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Abstract

Background: Many variable selection techniques have been proposed for the clustering of gene expression data.
While these methods tend to filter out irrelevant genes and identify informative genes that contribute to a
clustering solution, they are based on criteria that do not consider the potential interactive influence among
individual genes. Motivated by ensemble clustering, there is a strong interest in leveraging the structure of gene
networks for gene selection, so that the relationship information between genes can be effectively utilized, while
the selected genes are expected to preserve all the possible clustering structures in the data.

Results: We present a new filter method that uses the gene connectivity in the gene co-expression network as the
evaluation criteria for variable selection. The gene connectivity measures the importance of the genes in term of their
expression similarity with others in the co-expression network. The hard threshold and soft threshold transformations
are employed to construct the gene co-expression networks. Both simulation studies and real data analysis have shown
that the network based on soft thresholding is more effective in selecting relevant variables and provides better
clustering results compared to the hard thresholding transformation and two other canonical filter methods for variable
selection. Furthermore, a new module analysis approach is proposed to reveal the higher order organization of the
gene space, where the genes of a module share significant topological similarity and are associated with a consensus
partition of the sample space. We demonstrate that the identified modules can lead to biologically meaningful sample
partitions that might be missed by other methods.

Conclusions: By leveraging the structure of gene co-expression network, first we propose a variable selection method
that selects individual genes with top connectivity. Both simulation studies and real data application have demonstrated
that our method has better performance in terms of the reliability of the selected genes and sample clustering results.
In addition, we propose a module recovery method that can help discover novel sample partitions that might be
hidden when performing clustering analyses using all available genes. The source code of our program is available
at http://nba.uth.tmc.edu/homepage/liu/netVar/.
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Background
Variable selection in high-dimensional clustering analysis
has drawn attention recently in a variety of fields, in-
cluding statistics, machine learning, pattern recognition
and bioinformatics. Generally, variable selection algo-
rithms can be categorized as either wrappers or filters.
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In the context of clustering, the wrapper approach
searches for variables best suited to a specific clustering
algorithm aiming to improve the clustering performance
[1,2]. The wrapper approach has been shown to be ef-
fective on low dimensional data. However, one problem
for these methods, when applied to large data sets, is the
increase in computational complexity as the search
space exponentially increases over the number of vari-
ables. Furthermore, the wrapper method lacks robust-
ness and is biased towards the clustering algorithm used
[3]. In contrast, the filter approach is more efficient in
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dealing with these drawbacks. Filter-based algorithms do
not involve clustering algorithms for the evaluation of
variable subsets. Rather, the variables are evaluated
according to certain criteria (e.g., feature variance [4],
entropy-based distance [5], similarity among feature [6],
Laplacian score [7]). The filter approach is considered
faster and more efficient than the wrapper method in
high-dimensional data analysis.
DNA microarray datasets are examples of high-

dimensional data characterized by low sample sizes and
high dimensionality of variables. Clustering microarray
data can be very useful for biological and medical stud-
ies. For example, based on the gene expression profiles,
interesting cluster distinctions can be found among
groups of samples, which may correspond to particular
phenotypes, such as different types of cancer [8]. In
addition to the sample clustering, selecting the inform-
ative genes that best define the clusters of samples is
also important. Therefore, many variable selection ap-
proaches have been proposed for the clustering analysis
of microarray data, including the nonparametric density-
based methods [9,10] and the parametric mixture model-
based approaches [11,12]. In this context, Pan and Shen
[13] employed an extra L-1 penalty term of mean vectors
in the likelihood function to simultaneously perform vari-
able selection and maximize the penalized likelihood [13].
Recently, a new sparse clustering method achieved vari-
able selection by optimizing a weighted within cluster sum
of squares (WCSS), subject to constraints on the weights,
in the framework of K-Means clustering [14]. However,
the results from these methods are limited and might not
be able to capture the sheer complexity of gene regulation
processes. While all these methods tend to identify the in-
formative genes that contribute most to a single sample
clustering solution, this clustering solution may not cap-
ture the meaningful sample partition corresponding to
some phenotypes of interest. As gene expression can be
influenced by many factors, such as cell type, cell differen-
tiation, microenvironment, and external perturbation, the
microarray dataset is the result of all these factors mixed
together. The same set of samples can undergo different
partitions according to different subsets of variables.
Therefore, a good variable selection algorithm should se-
lect informative features that best preserve all the possible
clustering structures in the data.
In this study, we propose a novel network-based

