
Corrected score estimation in the proportional hazards model
with misclassified discrete covariates

David M. Zucker1,*,† and Donna Spiegelman2

1Department of Statistics, Hebrew University, Mount Scopus, 91905 Jerusalem, Israel

2Departments of Epidemiology and Biostatistics, Harvard School of Public Health, 677 Huntington
Avenue, Boston, MA 02115, U.S.A.

SUMMARY

We consider Cox proportional hazards regression when the covariate vector includes error-prone

discrete covariates along with error-free covariates, which may be discrete or continuous. The

misclassification in the discrete error-prone covariates is allowed to be of any specified form.

Building on the work of Nakamura and his colleagues, we present a corrected score method for

this setting. The method can handle all three major study designs (internal validation design,

external validation design, and replicate measures design), both functional and structural error

models, and time-dependent covariates satisfying a certain ‘localized error’ condition. We derive

the asymptotic properties of the method and indicate how to adjust the covariance matrix of the

regression coefficient estimates to account for estimation of the misclassification matrix. We

present the results of a finite-sample simulation study under Weibull survival with a single binary

covariate having known misclassification rates. The performance of the method described here

was similar to that of related methods we have examined in previous works. Specifically, our new

estimator performed as well as or, in a few cases, better than the full Weibull maximum likelihood

estimator. We also present simulation results for our method for the case where the

misclassification probabilities are estimated from an external replicate measures study. Our

method generally performed well in these simulations. The new estimator has a broader range of

applicability than many other estimators proposed in the literature, including those described in

our own earlier work, in that it can handle time-dependent covariates with an arbitrary

misclassification structure. We illustrate the method on data from a study of the relationship

between dietary calcium intake and distal colon cancer.
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1. INTRODUCTION

Many regression analyses involve explanatory variables that are measured with error. It is

well known that failing to account for covariate error can lead to biased estimates of the

regression coefficients. For linear models, theory for handling covariate error has been

developed over the past 50 or more years; Fuller [1] provides an authoritative exposition.

For nonlinear models, theory has been developing over the past 25 or so years. Carroll et al.

[2] provide a comprehensive summary of the development to date; currently, the covariate

error problem for nonlinear models remains an active research area. In particular, beginning

with Prentice [3], a growing literature has developed on the Cox [4] proportional hazards

survival regression model when some covariates are measured with error.

Three basic design setups are of interest. In all three designs, we have a main survival cohort

for which surrogate covariate measurements and survival time data are available on all

individuals. The three designs are as follows: (1) the internal validation design, where the

true covariate values are available on a subset of the main survival cohort, (2) the external

validation design, where the measurement error distribution is estimated from data outside

the main survival study, and (3) the replicate measurements design, where replicate

surrogate covariate measurements are available, either on a subset of the survival study

cohort or on individuals outside the main survival study. Also, two types of models for the

measurement error are of interest (see [1, p. 2; 2, Section 2]): structural models, where the

true covariates are random variables, and functional models, where the true covariates are

fixed values. Structural model methods generally involve estimation of some aspects of the

distribution of the true covariate values; in functional model methods, this process is

avoided.

We focus here on discrete covariates subject to misclassification, which are of interest in

many epidemiological studies. In the case of a binary event outcome, there is extensive

literature on the effects of misclassification on estimation of, and inference about, the

relative risk and related parameters. Bross [5] is an early seminal paper. Detailed reviews

have been given by Chen [6], Kuha and Skinner [7], and Walter and Irwig [8], while Kuha

et al. [9] provide a concise summary of much of the development. Correction for

misclassification entails estimating the classification probabilities through one of the designs

listed in the preceding paragraph. Given appropriate estimates of the classification

probabilities, consistent estimates of the relative risk and related inferences can proceed

using ‘matrix methods’ [5, 10, 11] or maximum likelihood methods [12, 13].

The Cox survival regression model with covariate errors has been examined in a number of

settings.Much of the existing work focuses on the independent additive error model, which

assumes that the observed covariate value is equal to the true value plus a random error

whose distribution is independent of the true value. In the case of discrete covariates subject

to misclassification, this model practically never holds, and hence, the methods built upon it

do not apply. Other methods are available in the literature that do apply to misclassification

problems, but they are subject to substantial limitations, as we now describe.
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The work of Zhou and Pepe [14] and of Zhou and Wang [15] deals with the internal

validation design. Their approach involves empirically estimating the conditional mean of a

certain function of the true covariate vector conditional on the observed covariate vector.

This process entails stratification or smoothing with respect to the observed covariate vector.

When the covariate vector is of moderate to high dimension, the ‘curse of dimensionality’

causes this approach to break down, even if only one of the covariates is error prone. Chen

[16] presents an alternate method for the internal validation design. His method combines

the regression coefficient estimate based on the validation sample only with information

gleaned from the rest of the main study cohort. Chen’s approach assumes that it is possible

to form a satisfactory initial estimate of the regression coefficient vector based on the

validation sample alone. This is not the case, however, for studies where the event rate is

low to moderate, the main study sample size is in the thousands, and the validation study

sample size is in the low hundreds. Thus, in such cases, which often arise in practice, Chen’s

approach breaks down. In addition, the methods of Zhou and Pepe, Zhou and Wang, and

Chen do not cover the external validation or replicate measures setups.

