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The 𝛽-site APP cleaving enzyme 1 (BACE1) is an important target for causing Alzheimer’s disease (AD), due to the brain deposition
peptide amyloid beta (A𝛽) require cleavages of amyloid precursor protein (APP) by BACE1 and 𝛾-secretase, but treatments of
AD still have side effect in recent therapy. This study utilizes the world largest traditional Chinese medicine (TCM) database and
database screening to provide potential BACE1 inhibited compound. Molecular dynamics (MD) simulation was carried out to
observe the dynamics structure after ligand binding. We found that Triptofordin B1 has less toxicity than pyrimidine analogue,
which has more potent binding affinity with BACE1. For trajectory analysis, all conformations are tending to be stable during
5000 ps simulation time. In dynamic protein validation, the residues of binding region are still stable after MD simulation. For
snapshot comparison, we found that Triptofordin B1 could reduce the binding cavity; the results reveal that Triptofordin B1 could
bind to BACE1 and better than control, which could be used as potential lead drug to design novel BACE1 inhibitor for AD therapy.

1. Introduction

Alzheimer’s disease (AD) is a progressive neurological disease
of the central nervous system (CNS) that affects aging
patients in the world [1–3]; the causes of AD are not well
understood; recent studies indicate that the progression is
associated with plaques accumulation and tau protein in the
form of neurofibrillary tangles in the cortical region of brain
[4–6]. The amyloid hypothesis indicated that amyloid is the
initial cause of AD disease contributing to plaques accumu-
lation; one of AD hallmarks is an aggregation of amyloid 𝛽
(A𝛽) leading to deposition of 𝛽-amyloid in the brain [7].
In A𝛽 reducing approaches, numerous studies demonstrate
that amyloid vaccine can remove the amyloid plaques from
the brains of the mice and reverse cognitive impairment [8–
11], but in human clinical trials, the immunotherapy has side
effects during the process of treatment, including autoim-
munity [12] and high incidence of meningoencephalitis [13];
clearance of A𝛽 deposition still has problems for developing
AD therapy. Hence, we focus on disrupt formation of A𝛽

from amyloid precursor protein (APP), cleavage by enzymes
for AD prevention. The 𝛽-secretase is also called BACE1 (𝛽-
site amyloid precursor protein cleaving enzyme 1), which
is an important enzyme in development of AD pathology.
BACE1 cleaves transmembrane APP between residues 671
and 672, and carboxy-terminal fragment of APP is cleaved
by 𝛾-secretase, facilitating intramembrane proteolysis by the
presenilin 1 (PSEN1) and presenilin 2 (PSEN2) [14, 15].
Subsequently the small 4 kilodalton of amyloid-A𝛽1-40 and
A𝛽1-42 is generated by sequential 𝛽 and 𝛾-secretase cleavage
of APP. Hence, the BACE1 has been recognized as a drug
target for curing AD in many studies [16–18].

In this study, in order to design potential lead drugs for
BACE1 inhibitor from nature products, computer-aided drug
design (CADD)was employed to this research [19, 20], which
includesmolecular simulation andweb server calculation [21,
22]. The nature products from world largest TCM database
(TCM Database@Taiwan) were used to investigate more
safety drugs [23], because TCM has been wildly used in
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Figure 1: Disorder analysis of sequence of BACE1 from result of PONDR-FIT prediction; the value of disorder disposition above 0.5 indicate
disorder residues.
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Figure 2: Chemical scaffolds of 1M7 (control) and Triptofordin B1.

clinical therapy for thousand years and also used in devel-
oping potential illness therapies [24–26]. The approach of
CADDcombinedwith TCMdatabase has beenwildly used to
design new drugs successfully in many cases, including type
II diabetes [27], neurotropic pain [28], head and neck cancer
[29], hypertension [30], influenza [31–34], inflammation [35],
breast cancer [36, 37], HIV virus [38], neuroprotection [39,
40], insomnia [41], erectile dysfunction [42], stroke [43–45],
and weight loss [46, 47]. For drug targets, CADD should
depend on risk factors study [48–51] and theories [52] to
identify direction of each research. Hence, we present small
molecular from world largest TCM database to analyze
potential nature products by docking study between protein
and small TCM compounds. Because BACE1 inhibitors are
considered blood brain barrier (BBB) permeability, we also
utilize ADMET prediction to evaluate the screening results
from docking studies. Besides, we also employed molecular
dynamics (MD) simulations to construct dynamic structure
of BACE1 with docked ligands, observing the conformation
changes over all simulation times.

