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Abstract

Increasing evidence supports a central role for ncRNA in numerous aspects of chromatin function.

For instance, ncRNAs can act as a scaffold for the recruitment of certain chromatin modifying

complexes to specific sites within the genome. It is easily imaginable how this can occur in cis,

but examples also exist whereby targeting of complexes by ncRNA occurs in trans to the site of

transcription. Moreover, association of an ncRNA with a particular locus can trigger localization

of the gene to a subnuclear structure harboring a specialized transcriptional environment. In this

review, we discuss new insights into the mechanisms by which ncRNAs function in trans with

respect to Polycomb Group, chromatin insulator, and dosage compensation complexes in

mammals and/or Drosophila.

Introduction

Noncoding RNAs (ncRNAs) play key roles in chromatin function, particularly in

scaffolding and recruitment of certain chromatin modifying complexes. It has long been

appreciated that ncRNAs are central components of the dosage compensation machinery,

and recent work has elucidated how various ncRNAs contribute to Polycomb Group (PcG)

and chromatin insulator activities. In several cases, a nascent ncRNA nucleates recruitment

of a chromatin complex in cis, serving as a simple mechanism to promote binding

specificity. However, ncRNAs can also stimulate targeting of chromatin complexes in trans,

including nucleation of complexes at distant sites or stabilization of large nuclear structures.

The likely mechanisms by which these activities occur far from the site of transcription are

hardly intuitive and require further study. In this review, we focus on recent studies

providing key insights regarding the function of ncRNAs in trans with respect to PcG,

chromatin insulator, and dosage compensation activities in mammals and/or Drosophila.
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Maintenance of cellular identity by PcG repression

The PcG proteins are required for the proper development of multicellular organisms,

functioning to preserve pluripotency and/or cellular identity. Their main function is to

repress the expression of genes that would otherwise promote differentiation into other cell

types (Reviewed in [1]). This conserved class of proteins comprises two major

subcomplexes, Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2). One function of

PRC2 is to methylate lysine 27 of histone H3 (H3K27) through the activity of the Ezh2

methyltransferase. Resultant H3K27me3 serves as a docking platform for the chromodomain

containing Polycomb (Pc) protein of PRC1. Recruitment of PRC1 ultimately leads to stable

repression through chromatin compaction and/or interference with RNA polymerase II

transcription. Another property proposed to further stabilize repressive activities is the

propensity of PcG complexes to concentrate at large subnuclear structures termed PcG

bodies (Reviewed in [2]).

How specific recruitment of PcG complexes is achieved remains a critical outstanding

question. Although a variety of DNA-binding proteins have been demonstrated to affect PcG

recruitment in both Drosophila and mammals, recent studies have alternatively suggested

that PcG recruitment may be promoted through interaction with RNA. Genome-wide

purification approaches have identified a plethora of associated RNAs [3–6], likely due to

the ability of PRC2 to bind RNA non-specifically [7]. An in-depth discussion regarding the

role of ncRNAs in PcG recruitment in cis was recently presented [8]. Here we will discuss

the abilities of certain ncRNAs to promote PcG activity in trans with respect to targeting of

complexes to specific genomic locations as well as to subnuclear structures.

PRC2 recruitment to chromatin by HOTAIR ncRNA

The long ncRNA HOX Antisense Intergenic RNA (HOTAIR) serves as the archetypal trans

acting PcG recruitment factor. HOTAIR is 2.2 kb in length and transcribed in the antisense

direction with respect to the HOXC homeotic locus, preferentially expressed in distal and

posterior cells of mammals [9]. HOTAIR represses the expression of the HOXD locus in

trans through direct interaction and recruitment of the Suz12 and Ezh2 components of

PRC2. Consistent with a key role in HOX gene regulation, targeted deletion of HOTAIR in

mouse leads to skeletal malformations of the vertebrae and limbs, indicative of homeotic

transformation along with extensive genome-wide loss of H3K27me3 [10].