Spiegelman et al. [34] and Wang et al. [18] discuss the simple and well-known regression

calibration method, which applies to all three design setups. This method, however, is only

an approximate method and does not yield a consistent estimator. Zucker and Spiegelman

[19] and Zucker [20] present general methods suitable for all three designs, but their

methods cover only time-independent covariates and their approaches do not seem

generalizable to time-dependent covariates. Hu et al. [21] present a method that can handle

time-dependent covariates under all three designs in a more general setting, but their

approach is complex and its asymptotic properties were not formally examined. Most of the

methods cited above apply only to structural models.

Another option is to apply the SIMEX approach, which is a general approach for covariate

error problems [2, Chapter 5]. Recently, Küchenhoff et al. [22] developed a SIMEX method

for the misclassification setting. Küchenhoff et al. treat generalized linear models; their

method could be extended to survival models. The SIMEX approach, however, has some

disadvantages. It requires multiple runs of the model-fitting process, and it relies on an

extrapolation scheme that is uncertain and does not necessarily yield a consistent estimator.

Finally, it is possible in principle to apply methods that have been developed in the missing

covariate literature, such as that of Herring and Ibrahim [23]. Most of this work deals with

the internal validation setup, though the approach could be extendable to the other two

design setups. These methods, however, are highly complex, and they cannot effectively

handle the functional model setting or time-dependent covariates.

Thus, the currently existing methods are subject to substantial limitations, even for the

internal validation design, and all the more for the external validation and replicate measures

designs. There is a need for a new method that overcomes these limitations. In particular,

there is a need for a convenient method for all three study designs that can handle general

measurement error structures, both functional and structural models, and time-dependent

covariates.
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The aim of this paper is to present such a method for the case where the error-prone

covariates are discrete. The misclassification may take any specified form desired, including

an unstructured form. The error-free covariates are allowed to be either discrete or

continuous. The time-dependent covariates are required to satisfy a certain ‘localized error’

condition, which we describe later. We present basic asymptotic properties of the method

and examine its finite-sample performance in a simulation study.

In the case where the classification probabilities are estimated from replicate measurements

data, it is necessary in this estimation process to regard the true covariate value as a random

variable, as in a structural model (see the end of Section 4). However, when external

replicate data are used, the marginal distribution of the true covariate need not be the same

in the replicate sample as in the main study; we need only portability of the conditional

distribution of the observed covariate given the true covariate.

Our proposed method follows the corrected score approach. Nakamura [24, 25] described

the basic idea behind the approach. He then developed it by some detail under the

independent additive error model. However, as noted above, this error model is not

appropriate for discrete covariates. Accordingly, we build instead on the work of Akazawa

et al. [26], which dealt with logistic regression with discrete covariates subject to

misclassification. We extend the work of Azakawa et al. in a number of directions. First, we

extend their approach from logistic regression to the Cox survival regression model; this

extension involves substantial new technical development. Second, we allow for the case

where, in addition to the error-prone discrete covariates, there may be a large number of

other covariates measured without error; these other covariates can be either discrete or

continuous. Finally, while Akazawa et al. assume the classification probabilities to be

known, we allow them to be estimated, and we derive corrections to the estimated

covariance matrix of the parameter estimates that reflect the error in estimating the

classification probabilities. In the absence of misclassification, our method reduces to the

classical Cox partial likelihood method.

The paper is organized as follows. Section 2 presents our proposed method for the case

where the misclassification probabilities are assumed known. Section 3 discusses the case

where the misclassification probabilities are estimated. Section 4 presents a simulation study

of the method in the case of a single binary error-prone covariate. In the simulations, we

consider both the case where the misclassification probabilities are known and the case

where these probabilities are estimated from external replicate measurement data. Section 5

presents an application to data from the Nurses Health Study on the relationship between

dietary calcium intake and distal colon cancer [27]. Section 6 provides a summary and

discussion.

2. THE PROPOSED METHOD

2.1. The setup

We assume a standard survival analysis setup. We have observations on n independent

individuals. We denote, for individual i, the survival time by  and the time of right

censoring by Ci. The observed survival data consist of the observed follow-up time
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 and the event indicator . We let Yi (t) =I (Ti⩾t) denote the at-

risk indicator. As usual, we assume that the covariate processes are left continuous with

right limits, and that the failure process and the censoring process are conditionally

independent given the covariate process in the sense described by Kalbfleisch and Prentice

[28, Section 6.3.2]. Left truncation can be handled by setting Yi (t) to zero until the time at

which individual i comes under observation.

The covariate structure is as follows. We denote the true covariate vector by Xi (t), and its

dimension by p. We partition the vector Xi (t) into subvectors Wi (t) and Zi (t), where Wi (t)

is a p1-vector of error-prone covariates and Zi (t) is a p2-vector of error-free covariates. We

denote the observed value of Wi (t) by W̃
i (t). The vectors Wi (t) and W̃

i (t) are assumed to

be discrete. The possible values of Wi (t) (each one a p1-vector) are denoted by w1, . . ., wK.