2. Materials and Methods

2.1. Small Molecules and Protein Structure Preparation.
The total numbers of TCM compounds from TCM
Database@Taiwan were 61,000, and we employed the
TCM compounds to search potent ligand as BACE1 inhibitor
by docking study. We further used ADMET prediction
and Lipinski’s rule of five [53, 54] to estimate drug-likeness

of the TCM compounds from docking results; these
rules make them a likely oral drug in the human body.
For ADMET prediction, we based on BBB penetration,
CYP2D6 inhibition, and hepatotoxicity to analyze all docked
ligands. The crystal structure of BACE1 was taken from
PDB database (PDB code: 4JPE) [55]; the missing atoms
and loops were corrected by Prepare Protein module under
Accelrys Discovery Studio 2.5.5.9350 (DS 2.5) [56]; residues
of BACE1 were protonated in pH 7.4 condition. We also used
PONDR-FIT [57] to evaluate unfolded regions on BACE1
sequence for structure validation.

2.2. Docking Study. The volume of BACE1 inhibitor (1M7)
in crystal structure of BACE1 was defined as binding site for
screening TCM compounds through protein-ligand interac-
tion; different poses of TCM compound were generated by
Monte-Carlo techniques; docking study was performed by
LigandFitmodulewithinDS 2.5.We utilizedCHARMmforce
field [58] to minimize the conformation of each ligand. The
energy function is as follows:

𝑈 (𝑅) = ∑
bonds

𝐾𝑏(𝑏 − 𝑏0)
2
+ ∑

angle
𝐾𝜃(𝜃 − 𝜃0)

2

+ ∑
Urey-Bradley

𝐾UB(𝑆 − 𝑆0)
2

+ ∑
dihedrals

𝐾𝜑 (1 + cos (𝑛𝜑 − 𝛿)) + ∑
bonds

𝐾𝜔(𝜔 − 𝜔0)
2
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Figure 3: The docking poses of small compounds: (a) Triptofordin B1; (b) 1M7. Small compound and amino acids are colored in green and
yellow, respectively.
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Figure 4: Plots of (a) protein RMSD and (b) radius of gyration from BACE1 during 5000 ps simulation time.
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(1)

Minimization of each docking pose executes 1000 steps
of Steepest Descent with an RMS gradient tolerance of 3 and
followed by conjugate gradient. The generated conformation
of ligands was docked into the defined binding site of BACE1;
the ligand poses were calculated by various scoring functions
including -PLP1, -PLP2, and -PMF.

2.3.Molecular Dynamics Simulation. Themolecular dynamic
simulation was carried out by GROMACS 4.5.5 package
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Figure 5: Plot of ligand RMSD values from BACE1 with docked ligands among 5000 ps simulation times.

Table 1: Top ten candidates and control.

Name -PLP1 -PLP2 -PMF BBB Level CYP2D6 Hepatotoxicity
Diterpenoid EF-D 79.04 75.67 195.32 4 0 0
Triptofordin B1 68.44 62.28 194.61 2 0 0
Shionoside C 71.67 69.36 193.84 4 0 0
Jangomolide 72.27 67.01 187.36 3 0 0
Vibsanin W 77.98 76.62 184.31 4 0 0
2𝛼,6𝛼-Dihydroxybetulinic acid 59.52 57.72 183.93 2 0 0
Benzoylramanone 63.59 61.05 183.67 2 0 0
Pseurata D 63.28 62.87 180.42 4 0 0
Vibsanin I 78.18 72.43 179.15 4 0 0
1M7∗ 70.70 52.10 119.39 3 0 1
∗Control.
aBBB level (blood brain barrier): high penetration = 1; medium penetration = 2; low penetration = 3; undefined penetration = 4.
bCYP2D6: noninhibitor = 0; Inhibitor = 1.
cHepatotoxicity: Non-inhibitor = 0; inhibitor = 1.