method to achieve variable selection for microarray clus-
tering analysis. Network analysis plays an increasingly
important role in the exploration of information com-
munication and has been used to study the information
on the relationship between genes or proteins [15,16].
Here, we construct a gene co-expression network, in
which nodes and edges represent genes and their expres-
sion similarity, respectively. Our proposed method is
based on the assumption that each gene may induce a
specific partition of the sample space in the absence of a
priori information about the variable space. Therefore,
given the thousands of genes in the microarray dataset,
there might be thousands of distinct sample clustering
solutions on the same set of samples. In this context, the
imminent task is to combine these multiple partitions
into a single consensus clustering, which should share as
much information as possible with the given pool of
sample partitions. This notion of integrating multiple
clustering solutions is in line with the framework of
cluster ensembles [17], which tend to reuse the existing
knowledge and minimize the information loss incurred
in the process of cluster assembling. Based on the prem-
ise that higher correlated gene expression profiles tend
to produce more similar partition structures, we propose
to assemble genes according to their expression similar-
ity rather than their sample partitions. The objective of
our work is two-fold based on the level of gene
organization: first, to select a list of individual genes that
shares the most amount of similarity with other genes,
so that the final sample partition based on this gene list
is a high-quality combination with the most consensus
information among the partitions inferred by each indi-
vidual gene. Intuitively, a good informative gene will
have a large number of directly connected genes in the
co-expression network, such that it has a strong ability
of representing others. Therefore, we propose to assess
genes on their connectivity in the co-expression network
and to select the genes with top connectivity. The sec-
ond objective of our study is to identify co-regulated
subsets of genes, known as modules, which may repre-
sent different biological processes or pathways. The
genes in each module are expected to be highly corre-
lated and exhibit a coherent expression profile across
samples, while others exist as background noise. Here
the gene connectivity is used to further evaluate the
gene topological similarity. The genes with high topo-
logical similarity with each other are identified as a gene
module and should lead to a biologically meaningful
sample partition. With simulation and real data analysis,
we show that the gene connectivity, which measures the
importance of the genes in term of their expression
similarity with others in the co-expression network, is
an appropriate criterion to select informative genes for
sample clustering.

Methods
Gene co-expression network analysis
To define a measure of similarity sij between the expres-
sion profiles of genes i and j, we use the absolute value
of the Pearson correlation sij = abs(cor(xi,xj)), where xi
and xj represent the gene expression profiles for genes i
and j, respectively. Therefore the similarity matrix can
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be denoted by S = [sij], where the values of sij lie between
0 and 1. However, since microarray gene expression data
are typically quite noisy, directly employing the similarity
matrix for gene co-expression network analysis may not
be appropriate. We find it useful to employ the following
transformations that map a similarity matrix into an adja-
cency matrix. The first transformation is the signum func-
tion which implements hard thresholding. Specifically,

aij ¼ signum sij;τ
� � ¼ 1 if sij ≥ τ

0 if sij < τ

�
ð1Þ

Here aij is an element of the adjacency matrix and sij is
an element of the similarity matrix. In hard thresholding,
the value of the parameter τ determines the number of
genes and edges included in the resulting unweighted
network. Typically, an arbitrary value of τ is chosen to ex-
clude spurious edges, but this may lead to a loss of infor-
mation. To address this issue in hard thresholding, a “soft”
power transformation function has been proposed [18]:

aij ¼ sij
β
���� ð2Þ

with a single parameter β, where β > =1. Soft threshold-
ing results in a completely connected network with each
edge being assigned a weight.