The range of values of W̃
i (t) is assumed to be the same as that for Wi (t). For example, we

could have a scalar binary covariate representing the presence or the absence of a given

condition. Or the covariate might be the number of servings of a certain food that a person

consumes per day. We denote by k(i, t) the value of k such that W̃
i (t)=wk. The vector Zi (t)

of error-free covariates is allowed to be either discrete or continuous. The case where the

model involves interaction terms between the error-prone and error-free covariates can be

accommodated with suitable minor notational changes.

We assume that the measurement error process is ‘localized’ in the sense that it depends

only on the current true covariate value. More precisely, the assumption is that, conditional

on the value of Xi (t), the value of W̃
i (t) is independent of the survival and censoring

processes and of the values of Xi (s) for s ≠ t. This assumption is plausible in many

circumstances, such as situations in which the main source of error is technical or a

laboratory error, or a reading/coding error, as with diagnostic X-rays and dietary intake

assessments. The assumption will not be directly satisfied for covariates that represent

cumulative exposure, though it may be possible to adapt our approach to cumulative

exposure variables by working with the successive increments in observed exposure. For

time-independent covariates, the assumption reduces to an assumption that the measurement

error is independent of the survival and censoring processes. Under the localized error

assumption, Yi(t) and W̃
i (t) are conditionally independent given Xi (t).

We denote , which defines a square matrix A(i,t) of

classification probabilities. Note that the formulation here differs from that of Zucker and

Spiegelman [19]. In addition, we allow here for the possibility that the classification

probabilities depend on individual-specific factors, including the error-free covariates. Note

also that the classification probabilities  are allowed to depend on t, either directly or

through time-dependent individual-specific factors. Under this formulation, we can account

for improvements in measurement techniques over time. In addition, if internal validation

data are available, we can dispense with the localized error assumption. The assumption can

be avoided by using classification rate estimates based only on the internal validation sample

units that are still at risk at each given point in time. For now, we assume that A(i,t) is

known. In Section 3, we will consider the case where A(i,t) is estimated.
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We work under the Cox proportional hazards model, where the hazard function is of form

(1)

with λ0(t) being a baseline hazard function of unspecified form and β being a p-vector of

unknown regression parameters that we wish to estimate. It is possible to extend the

methodology to the case where eβ
Tx is replaced by a general relative risk function ψ(x; β),

as in Thomas [29] and Breslow and Day [30, Section 5.1(c)]. This extension is described in

a version of this paper available at the following website: http://www.hsph.harvard.edu/

faculty/spiegelman/manuscripts.html

2.2. The key idea

The key idea behind our method is as follows. The Cox partial likelihood score function

involves terms of the form G(Xi (t))=G(Wi (t), Zi (t)), where G is some function. Since Wi

(t) is not directly observed, G(Wi (t), Zi (t)) cannot be directly evaluated. Instead, we seek

an observable function  such that

(2)

In the case of discrete error-prone covariates, a  satisfying (2) may be constructed by a

simple device we define

(3)

where k(i, t) is as defined previously and  is the (k, l) element of the matrix

B(i,t)=[A(i,t)]−1. We then have

(4)

so that (2) is indeed satisfied. Akazawa et al. [26] introduced this device for the case of

logistic regression with covariate error.

2.3. The method

We now present our method. The classical Cox [4, 31] partial likelihood score function in

the case with no measurement error is given by

(5)
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where

Now define

(6)

(7)

(8)

(9)

(10)

where x(w, z) denotes the x vector formed by the subvectors w and z. Our proposed

corrected score function is then given by the following obvious analogue of (5):

(11)

The proposed corrected score estimator is the solution to U* (β)=0, where U* denotes the

vector whose components are .

We have

(12)

where the second equality follows from the conditional independence of Yi (t) and W̃
i (t)

given Xi (t), and the third equality follows from the argument of Section 2.2. Similarly,
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(13)

(14)

Thus, referring to the quantity in parentheses in (11), the first term and the numerator and

denominator of the second term all have the correct expectation. Now, U* (β) is not an

exactly unbiased estimating function, because the expectation of a ratio is not equal to the

ratio of the expectations. However, as indicated in Appendix A.1, it follows from the law of

large numbers that U* (β) is an asymptotically unbiased score function.

Accordingly, under standard conditions like those of Andersen and Gill [32], our corrected

score estimator will be consistent and asymptotically normal. Appendix A.1 presents an

outline of the asymptotic arguments. See Huang and Wang [33] for a related discussion in a

similar context. Denoting the true value of β by β0, the asymptotic covariance matrix of

n1/2(β̂ − β0) may be estimated by the sandwich formula

(15)

Here D(β) is −1 times the matrix of derivatives of U* (β) with respect to the components of

β and H(β) is an empirical estimate of the covariance matrix of n1/2U* (β). To define these

matrices, some additional notations are needed. We define

(16)

In this definition, the first term tends to be the dominant term, especially if the event is rare.

