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Abstract

Subject attrition is a ubiquitous problem in any type of clinical trials and thus needs to be taken

into consideration at the design stage particularly to secure adequate statistical power. Here, we

focus on longitudinal cluster randomized clinical trials (cluster-RCT) that aim to test the

hypothesis that an intervention has an effect on the rate of change in the outcome over time. In this

setting, the cluster-RCT assumes a three level hierarchical data structure in which subjects are

nested within a higher level unit such as clinics and are evaluated for outcome repeatedly over the

study period. Furthermore, the subject-specific slopes can be modeled in terms of fixed or random

coefficients in a mixed-effects linear model. Closed form sample size formulas for testing the

hypothesis above have been developed under assumption of no attrition. In this paper, we propose

closed form approximate samples size determinations with anticipated attrition rates by modifying

those existing sample size formulas. With extensive simulations, we examine performances of the

modified formulas under three attrition mechanisms: attrition completely at random, attrition at

random and attrition not at random. In conclusion, the proposed modification is very effective

under fixed slope models but yields biased, if not substantially, statistical power under random

slope models.
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1. Introduction

Subject attrition during a clinical trial is a norm rather than an exception. For example, a

review of attrition problems in geriatric psychiatry clinical trials reveals that average

attrition rates over 68 studies is about 27.3% ranging from 3.1% to 54.1% (Heo et al., 2009).

Such attrition problems may also apply to longitudinal cluster randomized trials (cluster-

RCT), which we are considering in this paper. A cluster-RCT typically assumes a three level

data structure in that interventions are randomly assigned to clusters such as clinics (level 3)

which follow up subjects (level 2) for repeated assessments (level 1) during the study period.
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At the design stage, as important as planning analytic strategies about handling attrition

problems, sample size determinations under anticipated attrition rates should also be put into

place in part because subjects’ attritions compromise statistical power of trials. The most

intuitive strategy would be to multiply by some factor a number of subjects determined

under assumption of no attrition, i.e., under a hypothetically ideal situation. For example, if

an anticipated attrition rate is ξ (0<ξ<1), then the multiplication factor would be 1+ξ/(1 −

ξ). Although this strategy could be very effective in a typical parallel group design with only

one level data structure, we suspect that it would result in an over-powered study of a

cluster-RCT particularly because the number of observations is not taken into account for

such sample size determinations.

In this paper, we consider a cluster-RCT in which the primary goal is to compare the

longitudinal courses in a continuous outcome between two groups, e.g., control and

experimental. For example, this hypothesis has been tested in a cluster randomized trial to

evaluate the effect of an intervention for depression in the primary care setting on change in

depression symptoms using the Hamilton rating scale for depression (Alexopoulos et al,

2005.; Dietrich et al., 2004). The individual longitudinal courses can be modeled as random

or fixed slopes of the outcome over the time at the subject level for the purpose of the

comparison. The difference in mean slopes over subjects between groups can then be

assessed by including in a linear mixed effects model an interaction term between the

treatment and time effects (Laird and Ware, 1982; Longford, 1993). Sample size

determination formulas for testing this interaction are available under both a fixed slope

model (e.g., Heo and Leon, 2009) and a random slope model (Murray et al., 2007; Roy et

al., 2007).

The two parameters in existing formulas that would be affected by subject attrition are the

number and the variance of the assessment time points per subject. Therefore, our sample

size determination (with respect to the number of subjects) strategy is to replace those two

parameters by their corresponding expected number and variance under anticipated attrition

rates. While Murray et al. (2007) approaches considered broader and more general models

for sample size determinations, they did not examine performances of their approach under

anticipated attrition problems. Although Roy et al (2007) also considered general models

and examined attrition effects on sample size determinations based on implicit approach

using critical regions determined by χ2 distributions of feasible version generalized least

square estimates, they appeared to consider only attrition completely at random mechanism.

In contrast, we consider a specific model specified below and our sample size determination

strategy mentioned above is simple and straightforward. Furthermore, our approach results

in closed form power functions and sample size formulae and we hypothesize that the

resulting multiplication factor would be smaller than 1+ξ/(1 − ξ).