Gene connectivity and variable selection
With the n × n symmetric adjacency matrix, the con-
nectivity (node degree) ki of gene i is define by

ki ¼
X

j≠i
aij ð3Þ

For the hard thresholding transformation, the connect-
ivity of gene i simply equals to the number of genes that
it is directly connected to in the unweighted network.
For the soft thresholding transformation, the connectiv-
ity of gene i equals the sum of weights between gene i
and all other genes in the weighted network. To select
the relevant genes for microarray clustering analysis, we
first rank the genes according to their connectivity. For
the hard thresholding transformation, the genes with
connectivity of 0 are removed from the original network.
Therefore, the gene connectivity ranking is only applic-
able on the set of genes included in the resulting un-
weighted network, which is of a reduced size depending
on the value of the threshold τ. In the weighted network,
the ranking can be obtained for all the genes. Finally, the
genes with low ranks are filtered out, while the genes
with top ranks are considered to have high degree of
connectivity and are selected for clustering analysis.

Module identification
Our module identification method is based on the node
similarity measure of their relative interconnectedness
coupled with the hierarchical clustering method. Instead
of using the gene correlation coefficients directly as the
similarity measure, we calculate the Jaccard similarity
coefficient Jij based on the gene connectivity in the
transformed network.

J ij ¼ hij
ki þ kj−hij

ð4Þ

Where hij = ∑ uaiuauj, which equals the number of genes
to which both i and j are connected in the case of
hard thresholding, and the total interconnectedness of
genes i and j in the soft thresholding transformation.
And ki = ∑ uaiu is the node connectivity as defined
in equation (3). Therefore, the similarity measure will
be affected by the selection of the transformation pa-
rameters. In our implementation, we adjust the hard
thresholding parameter τ or the power function par-
ameter β to explore their effects on the results of
module identification. Once the topological similarity
measure matrix is obtained, we re-order it by hierarch-
ical clustering of each row and column to put similar
genes in an adjacency zone [19]. Since the similarity
measure matrix is symmetric, these highly similar
genes would form “hot” blocks along the diagonal and
can be identified as a module by visual inspection.
The genes in the resulting modules are expected to be
highly co-expressed.

Evaluate the performance of variable selection
The performance of our method for variable selection is
evaluated by the F-score, where F = 2*Precision*Recall/
(Precision + Recall). The precision is the proportion of
selected variables that are truly relevant, and the recall is
the proportion of truly relevant variables that are se-
lected by our method, also known as the true positive
rate. The F-score ranges between 0 and 1, and can be
interpreted as a weighted average of the precision and
recall.
Based on the selected genes, we cluster samples using

the K-means algorithm with 50 iterations. The sample
clustering performance is evaluated by the classification
error rate (CER). The derived sample clustering (p1) is
compared to the true clustering (p2) to assess the per-
formance. The CER is defined as

CER p1; p2ð Þ ¼
X

i>i0
1p1 ið Þ¼¼p1 i0ð Þ−1p2 ið Þ¼¼p2 i0ð Þ
�� ��

n
2

� � ð5Þ

where n is the sample size. Note that smaller CER values
reflect more accurate clustering results. A CER of zero
indicates that the clustering results p1 and p2 agree
perfectly.
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Simulation data setting
We used a simulation setting similar to that in Witten
and Tibshirani [14]. A simulated dataset contains 60
samples from three classes C1, C2 and C3 (20 samples
from each) and each sample Xi is a d - dimensional vec-
tor that follows N(μi, ∑ d) and is independent of other
samples. Thus, the clustering structure is determined by
the specification of μi’s that are defined as

μij ¼

μ 1i∈C1‐1i∈C j1
� �

if j ≤ 10
μ 1i∈C j1‐1i∈C1
� �

if 10 < j ≤ 20
μ 1i∈C2‐1i∈C j2
� �

if 20 < j ≤ 30
μ 1i∈C j2‐1i∈C2
� �

0
if 30 < j ≤ 40

otherwise

8>>>><
>>>>:

ð6Þ

Where μ is a positive constant and set to 1 in the ex-
periment. This configuration of μ sets the first 40 genes
as informative genes and the other genes as noise. We
take ∑ d = diag (σ1,…, σd) where fc σ1,…, σd are set such
that the population variance of each variable is one. In
the simulation, the first 20 genes together can be consid-
ered as a module since their expression profiles are
highly correlated and this module differentiates samples
in class C1 from the others. Whereas the next 20 genes
form another module that differentiates samples in class
C2 from others. Therefore, these two sets of genes ex-
hibit different sample partitions.