[59] to simulate the dynamic structure of BACE1 with
docked compounds. We utilize charmm27 force field for
the simulation system [60]. The distance between the edge
of box and protein was set to 1.2 nm. Each protein-ligand
system was placed in cubic cell containing water molecular
by TIP3P model. Nonbonded interactions include repul-
sion, dispersion, and Coulomb terms. The repulsion and
dispersion terms involve Lennard-Jones interaction [61] and
Buckingham potential [62]; the cut-off distance of define van
der Waals (VDW) residues was set to 1.4 nm. Long-range
electrostatic forces were performed using the PME method
[63, 64].

The equation of Lennard-Jones interaction is as follows:

𝑈 (𝑟) = 4𝜀 [(
𝛿

𝛾
)
12

− (
𝛿

𝛾
)
6

] . (2)

The Buckingham potential is defined as

𝑉𝑏ℎ (𝑟𝑖𝑗) = 𝐴 𝑖𝑗 exp (−𝐵𝑖𝑗𝑟𝑖𝑗) −
𝐶𝑖𝑗

𝑅6
𝑖𝑗

. (3)

Topology files and parameters of small compounds in
protein-ligand complexes were generated for GROMACS
simulation by SwissParam web server [65]. Bonds lengths
were constrained by the linear constraint solver (LINCS)
algorithm. Na+ and Cl− ion were randomly replaced with
water molecular to neutralize the simulation systems, and
the concentration was set as 0.145M in solvent system.
The energy minimization was used to stabilize the solvent
system by Steepest Descent algorithm with 5,000 steps, the
follow by equilibration performed under position restraints
to equilibrated water molecular in the protein for 1 ns under
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Figure 6: Total energy of BACE1 complexes: (a) Triptofordin B1; (b) 1M7; (c) Apoprotein among 5000 ps simulation times.

constant temperature dynamics (NVT type) conditions. In
final step, production running for 5000 ps under constant
pressure and temperature dynamics (NPT type); all of the
temperature simulation system was under 310 K condition.
MD conformations are sampled every 20 ps and all frames
are analyzed under GROMACS 4.5.5.

3. Results and Discussion

3.1. Docking Results. We utilize PONDR-FIT [57] to under-
stand the amino acids on binding region (GLN60, GLY61,

ASP80, ILE158, ILE166, ASP276, GLY278, and THR279) of
BACE1 are not disorder structure (Figure 1), and the values
of disorder disposition are below 0.5, which indicate that the
binding site of BACE1 is order structure, and the ligands bind-
ing may not affected by protein structure [66, 67]. For dock-
ing analysis, we based on -PLP1, -PLP2, and -PMF to evaluate
the docking pose of traditional Chinese medicine (TCM)
compounds. From scoring analysis, pyrimidine analogue R-
50 (1M7) was regarded as control for comparison, which
is synthesis BACE1 inhibitor from Hunt’s study [55]. Top
candidates with higher values of scores than 1M7 are shown
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Figure 7: RMSF values of each residue of BACE1 with docked ligand: (a) Triptofordin B1; (b) 1M7 during 5000 ps simulation time.