We examine the performance of our approach with extensive simulations considering the

following factors among others: fixed and random slope models; different attrition rates;

different distributions of attrition time points; and three different attrition mechanisms.
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2. Statistical Model

A three level mixed-effects linear model for outcome Y with subject-specific random slopes

can be expressed as follows (Hedeker and Gibbons, 2006):

(1)

where i =1,2,…,2N3 is the index for the level three unit (e.g., clinic); j = 1,…, N2, is the

index for the level two unit (e.g., subject) nested within each i; and k = 1, 2, …, N1, is the

index for the level one unit (e.g., repeated outcomes) within each j. The intervention

assignment indicator Xijk = 0 and 1 if the i-th level three unit is assigned to a control

intervention and an experimental intervention, respectively. Here we consider a design with

Xijk = Xi for all j and k and also a balanced design so that Σi Xi = N3. In addition, it is

assumed that Tijk = Tk for all i and j, and that the time from T1 = 0 (the baseline) to Tend = N1

− 1 (the last time point) increases by equal unit time intervals.

With respect to the random effects, it is assumed that: 1)

 and ; 2) these four random

components are mutually independent i.e., ui ⊥ uj(i) ⊥ eijk ⊥νj(i) ; and 3) uj(i), νj(i) and eijk

are conditionally independent whereas the ui are unconditionally independent—that is, both

uj(i) and νj(i) are independent conditional on ui, and the eijk are independent conditional on

ui, νj(i) and uj(i). When , model (1) reduces to the fixed slope model.

For the fixed effects, the parameter ζ represents the intervention effect at baseline, and the

parameter τ represents the slope associated with the time effect, that is, the magnitude of the

change in outcome over time, in the control group. Finally, the intervention-by-time effect δ,

the parameter of primary interest, represents the difference in mean slopes of the outcome Y

between the intervention groups. The overall intercept (fixed) is denoted by β0.

Given that the parameter δ is of primary interest, the relevant null hypothesis can be

expressed as:

(2)

Under model (1), it can be shown that the elements of the mean vector for the outcome are

equal to E(Yijk) = β0+ξXi +τTk +δXiTk and the elements of the covariance matrix are:

where 1(.) is an indicator function. It follows that:
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where , the variance of Y under the fixed slope model with .

Therefore, the correlations among the level two data, i.e., among outcomes from different

second level clusters (subjects) but the same third level cluster (clinic), can be expressed for

j ≠ j′ as follows:

The correlations among the level one data, i.e., among outcomes measured at different time

points on the same subject nested within clinics, can be expressed for k ≠ k′ as:

Under the fixed slope model, i.e., when , the correlations reduce to the following,

respectively:

(3)

and

(4)

3. Statistical Power and Sample Size with No Subject Attrition

It has been shown under assumption of no subject attrition that the power function to test the

null hypothesis (2) based on the ordinary least squares estimate of δ can be written as

follows (e.g., Murray et al., 2007; Heo et al., in press):

(5)

where α is a two-sided significance level; Φ is the cumulative distribution function (CDF) of

a standard normal distribution and Φ−1 is its inverse;

is a standardized effect size;
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is the ratio of the random slope variance to the sum of the other variances; and

 is the “population variance” of the time variable T where

 is the “mean” time point. We assume that δ = |δ| > 0 and also that the

probability below a critical value, Φ −1(α/2), in the other side under the alternative

hypothesis is negligible and thus considered as 0. When  or rτ = 0, the effect size Δ is

identical to the standardized effect size for the slope difference δ and power function (5) is

the same as that derived under a fixed slope model (Heo and Leon, 2009).

It follows that the required sample size per group for the number of subjects N2 per level

three unit, for a desired statistical power φ with a two-sided significance level α, can be

calculated from equation (5) as:

(6)

More precisely, N2 is the smallest integer greater than the right hand side of equation (6). In

sum, the validity of this sample size formula has been supported by extensive simulations

(Heo et al., 2012).