Subsequent global analyses have determined that HOTAIR also regulates targets outside of

the HOXD locus. Development of a novel method termed Chromatin Isolation by RNA

Purification (ChIRP) allowed genome-wide mapping of HOTAIR binding sites in a breast

cancer cell line [11]. These 832 binding sites overlap extensively with PRC2 occupancy in

the same cell type, consistent with the ability of HOTAIR to serve as a recruitment factor for

the complex. Whether these locations constitute natural binding sites for the ncRNA is

unclear since the cell line used in this study overexpresses HOTAIR, which causes genome-

wide mistargeting of PRC2 [12]. In the future, it will be important to improve the sensitivity

of ChIRP and related techniques [13, 14] and apply them to different cell lines expressing

natural levels of HOTAIR.
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The mechanism of HOTAIR targeting of PcG is further complicated by its involvement in

targeting a second chromatin modifying complex. HOTAIR harbors two independent

interaction modules and can interact simultaneously with PRC2 and the H3K4 lysine

demethylase LSD1 [15]. Consistent with the possibility that HOTAIR acts as a scaffold to

coordinate both activities, HOTAIR knockdown leads to loss of both Suz12 and LSD1

chromatin association at shared sites. However, HOTAIR also affects LSD1 recruitment at

non-PcG sites, suggesting that HOTAIR also harbors PcG-independent functions. Assuming

then that HOTAIR alone cannot specify PcG recruitment, other factors may be required to

act in concert with HOTAIR. This possibility is also supported by the recent finding that the

affinity of PRC2 association with HOTAIR is no higher than its affinity for non-specific

RNA [7]. In fact, HOTAIR binding sites are enriched for a GA-rich polypurine motif [11],

which could indicate interaction with a sequence-specific DNA-binding factor to assist in

targeting.

Recruitment of PcG by ncRNA to distinct nuclear structures

Two different Pc-associated ncRNAs can target genes to subnuclear compartments

associated with either transcriptional activation or repression. Under serum starvation

conditions, E2F1-regulated growth genes are rendered inactive and are associated with Pc2/

CBX4 that is methylated on lysine 191 [16] (Figure 1). Furthermore, Pc2K191me2 interacts

with the ncRNA TUG1, which is required for the localization of these genes to PcG bodies.

Upon serum stimulation, Pc2 is demethylated and associates with the ncRNA NEAT2/

MALAT1. These events are coincident with the relocalization of growth genes from the

repressive PcG body to an interchromatin granule (ICG), which is associated with active

transcription.

Of key mechanistic importance, association of Pc2 with either TUG1 or NEAT2 affects the

specificity of Pc2 interaction with modified histones. In vitro binding assays showed that the

Pc2 chromodomain preferentially binds H3K9me3 in the absence of RNA; however, in the

presence of TUG1, Pc2 binding specificity is altered toward modifications associated with

repression such as H3K27me2. In contrast, addition of NEAT2 alters Pc2 specificity toward

that of acetylated H2A peptides, which are associated with active transcription. Previous

work showed that the chromodomain of another Pc homolog, CBX7, can bind the ANRIL

cis-acting ncRNA simultaneously using an alternate face needed for H3K27me3 interaction

[17]. However, at high concentrations the two interactions are competitive, suggesting

feedback between the two domains. Since Pc2K191 methylation occurs outside of the

chromodomain [16], it will be important to determine the potential structural crosstalk

between these two domains. Collectively, these results provide new mechanistic insights

into how PcG-associated ncRNAs can influence binding specificity as well as the spatial

positioning of genes towards the appropriate transcriptional environment.

Chromatin insulators demarcate independent transcriptional domains

Chromatin insulators are multiprotein-DNA complexes capable of preventing inappropriate

communication between adjacent cis-regulatory elements. For example, insulators can

prevent the spread of PcG repression into an active region or block communication of an
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enhancer and promoter when placed in between the two elements (Reviewed in [18]).

Insulators minimally consist of a DNA-binding protein specificity factor, as well as a

module to mediate interactions between insulator complexes in order to promote long-

distance chromatin looping. The conserved zinc finger containing CCCTC-binding factor

(CTCF) is the only insulator protein thus far identified in mammals. In Drosophila, there

exist a variety of insulator complexes, such as the CTCF/CP190 and the gypsy insulators,

defined by CTCF and Suppresor of Hairy wing (Su(Hw)) proteins respectively. Both

complexes include the Centrosomal Protein 190 kDa (CP190) protein. Like PcG complexes,

Drosophila insulator complexes coalesce within the nucleus at sites termed insulator bodies.