Results and discussion
Variable selection performance with simulation dataset
We describe herein the performance of our method with
two network inference methods on a simulated dataset. In
the hard thresholding transformation, we considered the
effects of two parameters on the performance of variable
selection: the hard threshold τ that determines the number
of genes and edges included in the unweighted co-
expression network, and the percentage of genes to be se-
lected based on their connectivity in the resulted network,
determined by equation (3). With a greater value of τ, the
resulting network will have a smaller number of genes and
edges, but the connection strength (correlation coefficient)
between paired genes will be higher. We reported the aver-
age F-scores and CER values based on 100 simulated data-
sets for two different dimensionalities (d=500, Figure 1a
and b, and d=1000, Additional file 1: Figure S1a and b).
It is not surprising to observe that selecting all of the

500 genes in the dataset can only lead to a low F-score
(0.15) and a high CER (0.29), as shown in Figure 1a and
b, simply because too many noninformative genes were
included without the variable selection step. When we
varied the threshold τ to generate a network with re-
duced size but kept all the genes in the resulting net-
work regardless of their connectivity (in the case of
genes with top 100% connectivity being selected), the
performance evaluated by the F-score was improved but
still poor, regardless of how many genes were in the
resulting network. However, both the F-scores and CER
were shown to improve further with an additional step
of gene filtering by the gene connectivity rank. Gener-
ally, the more stringent the gene connectivity rank fil-
tering, the lower the number of genes selected. To
compare the performance of different gene connectivity
ranks with the same number of genes selected, we had
to decrease the threshold τ to achieve a large network
size when the gene connectivity rank was more strin-
gent. As shown in the Figure 1a and b, the gene filtering
with the top 20 percentile connectivity resulted in the
highest F value and the lowest CER when 100 genes
were selected. However, this was not always the case.
When 40 genes were included, the top 40% percentile
rank achieved best performance among all these filtering
scales. This indicates that the performance of variable se-
lection is affected by both the connection strength and the
connectivity of the selected genes. We observed similar re-
sults in both simulated datasets with different dimension-
alities (d= 1000, Additional file 1: Figure S1a and b).
As shown in above analysis, the network variable selec-

tion based on hard-thresholding transformation was influ-
enced by both the network size and the gene connectivity
filtering. It may be challenging to optimize both of these
two factors in real data analysis. To resolve this problem,
we used a soft thresholding transformation for gene selec-
tion that is only dependent on the power function param-
eter β. It not only takes into account the information of all
the genes, but also reduces the effect of noise induced cor-
relation by the power function, assuming that the noise
correlation occurs more likely at smaller values than the
correlation associated with true gene relationships.
In the soft thresholding transformation, we varied the

value of β to construct a series of gene co-expression
networks. Results in Figure 1c and d demonstrated that
the power transformation significantly improved the per-
formance of variable selection and led to a higher F-score
peak and lower CER than the original non-transformed
one (β=1). We further found the performance was not a
monotonic function of β. Among the four power functions
with different parameters β, the optimal value of F-score
and CER were achieved when β was set to 3, which may
result in the optimized state for emphasizing the correl-
ation associated with true gene relationships by diminish-
ing the noisy effects in this simulation setting. We
observed similar results when d=1000 (Additional file 1:
Figure S1c and d).

In comparison with other feature selection methods
To further demonstrate the effectiveness of our pro-
posed network based analysis for variable selection, we
compared it with two other classic filter algorithms, the



Figure 1 Performance of variable selection. The averaged F-scores (a, c) and the CER curves (b, d) in hard thresholding and soft thresholding
transformation, respectively. The horizontal line in each plot represents the performance based on all genes (500 totally).
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Laplacian Score [7] and the Max-Variance. As a special
case of a spectral feature selection algorithm, Laplacian
score selects those features that can best preserve the
local manifold structure (He et al. [7]). In the compari-
son, we set up the parameter β with the optimized value
obtained in the aforementioned simulation result (β =3).
The genes selected from each method were used for
clustering samples with the K-means algorithm. Our
proposed network algorithm consistently outperformed
the other two methods, particularly at a low dimension-
ality (20–100), where all of these methods reached their
best performance (Figure 2b). The Laplacian score
method achieved an optimal CER value of 0.25, close to
that of the network without a power transformation.
Similar results were observed in the comparison of the
F-scores (Figure 2a). This indicates the effectiveness of
our variable selection method in clustering analysis.