4. Statistical Power and Sample Size with Anticipated Attritions

A heuristic strategy for derivation of approximate sample sizes would be to replace both N1

and Varp(T) in equation (6) with the corresponding expected values with an anticipated

subject attrition rate. To this end, we assume no attrition at baseline, i.e., when T = 0, but

consider only monotone attrition pattern in that subject outcome Y is observed at every time

point T before attrition but no additional outcomes are observed after attrition. Therefore, the

overall attrition rate, ξ = P(A ≤ Tend), where A is attrition time, is equivalent to one minus

the proportion of participants who appeared at the last visit. Here, we further assume that the

distribution of attrition time A is uniform over or linearly increasing with T = 0, 1, 2, …, N1

− 1 = Tend. For the “uniform” distribution, probability of attrition at time t can be defined as

which yields . For the “linear” distribution in which attrition rates increase over

time,
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which also yields . However, we do not make any distributional assumption about

A when A > Tend except that P (A > Tend) = 1 − ξ. From now on, the superscripts “(u)” and

“(l)” will represent “uniform” and “linear” distributions of attrition time, respectively.

The expected number of observations per subject can then be obtained as follow:

and

Either of these does not have to be an integer number. It can be seen that

(7)

This inequality implies that total number of observations will be larger under the linear

distribution of attrition time.

On the other hand, the probability distribution of T, P(T = t), at which the observations are

made is no longer uniform under the assumed monotone attrition pattern regardless of the

types of the distribution of the attrition time. Under the uniform and linear attrition time

distributions, they can be obtained respectively as follows:

and

The first and the second moment of T under these probability distributions can then be

obtained as follows:
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and

Consequently, the variances can be obtained as:

and

Therefore, the approximate statistical power with the anticipated overall attrition rate ξ can

be expressed under the uniform and linear distribution of attrition times respectively as

follows:

(8)

and

(9)

It follows that the approximate sample size determinations with the anticipated overall

attrition rate ξ are:

(10)
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and

(11)

Here again, both  and  are the smallest integers greater than their corresponding

right hand sides of equations (10) and (11).

Let us denote the ratio, or the multiplication factor, in the number of subjects due to the

anticipated attritions by

(12)

and

(13)

which we expect would be less than 1 + ξ/(1 − ξ).

5. Attrition Mechanisms

To explore the validity of the approximate sample size formulae N2
(u) (10) and N2

(l) (11)

with anticipated attrition rates we consider the following three conventional attrition

mechanisms (Little and Rubin, 2002): 1) Attrition completely at random (ACAR), that is,

occurrence of a subject’s attrition does not depend on any observed or unobserved

outcomes; 2) Attrition at random (AAR), that is, occurrence of a subject’s attrition depends

on observed outcomes; and 3) Attrition not at random (ANAR), that is, occurrence of a

subject’s attrition depends on unobserved outcomes. To generate missing data based on each

mechanism, we first group the subjects who are retained at each time point t into quartiles:

Q1(t), Q2(t), Q3(t), and Q4(t). This quartile grouping is based on values of outcome variable

Y among the retainers discounting the dropouts.

Based on the quartile grouping, the conditional distributions of attritions can be formulated

in the following way. First, the conditional probability of attrition at time t among retainers

up to time t can be written as: with the superscripts indicating “uniform” or “linear”

suppressed,

When the quartiles are based on Yt−1, the conditional distributions of attrition times for the

g-th quartile can be written as
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which yields  and thus . Similarly, when the

quartiles are based on Yt, the conditional distributions of attrition times for the g-th quartile

can be written as

which yields  and thus .

For the ACAR mechanism, we consider ωg (t) = zt for all g and t > 0, i.e., subject attrition at

time t does not depend on any previous observations. For the AAR mechanism, we consider

that the percentages of dropouts at time t whose observed outcomes at time t − 1 belong to

Q1(t−1), Q2(t−1), Q3(t−1), and Q4(t−1) are 10%, 20%, 30% and 40%, respectively.

Specifically, ω1(t) = .4zt, ω2(t) = .8zt, ω3(t) = 1.2zt and ω4(t) = 1.6zt. Under the AAR

mechanism, the subject attrition depends on the observed outcomes at time t − 1, that is, the

time immediately prior to attrition. For the ANAR mechanism, we similarly consider the

percentages of dropouts at time t whose observed outcomes at time t belong to Q1(t), Q2(t),

Q3(t), and Q4(t) are 10%, 20%, 30% and 40%, respectively. Specifically, ϖ1 (t) = .4zt, ϖ2(t)

= .8zt, ϖ3(t) = 1.2zt and ϖ4(t) = 1.6zt. Under the ANAR mechanism, the subject attrition

depends on the unobserved outcomes at time t, that is, the time of attrition.