We further define

With these definitions, we have

(17)

(18)

The expression for Drs (β) is derived by straightforward differentiation. The derivation of

the expression for Hrs (β) is given in Appendix A.1.
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In the internal validation design, for each individual i in the internal validation sample we

can carry out the estimation with W̃
i replaced by Wi and A(i,t) replaced by the identity

matrix. Alternatively, we can employ the hybrid scheme of Zucker and Spiegelman [19,

Section 5], where a separate estimator of β is computed for the validation sample and for the

main study excluding the validation sample, and the two estimators are then combined. The

hybrid scheme is likely to be more efficient when the validation sample is sizable.

The case where there are replicate measurements, Wĩj of W̃ on the individuals in the main

study can be handled in various ways. A simple approach is to redefine the quantities given

in (6)–(8) by replacing  with the mean of  over the replicates for individual i,

with k (i, j, t) defined as the value of k such that W̃
ij (t)=wk. The development then proceeds

as before.

2.4. Estimation of the cumulative hazard

The cumulative hazard  can be estimated using the Breslow-type

estimator

(19)

As discussed at the end of Appendix A.1, the quantity n1/2(Λ̂
0(t)−Λ0(t)), for a given t, is

asymptotically mean-zero normal. In Appendix A.1, we present an estimator of the variance

of this estimator.

3. ESTIMATED CLASSIFICATION PROBABILITIES

We now indicate the changes needed to handle the case where  are estimated. The

relevant estimates may be obtained in several ways. In some cases, estimates are obtained

from an external validation study, that is, a separate study with measurements of both Wi

and W̃
i. Alternately, an internal validation design is used, with some individuals in the main

survival study having measurements on both Wi and W̃
i. Another possibility is to base the

estimates on internal or external replicate measures data; we discuss this in more detail at the

end of the section. The theory developed in this section represents a step beyond the work of

Akazawa et al. [26], who considered only the case where the classification probabilities are

known. This theory is applied in the example presented in Section 5.

The main issue is how to adjust the covariance matrix of the estimates to account for the

estimation error in . Following Zucker and Spiegelman [19], we express A(i,t) as

A(i,t)(ω) for some q′-vector of parameters ω. The nature of the function A(i,t)(ω) is dictated

by the measurement error model employed. As an illustration, consider the simplest case: a

single binary covariate with a common classification matrix A(ω) for all individuals. In this

case, with the false-positive and false-negative rates allowed to be different, A(ω) takes the

following form (where we assume that the sum of the off-diagonal elements is less than 1):
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(20)

We presume that the parameter vector ω is estimated from a study of one of the types

described above, with m independent units. We presume further that the study yields an

estimator ω̂ having an approximate normal distribution with mean ω and covariance matrix

m−1Γ, along with an estimator Γ̂ of the matrix Γ. This setup is a typical one in practical

applications. For example, for the case of a single 0–1 binary covariate with internal or

external validation data, the estimates of ωk = Pr(W̃ = k−1|W = k−1), k = 1, 2, are given by

the obvious sample proportions, and Γ is a 2×2 diagonal matrix with Γkk = ωk (1−ωk)/ϑk,

where ϑk is the fraction of individuals with W = k−1 in the validation study. The procedure

for a replicate measures study is discussed at the end of this section. For the asymptotics we

assume that m and n are of the same order of magnitude, i.e. m/n→ζ for some constant ζ as

n→∞. Otherwise, the error in A(i,t)(ω) will either be dominated by or will dominate the

error in β̂ due to the variation in the survival data. Typically, ζ will be between 0 and 1.

Let us now write the corrected score function as U* (β, ω) to indicate explicitly the

dependence on ω. Also, let us denote the true value of β by β0 (as before) and the true value

of ω by ω0. Since we are now estimating ω0 by ω̂, our estimating equation for β is now U*

(β, ω̂) = 0. Using Taylor’s theorem, we can write

where −Drs is the partial derivative of  with respect to βs evaluated at ω0, and U̇(β,

ω) is a matrix whose (r, ν) element is the partial derivative of Ur (β, ω) with respect to ων.

Hence, we have

(21)

If ω is estimated from external data, then U* (β0, ω0) and ω̂ are obviously independent.

When ω is estimated from an internal validation sample, the following argument can be put

forth to show that these two quantities are asymptotically independent. The contribution to

U* (β0, ω0) made by each individual in the study has asymptotically expectation zero

conditional on the true covariate values. This is true in particular of the individuals in the

internal validation sample. It hence follows from an iterated expectation argument that U*

(β0, ω0) and ω̂ are asymptotically uncorrelated (cf. [17, Appendix A]). Since we have

asymptotic normality as well, this implies asymptotic independence. As a result, by

Slutsky’s theorem, the two terms in brackets in (21) are asymptotically independent, since

U̇* (β0, ω0) converges to a deterministic limit.