Selecting genes that support a common clustering
structure by module identification
The gene co-expression network analysis captures the
relationships among the genes so that it can help
identify a small number of sets of highly correlated
genes, each of which tends to assemble into a functional
module that can be involved in biological pathways or
molecular complexes. Also, these genes together assure
a specific clustering of samples, which might be different
from other sets of correlated genes. The genes selected
by a module usually have greater intramodular connect-
ivity than those that do not belong to the module.
Therefore, module analysis not only captures the con-
nectivity information of individual nodes as what we did
in the variable selection, but also reveals the higher
order organization of gene topological similarity in the
entire gene space.
We applied both the hard-thresholding and soft-

thresholding transformation on the gene co-expression
network for module identification. Note that the sensi-
tivity of this method varies depending on the co-
expression network size and the composition of variable
space. In the analysis, we assigned the value of μ to 1.5
in the simulation setting to demonstrate a clear module
structure. For hard thresholding transformation of net-
work (d=500), we varied the threshold τ to retain the



Figure 2 Comparison with other variable selection methods. (a) The averaged F scores and (b) the CER curves. Our method is based on soft
thresholding transformation with the power function parameter β=3.
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top 1% of correlation coefficients for calculating the
Jaccard similarity coefficients between genes. This cutoff
is roughly consistent with our simulation setting where
there are 40 informative genes and 40*40 informative
gene pairs among 500*500 total number of gene pairs
(0.64%). We also tested the performance on the top 5%
of correlations. Figure 3b and c showed the discovered
modules in the network when the top 1% and top 5% of
correlations were kept in the transformed network, re-
spectively. Two ‘hot blocks’ can be clearly identified
along the diagonal, each of which corresponding to the
original defined module in the simulation setting with
only a few missing genes. Due to varying numbers of
edges included, the boundaries between blocks exhibited
distinctive sharpness in Figure 3b and c, but the module
structure and the genes included in each module were
the same. Therefore, this simulation result can serve as a
guideline for determining cutoffs. For a hard threshold
of 1%, we are assuming that roughly 10% of the genes
are informative and 90% are not. This assumption is of
course not optimal for every dataset. Fortunately, this
simulated example suggests that module identification is
Figure 3 Module structure in the gene co-expression network from th
the co-expression network. The rest on the right are zoomed-in view of the m
(b) and (c), hard thresholding transformation, with top 1% and 5% correlation
transformation, with the power functions parameter β=3 and β=7, respective
not very sensitive to this parameter. Therefore, in a real
dataset, if we use a hard threshold, we will first set the
threshold to select the top 1% of edges, and also vary the
threshold slightly, while checking whether the hot block
appears to be consistent with respect to small changes of
the cutoff.
We also performed soft thresholding transformation

and obtained similar results (Figure 3d and e), indicating
the relative robustness of our method in module identifi-
cation. Furthermore, each of the blocks induced a
unique bipartitioning of the sample space that is equiva-
lent to the sample partition inferred by the corresponding
modules in our simulation setting (C1 vs. others and C2
vs. others). We observed similar results when d=1000
(Additional file 1: Figure S2).

Application in real datasets
Along with simulations, we applied our method to two
real experimental datasets: Leukemia [8] and Colon can-
cer data [20].
The leukemia dataset consists of 72 patients with two

subtypes of acute leukemia: acute myeloid leukemia
e simulated dataset of d = 500. (a). Two modules were identified in
odules highlighting the genes included in two modules respectively.
s included in the network, respectively. (d) and (e), soft thresholding
ly.
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(AML) and acute lymphoblastic leukemia (ALL). The
latter is composed of two subclasses, B-cell and T-cell
types. Therefore there could be two possible biologically
meaningful clustering solutions including one with two-
clusters of samples (AML and ALL) and the other with
three clusters (T cell ALL, B cell ALL and AML).
Following Dudoit and Fridlyand [21], three pre-