Evidence exists suggesting that these bodies consist of DNA-bound insulator complexes that

may form higher order chromatin domains. Although mammalian CTCF does not localize to

an equivalent structure, it has previously been suggested that tethering of CTCF to the

nucleolus promotes insulator activity [19].

The conserved p68 RNA helicase influences insulator activity in Drosophila

and mammals

The steroid receptor RNA activator (SRA) ncRNA was identified as the first RNA regulator

of chromatin insulator activity. SRA is stably associated with the p68 DEAD-box RNA

helicase, and together these factors promote CTCF insulator activity, not by affecting its

targeting to DNA, but by stimulating recruitment of the cofactor cohesin at a variety of sites

[20]. On a genome-wide level, binding of p68 overlaps extensively with CTCF, but it is not

known if SRA is also present at these sites. An SRA counterpart does not exist in Drosophila;

however, the p68 homolog Rm62 was previously reported to act as a negative regulator of

gypsy insulator enhancer blocking activity and insulator body localization [21].

Interestingly, mutation of Rm62 does not affect CTCF/CP190 insulator activity [22],

suggesting conservation of components yet divergence of mechanisms of insulator

regulation.

Jpx ncRNA as an anti-scaffold for CTCF

In contrast, ncRNA can also negatively regulate CTCF activity, by competing with its ability

to bind to DNA. In mammals, inactivation of one X chromosome in females requires

expression of an ncRNA termed Xist, which coats the entire chromosome and recruits PcG

to promote silencing [8]. Xist transcription is positively activated by Jpx, an ncRNA located

10 kb upstream of Xist that is transcribed in antisense orientation [23]. Recent work showed

that during differentiation, Jpx expression results in loss of CTCF binding at the Xist

promoter, permitting activation of the gene by an unknown mechanism [24]. CTCF and Jpx

interact directly in vitro, and this association can compete with CTCF binding to Xist

promoter DNA. Therefore, it was suggested that association of Jpx can titrate CTCF away

from its chromatin binding site. Intriguingly, Jpx can induce Xist expression when

overexpressed in trans from an autosomal transgene at high levels [23, 24], and CTCF

association is reduced at the Xist promoter but not several other CTCF binding sites tested.

Although the specificity of this disruptive effect should be explored in more detail, this

result suggests that the higher sensitivity of CTCF to titration effects at this particular site
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results from some unique property of the Xist promoter, such as the presence of a specific

factor or a specialized conformation.

Noncoding functions for mRNA in promoting gypsy insulator activity

Recent work in Drosophila revealed that instead of ncRNA, certain mRNAs are stably

associated with insulator complexes. Native tandem immunoaffinity purification of gypsy

insulator complexes followed by high-throughput sequencing identified association of

mature su(Hw) and Cp190 mRNAs [25]. In order to evaluate the biological importance of

these associated transcripts, untranslatable versions of su(Hw) and Cp190 RNAs were

overexpressed in vivo using T7 polymerase. Ectopic expression of these transcripts resulted

in an increase of the number of insulator bodies per nucleus and improvement of enhancer

blocking activity. Several additional mRNA transcripts coding for chromatin-associated

proteins were also identified in these purifications, suggesting the possible generality of

bifunctional coding/noncoding transcripts. The majority of these transcripts do not

correspond to gypsy insulator binding sites, suggesting that these RNAs act in trans, perhaps

to promote scaffolding of insulator complexes (Figure 2). An obvious question raised by this

finding is whether separate pools of a given mRNA are either retained in the nucleus or

exported to the cytoplasm for translation, or alternately, if each mRNA can serve both

functions. Recent work identified a novel RNA-binding protein in negative regulation of

gypsy insulator activity [26]; however, it is unknown what factor(s) mediate the interaction

between these mRNAs and insulator complexes.

