FS and T-C were higher than
those for comparisons between the manual approach and
either automated method. Both methods appear to be pri-
oritizing the same information from the manual parcella-
tions on which they were based, and the high level of
agreement greatly reduces the possibility that the parcella-
tion results are an artifact of a particular feature of either
automation method.

Given the multistep development of the automated par-
cellation methods presented here, it is difficult, if not
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impossible, to separate the individual contributions made
by protocol design, intersubject anatomic variability and
automation method to final discrepancies in manual ver-
sus automated labels. With the comparison of two auto-
mated parcellations we have ruled out any major bias
introduced by either program and the high manual proto-
col intra- and inter-rater reliability measures reported in
Ranta et al. [2009] indicate that there were no major issues
with protocol design or intersubject variability for manual
raters.

Despite the multiple strengths of our data discussed
above, there were also limitations. First, our automated
parcellations were developed using manual parcellations
of MR scans of children in a narrow age range (i.e., 8–13).
Applicability was tested on children with ADHD and
ASD, two highly prevalent neurodevelopmental disorders,
but no other disorders with major volumetric or conforma-
tional abnormalities were included. However, the inclu-
sion of subjects with ADHD and ASD in this study
demonstrates the feasibility of our methods for analysis of
neuropsychiatric disorders and allows for a future exami-
nation of group differences with the application of the
automated approach to larger samples than could easily
be analyzed using a manual parcellation protocol.

CONCLUSION

With frontal divisions closely corresponding to func-
tional regions and high consistency and speed, the auto-
mated FreeSurfer and TOADS-CRUISE implementations of
our frontal lobe parcellation protocol presented here have
the potential to further our understanding of the anatomic
substrates of the large number of disorders in which fron-
tal lobe abnormalities are hypothesized to be a contribut-
ing factor.
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