processing steps were applied to the original data matrix
and a final 72 X 3571 data matrix was obtained. Because
the pre-processing steps included thresholding the gene
expression values with a floor and a ceiling boundaries,
many artificially high correlations were introduced. We
filtered out these genes whose medians equal the bound-
ary values and obtained 3033 genes totally. We first
studied the module organization of the gene space and
the associated sample partition in the leukaemia dataset.
In the implementation, the value of τ was chosen to in-
clude only the edges corresponding to the top 1% of
paired correlation coefficients in the network. As shown
in Figure 4a, the topological similarity matrix exhibited a
sharp separation of modules from its neighboring genes.
We evaluated the sample clustering performance of
modules by using the gene set included in each module
Figure 4 Module analysis and clustering results for the leukemia and co
the gene co-expression matrices of the Leukemia (a) and Colon dataset (b). B
with various power functions for three clusters of Leukemia dataset (c) and fo
for sample partitioning. We found that most of them in-
duced a meaningful partition of the sample space. Spe-
cifically, the first module at the bottom right corner
rendered a dichotomy of the samples according to the
known classification, ALL/AML, with the CER value
equalling 0.155, whereas the second module tends to
distinguish B cell ALL patients from the rest with a CER
value of 0.2, indicating the unrecognized similarity be-
tween T cell ALL samples and AML samples in the data-
set. The other modules also imposed a potential novel
partition of samples. These results confirmed multiple
possible clustering solutions in the leukemia dataset. We
also performed variable selection to select individual
genes based on their connectivity in the transformed
network using soft thresholding transformation. For the
three-cluster solution, the 100 genes selected from the
network-based analysis yielded the sample partition co-
inciding almost precisely with the known classification
(T cell ALL, B cell ALL and AML) with CER equalling
to 0.09, when the parameter β reached 40 or above
(Figure 4c). In Figure 4c, we also compared the perform-
ance of our network-based method with other filter
methods. Results showed that our approach achieved a
lon datasets. Top panel: Zoomed-in view of the module composition in
ottom panel: The CER curves based on soft thresholding transformation
ur clusters of Colon cancer dataset (d).
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comparable optimal CER value with the Laplacian and
the Max-Variance methods, when more than 100 genes
were selected. Out of the top 100 informative genes se-
lected from our method, 28 and 35 genes were found by
the Laplacian and the Max-Variance method, respect-
ively (Additional file 1: Figure S4a). The genes selected
from our method may also represent new sample parti-
tions. This is supported by the observation that our
method achieved better separation of B cell AML samples
from the rest compared to other methods (Additional
file 1: Figure S5a). We further examined the gene lists
selected from soft thresholding transformation with var-
ied β, and found that the overlap among the gene lists
increased as β became larger. After β reached 80, the se-
lected gene lists were almost unchanged. This is consist-
ent with their similar clustering performance as shown
in Figure 4c. However, recall that in our simulation
studies the optimal CER was achieved when β was small
(β =3), reflecting possibly different variable compositions
Figure 5 The correlation distribution of full variable space and inform
Leukemia and (c) the colon cancer dataset.
between the simulated dataset and the leukemia data. As
shown in Figure 5a and b, these implications became
clear. In Figure 5a, the correlation of 40 informative
genes in the simulated dataset followed a uniform distri-
bution. Unlike the 40 informative genes in simulation,
the correlation of the 100 selected informative genes
from the leukemia data followed a mixture distribution
with two components, one at the high end of the distri-
bution and another close to zero (Figure 5b). This is rea-
sonable for real datasets given the assumption that gene
expression data are influenced by many active biological
processes, where genes within each of the processes tend
to be highly correlated with one another, but may not be
well correlated with those participating in other biological
processes. Therefore, the correlation values between genes
corresponding to different biological processes will be
small, located in the low end of the correlation dis-
tribution. Since the component in the high end was well
separable from the other for the full gene space, the
ative gene set. (a) The simulated dataset with d=500, (b) the
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corresponding highly connected genes tend to be always
selected as informative genes disregarding the value of β.
Therefore, the selected genes should not be sensitive to β
when β is above a certain threshold that aims to remove
the noisy correlations. However, this was not the case for
the simulated dataset, where the correlation of the inform-
ative genes followed a uniform distribution while that of
the full set of genes was close to zero, so a small value of β
should be able to remove the noise induced correlations.
We also analyzed the colon cancer data by Alon et al.