Remodeling of ncRNAs involved in Drosophila dosage compensation

In Drosophila males, X chromosome dosage is normalized by upregulation of genes through

specific recruitment of a transcription activation complex termed the dosage compensation

complex (DCC). Transcribed from the X chromosome, the roX1 and roX2 noncoding RNAs

serve redundant roles as scaffolds for DCC, despite little sequence similarity (Reviewed in

[27]). In addition to the sites of roX transcription, DCC complex formation is nucleated at

hundreds of additional chromatin entry sites along the X chromosome. A major advance in

understanding DCC assembly came recently with the elucidation of secondary structures for

several critical stem-loop structures in each RNA using chemical probing and nuclease

sensitivity methods [28, 29]. Importantly, association of the Mle RNA helicase alters the

conformation of the stem loop structure in an ATP-dependent manner, and this remodeling

step stimulates the binding of the Msl2 protein, which triggers formation of the DCC (Figure

3). Incorporation of a maturation step at the site of action provides a potential mechanism by

which a trans-acting ncRNA is prevented from acting before licensed to do so.

Conclusions

Several key concepts have emerged based on the various examples of trans-acting

chromatin-associated ncRNAs discussed here. Due to their length, long ncRNAs can harbor

multiple binding sites for different protein complexes and act as a scaffold for their

interaction or coordinated recruitment to a particular site. Next, the binding of an ncRNA

with a protein can alter the specificity of interaction of the protein with other factors.
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Therefore, association of an ncRNA could act as a switch to trigger either assembly or

disassembly of specific complexes. This capacity could also affect targeting of the complex

to a specific location within the genome or nucleus. When this complex is associated with a

particular locus, the ncRNA could thereby promote association of that locus to a subnuclear

structure to enforce a specific transcriptional environment. Finally, to control the timing of

its activity, the ncRNA itself can be regulated through a change in secondary structure by a

helicase, which can affect its interaction specificity. This remodeling step would allow the

ncRNA to diffuse from its site of transcription and function only at the appropriate location

and context.

A major difficulty in studying long ncRNAs is that their structures are complex and difficult

to predict based on sequence. As can be seen in recent DCC studies, detailed RNA analysis

approaches are needed to elucidate secondary and eventually tertiary structures of these

mysterious RNAs. Moreover, improvements to methods such as ChIRP will promote our

understanding of ncRNA function on a genome-wide level, while application of single

transcript in situ and single molecule tracking techniques (reviewed in [30]) should help

elucidate the relationship between ncRNAs and specialized nuclear structures. Further

insight into the mechanisms of ncRNA function in chromatin will certainly be obtained

using a combination of these biochemistry, molecular biology, and cell biology approaches.
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Figure 1. E2F1-responsive genes localize to a Polycomb body or interchromatin granule
structure in the absence or presence of serum, respectively, dependent on the methylation status
of Pc2
(A) Under serum starvation conditions, Pc2 is methylated and interacts with TUG1 through

its chromodomain (CD), which results in a higher affinity toward binding of H3K27me2. As

a result, E2F1-responsive genes localize to a Polycomb body, which provides an

environment to reinforce transcriptional repression.

(B) After serum stimulation, Pc2 is demethylated and interacts with NEAT2, which promotes

association of the Pc2 CD with acetylated histone H2. As a result, E2F1-responsive genes

localize to an interchromatin granule, which harbors a transcriptionally permissive

environment.
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Figure 2. Model for mRNA acting as a scaffold for gypsy chromatin insulator complex formation
Specific mRNAs associate with the gypsy insulator complex, comprised of Su(Hw), CP190,

and Mod(mdg4)2.2, promoting insulator-insulator interaction and loop formation, possibly

in the context of an insulator body. Interaction of the mRNA and insulator complex is

mediated by an unknown RNA-binding protein.
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Figure 3. Remodeling of roX2 acts a structural switch to provide a platform for Msl2
recruitment and subsequent DCC assembly
(A) The helicase Mle is recruited to the roX2 ncRNA.

(B) Mle helicase activity remodels roX2 conformation in an ATP-dependent manner.

(C) Remodeled roX2 serves as a platform for Msl2 recruitment.

(D) Recruitment of Msl2 triggers DCC assembly and spreading across the X chromosome.
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