in Table 1. For ADMET evaluation, all TCM candidates have
no CYP2D6 inhibited and hepatotoxicity, suggesting that
CYP2D6 may not be affected by these ligands in liver. The
1M7 has hepatotoxicity in ADMET analysis, indicating that
our TCM candidates are safer than control. All docked
ligands are ranked by -PMF score, due to the prediction of
blood-brain barrier (BBB) penetration showing Diterpenoid
EF-D with no penetration ability (BBB level = 4); the Tripto-
fordin B1 has -PMF score (194.61) and medium penetration
(BBB level = 2), which is better than 1M7 because of the low
penetration (BBB level = 3) and low binding score (-PMF =
119.39). Triptofordin B1 is available in Tripterygium wilfordii;
the herb extraction has therapeutic effect for SAMP8 mice
with AD disease [68]. So we selected Triptofordin B1 for

further studies; the chemical scaffolds of TCM candidates
and 1M7 are shown in Figure 2. Docking pose of Triptofordin
B1 displayed pi-pi interaction with TYR119; close residues
include ASP80 and ASP276 (Figure 3(a)). 1M7 binding pose
has H-bond with ASP80 and ASP276, but there is no pi
interaction presented between residue and ligand. The data
reveal that Triptofordin B1 has similar binding position with
1M7 and displayed stronger chemical interaction in BACE1
binding site. In further study, we utilized MD simulation
to perform dynamic protein-ligand complexes for variation
analysis.

3.2. Stability Analysis. Structure of BACE1 with docked lig-
ands includes Triptofordin B1 and 1M7 that were carried out
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Figure 8: DSSP analysis of BACE1 complexes: (a) Triptofordin B1; (b) 1M7; (c) Apoprotein. Number of residues of secondary structure: (d)
Triptofordin B1; (e) 1M7 (f) Apoprotein.

by MD simulation, and we use protein structure of BACE1
with no ligand (Apoprotein) for comparison. The analysis
result of protein root mean square deviation (RMSD) and
radius of gyration (Rg) is shown in Figure 4. 1M7 displayed

fluctuation from 500 to 4500 ps and was stable at 0.3 nm
of protein RMSD. Triptofordin B1 and Apoprotein show
similar trends; the protein RMSD remained stable in the
region of 0.3 nm. The radius of gyration (Rg) analysis shows
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Figure 9: Matrix of smallest between each pair of amino acids in BACE1 complexes: (a) Triptofordin B1; (b) 1M7; (c) Apoprotein.

that the compactness of BACE1 with each ligand is less
than the Apoprotein structure, because of the docked ligand
combined with BACE1. From 3000 to 5000 ps of Rg analysis,
the structure tends to be stable around 0.4 nm.

We further analyzed RMSD of each small molecular
during MD simulation (Figure 5); ligand RMSD of Tripto-
fordin B1 and 1M7 increases large fluctuation at 2000 ps;
the value of ligand RMSD increased from 0.04 to 0.10 nm.
Interestingly, 1M7 is decreased from 0.10 nm 0.04 nm after
4500 ps; this finding suggests that the region of 2000 to
4000 ps should be used to analyze the conformation of ligand

binding. For total energy analysis, there significant increased
values were observed at initial simulation time (Figure 6);
the total energy is remained around −8.74 × 106 kJ/mol
for 1M7 and Apoprotein; the Triptofordin B1 was stable at
−8.72 × 105 kJ/mol. These results suggest that all structures
of the complexes remained constant after initial simulation
time; there is no significant fluctuation among all BACE1
structures.

3.3. Residues Fluctuation Analysis on the Binding Region. We
using root mean squared fluctuation (RMSF) to analyze the
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fluctuation of residues on protein binding site; the binding
region (GLN60, GLY61, ASP80, ILE158, ILE166, ASP276,
GLY278, and THR279) shows small flexibility (Figure 7).The
largest fluctuation is observed from 425 to 450 residues,
because these regions are far away from the binding site,
indicating that the flexible amino acids do not affect protein-
ligand interaction during MD simulation.

According to DSSP analysis, the number of helix and
beta-sheet remained 150 and 100, respectively (Figure 8);

Table 2: The middle conformation in each cluster from all MD
conformations.