[20], which contains two classes of samples based on
disease status: 40 tumor samples and 22 normal samples.
In addition, an independent study reported that there
was a difference in the experimental protocols used to
process the samples [22]. There are 22 samples proc-
essed by protocol 1, and the other 40 samples were
processed by protocol 2. Taking the different protocols
into consideration, the study has at least three different
possible sample partition structures based on disease
status, sample protocols, and their combination. In the
analysis, we first employed the module analysis on the
dataset, followed by variable selection for the clustering
analysis. As we did with the leukemia dataset, the edges
corresponding to the top 1% correlation were kept for
module analysis. As shown in Figure 4b, dozens of mod-
ules were identifiable along the diagonal of the similarity
matrix. Each module exhibited a distinctive partition of
the sample space. Among the first three modules at the
bottom right, module 1 had strong tendency to partition
the samples according to the normal versus tumor clas-
sification with a CER value (0.35), whereas module 3
was informative for the partition based on different pro-
tocols (CER=0.27). Also the number of genes included
in these two modules differed. Module 1 was the largest
in terms of the number of genes included. These results
indicate that the classification of tumor versus normal
samples is a more dominant factor in the sample cluster-
ing compared to the different sample protocols. It was
interesting to observe that the number of genes in mod-
ule 2 was similar compared to module 1. However their
clustering behaviours differed, suggesting that module 2
may inform a novel sample partition of the colon cancer
dataset. The aforementioned module analysis reinforced
the idea that the colon cancer dataset has at least three
clustering solutions. Here, a soft thresholding transform-
ation was implemented to select the feature genes. As
shown in Figure 4d, in a four-cluster solution that
combines the disease status and the sample protocol
changes, the clustering performance of our method
based on different values of β is similar given a β value
of 40 or above. Here, the CER value was higher than that
obtained from the leukemia dataset, possibly due to mis-
labeled samples [23]. Nevertheless, our approach achieved
a better performance than the other methods. In Figure 4d,
when β was 40 or above, our method had a CER value
equal to 0.25 with 100 genes selected, whereas Laplacian
and Max-Variance obtained the CER values of 0.32 and
0.29, respectively. Only 18 and 8 genes selected from our
approach were also obtained from the Laplacian and the
Max-Variance method, respectively (Additional file 1:
Figure S4b). For the other clustering solution based on dif-
ferent experimental protocols, our method outperformed
others as well (Additional file 1: Figure S5b). We also plot-
ted the distribution of correlations for full gene space and
the 100 selected informative genes respectively (Figure 5c).
Similar to the leukemia dataset, the gene set has two well-
separated components of correlations at two ends, which
may explain their saturating behaviour of clustering per-
formance when β reaches a certain value.

Conclusions
Variable selection for clustering is never a trivial prob-
lem. This is particularly true in high dimensional data
analysis, where few dozens of informative variables are
often dispersed over a noisy background with thousands
of noninformative variables. Traditional approaches to
filtering out the irrelevant features are based on certain
criteria that do not account for potential interactive in-
fluence from other individual variables. Motivated by en-
semble clustering, we propose a new filter score, the
gene connectivity in the co-expression network, which
takes into account all of the information gained from
other nodes in the network in terms of expression simi-
larity; therefore, the selected genes are expected sustain
a consensus sample partition that populates through the
partition pool induced by individual genes.
To obtain the connectivity of each gene, we have ap-