6. Simulation study

We conduct simulation studies to examine the performance of the sample size  and 

a two-sided significance level α = 0.05 and a desired power φ = 0.8 under the following

combinations: ΔTend = Δ(N1 − 1) = 0.4, 0.5; N3 = 10, 20; N1 = 5, 9; ρ1 = 0.4, 0.6; rτ = 0.0,

0.1, 0.2, while without loss of generality, σ = 1, ρ2 = 0.1, β0 = ζ = 0, and τ = −1 in model

(1) remained fixed. Of note, when rτ = 0.1 or 0.2 under the random slope models with

missing data, N1 = 9 was excluded due to enormous computing times for simulations (Ahn

et al., 2000; Overall et al., 1999). Values for  and  were determined through ρ2 (3) and

ρ1 (4). The effect size of the interaction Δ is specified as a standardized between-group mean

difference ΔTend = Δ(N1 − 1) at the end of trial under a fixed slope model. Effect sizes in the

range of 0.4–0.6 have generally been referred to as medium (Cohen, 1988). We further

considered two attrition rates, ξ = 20% and 30%, and two types of distributions, uniform and

linear, of the attrition time points as detailed above.

For each combination, we first computed: E(u)(N1), , E(l)(N1), and , and

subsequently  and . We then generate 1000 simulated data sets for each combination

with each estimated  or  in accordance to model (1): Yijk = (β0 + ui + uj(i)) + ζXijk +
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(τ +νj(i))Tijk + δXijk Tijk + eijk,. Finally, according to the three ACAR, AAR and ANAR

mechanisms specified in the section above, we delete outcomes from each “complete” data

set generated with N1 observations per subject, resulting in three data sets with deleted

observations.

Although the sample size determinations were derived based on OLS estimates with known

variance components, in order to reflect real data analysis with unknown variance

components, we fit each deleted data set using SAS PROC MIXED with the maximum

likelihood estimation option and retained the resulting p-values for testing the null

hypothesis (2). We denoted the p-value by ps(δ) for the s-th simulated data set (s = 1, 2,..,

1000) and computed the empirical power φ̃, φ̃(u) or φ̃(l), as follows:

(14)

This empirical power is compared with the approximate power φ on which the sample sizes

N2
(u) and N2

(l)are based. We note that φ is never less than the pre-specified power of 0.8

since both N2
(u)and N2

(l) are the smallest integer greater than the right hand side of equation

(10) and (11), respectively.

7. Simulation study results

Attrition rates

Over all combinations of the simulation specifications, the empirical attrition rates based on

simulated data are virtually identical to the pre-specified attrition rates ξ = 20% and 30%

regardless of the three different attrition mechanisms and distributions of attrition time

points, uniform and linear.

Under fixed slope model

Table 1 summarizes numerical and simulation results when the slopes are considered fixed,

i.e., when rτ = 0.0. The average ratios R(u) (12) and R(l) (13) are both much less than 1 +

ξ/(1 − ξ) = 1.25 and 1.43 for ξ = 20% and 30%, respectively. Nevertheless, we observe

from the evaluation of max|φ − φ̃| that the empirical power estimates are very close to the

approximate power regardless of attrition mechanisms and across all simulation parameter

combinations. As is foreseen from equation (7), R(u) is no greater than R(l) in every

simulation combination. Furthermore, R(l) is 1.0 in many cases for both ξ = 20% and 30%

without loss of statistical power. In general, both R(u) and R(l) are smaller for greater Δ.

Under random slope model

Table 2 summarizes numerical and simulation results when the slopes are considered

random, i.e., when rτ = 0.1 or 0.2. Again, the average ratios R(u) and R(l) are both much far

less than 1 + ξ/(1 − ξ) = 1.25 and 1.43 for ξ = 20% and 30%, respectively. In fact, these are

even smaller than those under fixed slope model above partly because N2 are much greater

due to additional random variations in slopes. However, the simulation-based empirical

power estimates underestimate somewhat severely the approximate statistical power.
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Although the absolute difference |φ − φ̃| is not necessarily associated with attrition

mechanism or with distribution of attrition times, it ranges from 0.001 to 0.64 for ξ = 20%;

and from 0.019 to 0.078 for ξ = 30%. The underestimation is more severe for the greater

attrition rate ξ = 30%. In this case, despite that the biases are about 5%, all of the absolute

differences |φ − φ̃| are beyond the 95% confidence limit, 

except only one case. Again, R(u) is no greater than R(l) in every simulation combination and

R(l) is 1.0 in many cases for both ξ = 20% and 30% but seemingly at the cost of statistical

power. Again, in general, both R(u) and R(l) are smaller for greater Δ.