Cluster Time of middle frame (ps)
Triptofordin B1 1M7 Apoprotein

1 1640 20 1680
2 3540 400 3180
3 3820 1380 4200
4 4300 2340 —
5 — 3760 —

the other secondary type also revealed no distinct changes.
Besides, the distance for pair of each residue has no missing
plot among all BACE1 structures during 5000 ps, (Figure 9).
The results show that structure of BACE1 remained constant
during all MD simulations.

3.4. Movement of Each Ligand Analysis. The mobility of
each ligand was analyzed by mean square displacement
(MSD) (Figure 10); Triptofordin B1 increased MSD values
to 0.3 nm at 2500 ps, and stabilizes until 4000 ps. 1M7 was
stable below 0.1 nm and decreased MSD value at 4500 ps.
In final simulation after 4500 ps, Triptofordin B1 further
increased MSD values to 0.45 nm and tends to be stable
to the end time. Here, we further analyze the distance
between BACE1 and each ligand among 5000 ps (Figure 11).
The distance between 1M7 and BACE1 displayed 1.00 nm
before 2000 ps, but Triptofordin B1 increased to 1.50 nm from
2000 to 3500 ps, and the other wild increased distance occur
from 4000 to 5000 ps. These results comparing with MSD
analysis;the region of 200 to 3500 ps has significant change
during dynamics simulation; in the next analysis, we focus
on these regions of simulation time for further studies.

3.5. Clustering Analysis for Snapshot Observing. In order
to understand the most stable structure during the entire
MD simulation for understanding the movement of BACE1,
all frames of MD simulation were clustered into different
subgroups (Figure 12); the similar MD conformations were
grouped into the same cluster. For clustering results, each last
group includes last 1000 ps (from 4000 to 5000 ps); hence, we
selected the middle flams from each last group for further
analysis from all MD complexes (Table 2). Before observing
all snapshots frommiddle frames of last clustering group, we
also calculate the distance of H-bonds for each ligand among
all simulation times (Figure 13); GLN121 showed decreased
distance after 4000 ps for Triptofordin B1 (Figure 13(a)).
ASP80 and ASP276 remain revealed low distance with 1M7
(Figure 13(b)), suggesting that GLN121, ASP80, and ASP276
are essential amino acid for ligand binding. In snapshot
analysis, we found that Triptofordin B1 could reduce the
binding site, because the GLN121 has significant change,
and presenting pi interaction with TRP163 (Figure 14), and
in ligand channel analysis (Figure 15), we can see that the
predicted channel of Triptofordin B1 is shorter than 1M7 and
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Figure 12: Clustering analyses among 5000 ps simulation times. (a) Triptofordin B1; (b) 1M7 (c) Apoprotein.
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Figure 13: H-bond distance between residues atoms of BACE1 and
ligands during 5000 ps simulation times: (a) Triptofordin B1; (b)
1M7.

Apoprotein, suggesting that Triptofordin B1 could bind to
BACE1 better than 1M7.

4. Conclusion

For ADMET analysis, Triptofordin B1 has more penetration
than 1M7 and less toxicity, because 1M7 has hepatotoxicity
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Figure 14: The middle structure from each final clustering group:
(a) Triptofordin B1; (b) 1M7 (c) Apoprotein.
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(a)

(b)

(c)

Figure 15: Predictions of ligand channel of (a) Triptofordin B1, (b)
1M7, and (c) Apoprotein by CAVER 3.0. The similar channels were
collected in a group with same color.

in ADMET prediction. Three scoring functions, -PLP1, -
PLP2, and –PMF, are higher than control. The structure of
BACE1 analysis shows that the binding residues have less
fluctuation after MD simulations, indicating the each ligand
is not affected by protein residues. In migration analysis for
Triptofordin B1 and 1M7, the stable region displayed from
3000 to 4000 ps; we utilize clustering analysis to observe this

period simulation time. Triptofordin B1 could reduce the
binding cavity of BACE1; the results reveal that Triptofordin
B1 could bind to BACE1 and better than 1M7, which could be
used as potential lead drug to design novel BACE1 inhibitor
for AD therapy
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