It therefore follows that, when external data or an internal validation sample is used to

estimate ω, the necessary covariance adjustment may be accomplished by replacing the

matrix H(β) with the following corrected version:
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(22)

To present the formulas for , we define  to be, respectively, the partial

derivative of the matrices A(i,t) and B(i,t) with respect to ων. By the rule for differentiating

an inverse matrix, we have . We then obtain

(23)

where ξ̇ir:ν,  are defined analogously to ξir,  replaced by

.

When ω is estimated from an internal replicate measures sample, U* (β0, ω0) and ω̂ are no

longer asymptotically independent, and hence we must work out the covariance between

them. A typical scenario is the case of an i.i.d. setup where ω is estimated by maximum

likelihood. In Appendix A.2, we present the appropriate corrected version of H for this

setting.

The estimate for var(Λ0̂(t)) can be corrected in a similar manner. Appendix A.3 provides the

details.

We now discuss in more depth the estimation of classification probabilities from a replicate

measures study. There is a large literature on this problem (and extended versions thereof),

especially for the case of a binary error-prone covariate, where the problem is generally

known as the problem of evaluating a diagnostic marker without a gold standard. See [35]

for a review of this area. The simplest case is that of a single binary (0–1) error-prone

covariate W, with subject i in the replicate measures study having Ri replicate measurements

W ̃
ij on the surrogate measure W ̃, where the replicates are conditionally i.i.d. given W. This

case is relevant to many risk factors of interest in epidemiological studies, such as high

blood pressure and high estradiol level, where the risk factor is assessed using direct

physiological measurements. In this setting, the subject totals  are sufficient

statistics. Denote α1 = Pr(W̃ = 1|W = 0) and α2 = Pr(W̃ = 1|W = 1). Then, conditional on W =

k−1 (k = 1, 2),  has a Bin(Ri, αk) distribution. Defining π to be Pr(W = 1) within the

replicate measures sample, the marginal distribution of  is a mixture of the Bin(Ri, α1)

and Bin(Ri, α2) distributions, with respective mixture probabilities 1−π and π:

(24)

The model is identifiable provided that some positive proportion of subjects have Ri⩾3 and

the correlation between W and W̃ is positive. The latter condition is equivalent to the

condition Pr(W̃ = 1|W = 0)+Pr(W̃ = 0|W = 1)<1. The likelihood function can be expressed
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directly from (24), and the parameters π, α1, and α2 can then be estimated by maximum

likelihood.

In more general settings, the basic ideas are similar, but of course the details are more

complex. Several papers have discussed methods for using replicate data to estimate

classification probabilities for more general settings, including parsimonious models for

polychotomous W and models that allow the conditional distribution of the replicates given

W to involve some dependence [8, 36–39]. The case of correlated replicates is of particular

relevance to risk factors that are measured through self-report, such as dietary or physical

activity variables.

4. SIMULATION STUDY

To investigate how our method performs, we carried out a simulation study in the setting of

a single 0–1 binary covariate. The design of our simulation study was patterned after Zucker

and Spiegelman [19, Section 6] and Zucker [20, Section 3.1]. The assumed study duration

was 5 years. The baseline survival distribution was taken to be Weibull, with baseline

hazard function λ0(t) = α μ(μt)α−1. The power parameter α was taken equal to 5, which is

typical of many types of cancer [30, Section 6.3; 40]. The scale parameter μ was chosen so

as to yield a 25 per cent 5-year cumulative incidence rate for the unexposed population.

Censoring was taken to be exponential with a rate of 1 per cent per year. For brevity of

presentation, the false-positive rate Pr(W̃ = 1|W = 0) and the false-negative rate Pr(W̃ = 0|W

= 1) were taken to be equal to a common classification error rate. A range of values was

explored for the prevalence of the risk factor (5, 25, 40 per cent), the classification error rate

(1, 5, 10, 20 per cent), and the true relative risk (1.5, 2.0). The number of simulation

replications was 5000.

In our first simulation scenario, we assumed that the classification probabilities are known.

We took the sample size to be 2000, leading to approximately 500 events in total. Table I

shows the results. For comparison, we also present the simulation results given in [19] for

the naive Cox partial likelihood estimator ignoring the measurement error, and for the

parametric log relative risk estimator obtained by maximizing the full Weibull log likelihood

under the relevant measurement error model.

The naive Cox estimator was typically badly biased except under 1 per cent

misclassification with exposure prevalence of 25 or 40 per cent. By contrast, our method

exhibited excellent performance, comparable to that of the fully parametric Weibull

estimator. Under an exposure prevalence of 25 or 40 per cent, our method yielded nearly

zero bias in the estimated log relative risk, nearly unbiased standard deviation estimates, and

accurate confidence interval coverage. With an exposure prevalence of 5 per cent, the

performance of all three estimators under consideration was degraded. This finding is not

surprising, because the 5 per cent exposure situation presents two difficulties: (1) the

expected number of events in the exposed group is only of the order of 25–50, (2) with a

misclassification rate of 5 per cent or more, the predictive value of an observed positive

exposure is low. The naive Cox estimator was drastically biased. Our estimator and the

Weibull estimator were dramatically less biased, but still exhibited some bias. This bias was
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due in part to outlying values; for both our estimator and the Weibull estimator, the

deviation between the median value of the estimates and the true log relative risk was

noticeably lower than the deviation between the mean estimated value and the true value.

