Skip to main content
. 2013 Apr 27;32(2):69–76. doi: 10.12938/bmfh.32.69

Table 3. Summary of the computational processing of 454 pyrosequence data.

Step Process Program Program source (URL or e-mail) Calculator machine # of query
seqs.
Output Time
1 Barcode sorting split_libraries.py QIIME (http://qiime.org/scripts/split_libraries.html) Windows 64 bit PC* 1,583,218** 106 to 8618 reads per subject 10 min
2 OTU clustering pick_otus_through_otu_table.py QIIME (http://qiime.org/scripts/pick_otus_through_otu_table.html) Windows 64 bit PC 131,768 15,578 redundant seqs. 17 min
3 de novo chimera check de novo Uchime Mothur 1.25.1 (http://www.mothur.org/wiki/Download_mothur) Windows 64 bit PC 15,578 7,200 chimeric seqs. 6 min
4 DB chimera check DB Uchime Mothur 1.25.1 (http://www.mothur.org/wiki/Download_mothur) Windows 64 bit PC 15,578 7,852 chimeric seqs. (6,612 chimeric seqs.)*** 7 hrs
5 Sequence search up to genus level RDP Classifier RDP II (http://rdp.cme.msu.edu/) RDP host computer 8,966 9 phyla–109 genera 10 min
6 Sequence search in species level RDP Seqmatch RDP II (http://rdp.cme.msu.edu/) RDP host computer 8,966 3,992 seqs identified with know species 3 hrs
7 Data processing
of RDP Seqmatch
SeqmatchQ400 Kyushu Univ(nakayama @ agr.kyushu-u.ac.jp) Windows 64 bit PC 8,945 276 species 30 min

*Intel Core i7-3930 K CPU (3.20 GHz). **Batch sequence data included all sequences from 2 x half PicoTiterPlate regions, which contained 256 samples including non-Singaporean samples. ***The number of chimeric sequences determined by taking into account both de novo and DB chimera checks.