8. Discussion

The proposed replacement strategies reflected on N2
(u) (10) and N2

(l) (11) are shown very

effective resulting nearly unbiased statistical power when the subject-specific slopes are

assumed to be fixed despite the fact that the empirical power estimates were obtained based

on simulations with maximum likelihood estimates with unknown variances. Furthermore

under this fixed slope model, the finding that R(l) (13) in many cases and R(u) (12) in some

cases are 1.0 for both ξ = 20% and 30% implies that no additional recruitment of study

subjects may be necessary in those cases. It is because in those cases the statistical power φ
(5) under assumption of no attrition might be substantially greater than 0.8 with “integer”

values of N2 (6).

On the other hand, when the subject-specific slopes are assumed to be random, the

replacement strategy yields underestimated statistical power, that is, the magnitudes of

empirical power with sample sizes N2
(u) (10) and N2

(l) (11) are smaller than those of the

approximate power φ(u) (8) and φ(l) (9), respectively. The underestimation was more severe

for the greater attrition rate. Both R(u) and R(l) are close to 1.0 less than 1.1 in almost all

cases regardless of the attrition rates because N2 (6) under no attrition is large (compared to

that under fixed model) due to the additional variance of the subject-specific slopes. If the

empirical statistical power were more close to unknown “true” statistical power under

attrition than the approximate power (8) and (9), then these approximations might

overestimate statistical power under random slope models. Although the empirical statistical

power is more likely close to the unknown true statistical power, potential sources of the

discrepancy between the empirical and the approximate power are unknown. For example, it

could be due to inaccuracy of the approximate power, or due to potential loss of power

stemming from the unknown variance assumptions in empirical power estimates, or due to

both. Regardless, however, some additional adjustments to N2
(u) and N2

(l) deem necessary to

yield unbiased statistical power under the random slope model. The adjustment does not

appear to be substantial given that underestimation is about 5% point on average. For

example, the sample sizes N2
(u) and N2 (l) can be used as a lower reference bound for

conducting empirical simulations iteratively by slightly increasing the number of subjects

per cluster until empirical power (14) reaches desired statistical power.

In either fixed or random slope model, nevertheless, multiplication of N2(6) by 1+ξ/(1 − ξ)

would result in an over-powered study design. However, it is surprising that the performance

of the replacement strategy did not depend on attrition mechanisms in view of the empirical
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power. In particular, the empirical power under ANAR was virtually identical to those under

ACAR and AAR regardless of models, attrition rates, and distribution of attrition times.

Although we assume monotone attrition patterns and considered scenarios of the three

attrition mechanisms are somewhat limited, this finding implies that the replacement

strategy is robust against unknown attrition mechanisms.

Several limitations should be considered when the derived approximate sample size

determinations are applied. First, model (1) requires a minimum number of parameters in a

class of models for longitudinal cluster trail data and thus may not necessarily reflect a real

situation. For instance, when the subject-level random intercepts uj(i) and random slopes νj(i)

are correlated, the approximate sample size determination might be even more biased.

Therefore, if pilot data were available, testing significance of the correlation in addition to

testing significance of variance of random slopes would be important to determine whether

to apply the derived sample size formulas. Second, the attrition process may not necessarily

be monotone and the distribution of attrition rates may not be uniform or linear. Third, real

attrition mechanisms are usually unknown in real practice and may not necessarily be a

function of the quintile grouping of the outcome variable. Theoretical derivations, if

possible, of sample size determinations addressing all of these concerns that could result in

minimized bias should deserve future studies.

In conclusion, even though their application might be limited in real practice, the closed

form approximate sample size formulas N2
(u) and N2

(l) should be useful for designing a

cluster randomized trial where testing slope differences is a primary goal. If the subject-

specific slopes are homogeneous, the approximate determinations should be accurate and

unbiased. Otherwise, some adjustments, if not substantial, are needed to secure adequate

statistical power.
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