Overall, in terms of mean square error, the performance of our estimator was found to be

nearly identical to that of Weibull estimator. In a few cases, our estimator was better; this

reflects the fact that, for a given finite sample size, the asymptotically optimal parametric

maximum likelihood expectation can be outperformed by an alternate estimator. The

performance of the method proposed here essentially matches that of the methods of Zucker

and Spiegelman [19] and Zucker [20], except that the method here was better for the

problematic cases with 5 per cent exposure prevalence. The same pattern is seen under a

sample size of 10 000 with a cumulative incidence rate of 5 per cent for the unexposed

(results not shown).

In our second simulation scenario, we assumed that the classification probabilities are

estimated from an external replicate measures study with 250 subjects and three replicate

measurements per subject. The procedure for estimating the classification probabilities is

described at the end of the preceding section. To get around low cell counts when the

misclassification rate is very small (viz. 0.01), we added  to all the cell counts. We ran two

sets of simulations, one for a sample size of 2000 (about 500 events in total) and the other

for a sample size of 1000 (about 250 events in total). Table II presents the results.

Our method performed very well when the exposure prevalence was 25 or 40 per cent.

Across the board, for both n=2000 and 1000, the bias in the estimated log relative risk was

minimal, the standard deviation estimate was on target, and the confidence interval coverage

was accurate. With n=2000, in most cases there was minimal change in the standard

deviation of the log relative risk estimate due to the estimation of the misclassification rates,

as compared with the standard deviation under known misclassification rates (shown in

Table I). The one exception to this was the case of 20 per cent misclassification, where there

was a 5–20 per cent increase in the standard deviation due to the estimation of the

misclassification rates. The standard deviations for n=1000 were greater than those for

n=2000 by about the expected factor of .

The method performed somewhat less well when the exposure prevalence was 5 per cent.

The bias was higher in this situation, in some cases reaching the 10–20 per cent level. Still,

this is much better than the bias of the naive Cox estimate (shown for n=2000 in Table I).

The standard deviation estimates and confidence interval coverage were noticeably

inaccurate in some cases. Also, under true misclassification rates of 20 per cent, the

misclassification rates could not be successfully estimated in around 10–15 per cent of the

simulation replications.

In summary, our method generally performed very well. Good performance was maintained

even with estimated misclassification probabilities, except for some problems when the

exposure prevalence rate was very low.
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5. EXAMPLE

We illustrate our method on data from the Nurses Health Study concerning the relationship

between dietary calcium (Ca) intake and cancer of the distal colon (i.e. the furthermost

segment of the large intestine) [27, Table 4]. The data consist of observations on female

nurses whose calcium intake was assessed through a food frequency questionnaire (FFQ) in

1984 and were followed up to 31 May 1996 for distal colon cancer occurrence. Our analysis

includes data on 60 575 nurses who reported in 1984 that they had never taken calcium

supplements. In this cohort, there were 150 cases of distal colon cancer during the follow-up

period. The analysis focuses on the effect of baseline calcium intake after adjustment for

baseline body mass index (BMI) and baseline aspirin use. BMI is defined as the person’s

weight in kilograms divided by the square of the person’s height in meters, and is a standard

measure of a person’s build (low BMI means thin, high BMI means fat). As in Wu et al.’s

Table 4, we work with a binary ‘high Ca’ risk factor defined as 1 if the calcium intake was

greater than 700 mg/day and 0 otherwise. Note that one glass of milk contains

approximately 300 mg of calcium. BMI is expressed in terms of the following categories:

<22, 22 to <25, 25 to <30, and 30kg/m2 or greater. Aspirin use is coded as yes (1) or no (0).

Thus, our model has five explanatory variables, one for the binary risk factor (W), three

dummy variables for BMI (Z1, Z2, Z3), and one for aspirin use (Z4). BMI and aspirin use

status are assumed to be measured without error.

It is well known that the FFQ measures dietary intake with some degree of error and more

reliable information can be obtained from a diet record (DR) [41, Chapter 6]. We thus take

W to be the Ca risk factor indicator based on the DR and W̃ to be the Ca risk factor indicator

based on the FFQ. The classification probabilities are estimated using data from the Nurse’s

Health Study validation study [41, pp. 122–126]. The estimated specificity was

, with an estimated standard error of 0.042. The estimated sensitivity

was , with an estimated standard error of 0.046.

Table III presents the results of the following analyses: (1) a naive classical Cox regression

analysis ignoring measurement error, corresponding to an assumption that there is no

measurement error, (2) our method with A assumed known and set according to the

foregoing estimated classification probabilities, ignoring the estimation error in these

probabilities, and (3) our method with A estimated as above with the estimation error in the

probabilities taken into account (main study/external validation study design). The last of

these analyses makes use of the theory developed in Section 3.

The results followed the expected pattern. Adjusting for the misclassification in calcium

intake had a marked effect on the estimated relative risk for high calcium intake. Accounting

for the error in estimating the classification probabilities increased (modestly) the standard

error of the log relative risk estimate. The relative risk estimates for high calcium intake and

the corresponding 95 per cent confidence intervals obtained in the three analyses were as

follows:
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Method Estimate 95 per cent CI

Naive Cox 0.71 [0.51, 0.99]

A Known 0.49 [0.24, 1.01]

A Estimated 0.49 [0.23, 1.04]

In general, in the multivariate setting, measurement error (including misclassification) can

lead to either attenuation or magnification of covariate effects. In our example, the

misclassification led to attenuation of the high calcium effect, so that the corrected relative

risk was further from the null value of 1 than the naive relative risk. The misclassification

correction had a small effect on the estimated regression coefficients for the BMI dummy

variables and essentially no effect on the estimated regression coefficient for aspirin use.

6. SUMMARY AND DISCUSSION

We have considered the Cox [4] proportional hazards model with a set of covariates that

includes error-prone discrete covariates along with error-free covariates, which may be

discrete or continuous. The misclassification in the discrete error-prone covariates is allowed

to be of any specified form. Building on the work of Nakamura [24, 25] and Akazawa et al.

[26], we have developed an easily implemented corrected score method for this setting. The

method can handle all three major study designs (internal validation design, external

validation design, and replicate measures design), both functional and structural error

models, and time-dependent covariates satisfying the ‘localized error’ condition described in

Section 2. Also, for the internal validation design, the ‘localized error’ condition can be

eliminated by using time-dependent classification rate estimates. The method thus represents

a significant advance relative to other methods in the literature for this problem. The method

performed well in a simulation study, both with misclassification probabilities known and

with misclassification probabilities estimated from an external replicate measures study.

In most applications, the new method developed in this paper will be easier to apply than

and preferable to our previous method based on weighted transformed Kaplan–Meier curves

[19]. Our previous method requires defining strata for every possible configuration of the

entire covariate vector (both the error-prone and error-free part). Except when the number of

configurations is small, this leads to cumbersome implementation and loss of data for strata

having no events. Our current method avoids this problem. Also, our previous method

cannot handle continuous error-free covariates, while the current method can. Additionally,

our previous method cannot handle time-dependent covariates (nor can the method of

Zucker [20]), whereas our current method can handle such covariates if the ‘localized error’

condition applies or internal validation data are available. In some applications, our previous

method might be preferred on account of reduced computational burden. Also, our previous

method may be more convenient when it is desired to apply a measurement error correction

based on published Kaplan–Meier curves for various risk groups as presented in medical and

other subject-matter journals. This point is of particular relevance to meta-analysis

applications.
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This work focuses on the case where the error-prone covariates are discrete. This is

admittedly a limitation. However, much of the existing work on the Cox model with

covariate error focuses on continuous covariates with independent additive error, and as

such does not apply or generalize easily to discrete covariates with misclassification. In

many epidemiological studies, the error-prone covariates of interest are in fact discrete.

Thus, the method presented here fills a definite need.

Still, there are cases where it is of interest to investigate continuous error-prone risk factors.

In the case of a single error-prone continuous risk factor W, the basic equation (2) for

classical likelihood models takes the form

(25)

where a(w̃ |w) is the conditional density of W̃ given W, the integral is over the entire range of

W̃, and the arguments Zi and β are suppressed. Analogous equations are obtained for the

case of multiple error-prone continuous covariates. Equation (25) is a Fredholm integral

equation of the first kind. Such equations are discussed, for example, in Delves and

Mohamed [42, Chapter 12], where numerical solution techniques are discussed. These

techniques could be applied to the measurement error problem in suitable cases. However,

as Delves and Mohamed indicate, such equations can sometimes be ill conditioned and do

not always have a solution. Thus, for example, for the logistic regression model with

additive normal covariate error, Stefanski [43] showed that a corrected score function

satisfying (2) does not exist.

One way around the problem is to carry out a mild discretization of the error-prone

covariate, fine enough to reduce the bias satisfactorily but not so fine as to lead to numerical

problems. This approach will not produce a strictly consistent estimator, but it is reasonable

to expect that the bias will be small. This supposition is supported by Cochran’s [44] classic

work on subclassification, which indicates that the bulk of the information in a continuous

variable can often be captured in a discretized version with four to six categories. We are

currently exploring this discretization approach in more depth.

Alternatively, an attempt can be made to modify the corrected score approach so that it will

work for the model under consideration. Huang andWang [45] developed such a

modification for logistic regression. In their work, the terms in the likelihood score function

were re-weighted to yield a new likelihood score function for which a corrected score

satisfying (2) can be derived. These authors dealt only with independent additive error,

which for the Cox model is already covered by existing corrected score methods [33, 46,

47]. Modification of the corrected score approach under other measurement error structures

is an open problem.
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APPENDIX A: TECHNICAL DETAILS

A.1. Outline proof of consistency and asymptotic normality

We give here an outline derivation of the asymptotic properties of our estimator. Our goal is

to indicate the main steps of the argument without dwelling on the technical details. For

simplicity, we focus on the i.i.d. structural model setting; our development will go through

for the functional model setting as well provided that {Xi (t) : i = 1,2, . . .} exhibits ergodic

behavior suitably similar to that of an i.i.d. sequence. We assume the parameter space is a

compact set ℬ of β values of which the true value β0 is an interior point. We further assume

that regularity conditions along the lines of Andersen and Gill [32] (AG) are in force over ℬ.

We take up first the issue of consistency. We are operating under AG’s ‘asymptotic

stability’ conditions, which in the i.i.d. case follow from the functional law of large numbers

in Andersen and Gill’s Appendix III. Define

Using AG’s arguments, including appeal to the asymptotic stability conditions, we find that

Ur (β) converges uniformly over ℬ to

In view of equations (12)–(14) of our Section 2.3, the same arguments yield the result that

 converges uniformly over ℬ to ur (β). We thus have the following:

1. The function U* (β), being continuous over ℬ, is therefore uniformly continuous

over ℬ.

2. The function U* (β) converges uniformly to u(β) over ℬ.

3. As can be seen by inspection, u(β0) = 0.

Moreover, as AG show, β0 is the only zero point of u(β) in ℬ. As a result, given the

compactness of the parameter space, convergence of β̂ to β0 follows by standard

subsequence arguments.

We now discuss the asymptotic normality of β̂. By Taylor expansion we may write

where β̃ lies between β0 and β̂, and hence converges to β0. Hence, as in AG, D(β̃) converges

to the limiting value of D(β0), which exists by virtue of the asymptotic stability conditions.

It now remains only to show that n1/2U(β0) is asymptotically normal.

We first recall expression (11) for the corrected score function:
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Since  does not have exactly expectation zero, the martingale approach of AG cannot

be applied to derive the asymptotic distribution of U* (β0). Instead, we follow the approach

of Lin and Wei [48]. From this point forward, all quantities involving β (including those in

which the dependence is suppressed from the notation) are evaluated at the true value β0,

except in (A1), which presents a definition for general β. We use counting process notation,

based on the definition Ni (t) = I (Ti ⩽t, δi = 1). We define

We have, from the law of large numbers along with (12) and (13), that N̄ (t) →  (t),

 as n → ∞. Here, the dependence on β is suppressed from

the notation, and, as mentioned above, evaluation is at β=β0. As seen from Andersen and

Gill [32, Appendix III], the convergence is uniform in t. In the development below, the

symbol ≐ will denote equality up to negligible terms.

We can write

In addition,
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Thus, substituting and re-arranging, we obtain

where

(A1)

From this result it follows immediately from the classical central limit theorem for i.i.d.

random vectors that n1/2U* (β0) is asymptotically mean-zero multivariate normal. It is

straightforward to see that the asymptotic covariance matrix of n1/2U* (β0) can be estimated

consistently by expression (17) evaluated at β̂.

Finally, we turn to the cumulative hazard estimator (19). This estimator can be expressed as

Using arguments similar to the above, we find that
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with the r th element of a given by

Using the approximation β̂ − β0 ≐ D(β0) −1U* (β0), and defining c(β)=−D(β) −1a, we obtain

(A2)

where

As before, it is apparent from this representation that the estimator is asymptotically mean-

zero normal with variance that can be estimated by

(A3)

where

with ĉ(β) = −D(β)−1 â(β) and

A.2. Correction to  with A(i,t) estimated from internal replicate data

We work in the setting where the replicate data are i.i.d. across individuals, and ω is

estimated by maximum likelihood. Let Ri denote the number of replicates on individual i,

and let gi (ω) denote the log likelihood function for (W̃
i1, . . ., W̃

i Ri). The overall

normalized log likelihood is then g(ω)=m−1∑i∈ℛ gi (ω), where ℛ denotes the set of

individuals in the internal replicate measures sample. Let g′ (ω) and g″ (ω) denote the

gradient vector and Hessian matrix, respectively, of g(ω), and let  denote the gradient
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of gi (ω). We can then express ω̂ in terms of the classic asymptotic approximation ω̂ ≐ −g″
(ω0)−1 g′ (ω0). Let ϒi (ω) denote the vector comprising the quantities ϒir (β, ω), as defined

in (A1), and let ϒ̂
i (β̂, ω̂) be the vector of corresponding estimated values ϒir (β̂, ω̂) as

defined by (16). Define

The limiting value of Φ can then be estimated empirically by

(A4)

The appropriate corrected version of H is then

(A5)

where for the present setup we have Γ̂ = g″ (ω̂)−1.

A.3. Correction to  with A(i,t) estimated

When, as in Section 3, we estimate the parameters ω that determine the classification

probabilities, representation (A2) becomes

where the νth element of h is given by

The estimate (A3) for var(Λ̂
0(t)) can be corrected as follows. Define ĥ = ĥ(β ,ω) by

With external data or an internal validation study, it is necessary merely to add to (A3) the

term ζ−1ĥTΓ̂ĥ. For the case of internal replicate data, the additional term is
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