plied two network inference methods based on a hard
thresholding and a soft thresholding adjacency function.
In the first method, we use a hard threshold parameter τ
to infer the gene network, followed by filtering the nodes
based on their connectivity rank. Therefore, the resulted
feature gene set is affected by the resulting network size
and the stringency of the connectivity rank. The mar-
ginal gene connectivity obtained from hard thresholding
transformation is estimated solely based on the given
gene and its neighbourhood in the network with reduced
size. Therefore, to retain more information of the entire
network, we employ the soft thresholding transform-
ation to build a complete network including all genes,
where each gene is connected to all the other genes in
the network with weighted connection strength. Our
simulation results showed that soft thresholding is more
effective and provides better clustering results compared
to the hard thresholding method in terms of clustering
error rate and variable selection. We realize although the
connectivity obtained from a soft thresholding network
preserves more information of the entire network
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compared to the hard thresholding transformation, the
gene connectivity calculation is still based on the gene
and its edges to all the genes in the network, and it does
not consider the edges among its neighbors. There are
other network related metrics, such as the betweenness
centrality of a node that requires knowledge of the entire
network topology and indicates how important the node
is within the context of the entire network. These net-
work metrics will be evaluated in our future studies. In
this work, considering the fact that gene connectivity is
easy to calculate and the derived gene hubs represent a
large number of other genes in the network well, we use
gene connectivity as our evaluation criteria for variable
selection.
The parameter setting in variable selection methods

renders a crucial influence on the performance of the
feature genes selected. However, tuning parameter selec-
tion in the unsupervised setting is always a challenging
problem [24]. In real data analyses, we showed the rela-
tive robustness of our method when the parameter β
was above a threshold value in the soft thresholding
transformation. Further analysis of these informative
genes demonstrates a mixture correlation distribution
with two components in the profile. The component in
the high end comes from paired gene correlations within
the same biological processes, so they will be preferen-
tially selected by the high power transformation param-
eter β compared to other genes. Therefore, we propose
to pick the value of β for a given dataset so that the se-
lected genes are not sensitive to β if it is above this
threshold value. Alternatively, we can evaluate each set
of feature genes with other criteria, such as the purity
and efficiency of clustering results, or within/between
class distance of induced sample partitions.
Furthermore, we developed a module identification

method by measuring the node interconnectedness in
the co-expression network. Our module identification is
based on using a node similarity measure in conjunction
with a clustering method. In this study, we chose to use
the Jaccard similarity coefficient based on the gene con-
nectivity instead of using the gene correlation coeffi-
cients directly. Jaccard similarity takes advantage of the
co-expression network information assuming that two
nodes having a higher degree of overlapping neighbors
are more likely to be in the same functional class than
nodes having a lower topological overlap. This is par-
ticularly useful when high background noise divert the
real network information. We performed a comparison
of module structures based on two similarity measures:
the Pearson correlation coefficient and the Jaccard similar-
ity coefficient. As shown in Additional file 1: Figure S3,
there is a clear difference before and after the Jaccard
similarity was computed on the gene correlation coeffi-
cients. The Jaccard similarity coefficient led to more
distinct gene modules than the correlation coefficient
which resulted in a highly noisy background on its module
structure. Once the node similarity measure is obtained,
we applied hierarchical clustering to resort the rows and
columns of genes. There are alternative clustering proce-
dures such as K-means clustering, but hierarchical cluster-
ing is more straightforward, and does not require
specification of the number of modules. The genes corre-
sponding to each module clearly form squares along the
diagonal so that the modules can be easily identified by
visual inspection.
The focus in our module analysis is on the high order

organization of gene space, rather than their specific cor-
responding sample partitions. It is particularly useful for
discovering unanticipated sample partition structures in
data. Unlike the previous methods [22], our method
does not need the partitioning and merging steps of the
gene space; alternatively, we use the co-expression
network, which is capable of recovering biologically
meaningful modules amongst a noisy background, that
putatively represent pathways or cellular processes. Such
information can be used to establish causal models con-
necting the informative feature sets with known pheno-
types such as disease symptoms, which will facilitate
discovery of new and hidden patterns in datasets.
Additional file

Additional file 1: Figure S1. Variable selection performance in the
simulated dataset (d= 1000). The averaged F-scores (a, c) and the CER
curves (b, d) in hard thresholding and soft thresholding transformation,
respectively. The horizontal line in each plot represents the performance
based on all genes (1000 totally). Figure S2. Module structure in the
gene co-expression network from the simulated dataset of d=1000.
(a) and (b): in hard threshold transformation, with top 1% and 5% correlations
were included in the network, respectively. (c) and (d): in soft transformation,
power function with β=3 and β=7. Figure S3. Comparison of module
structure recovery using different similarity measures. The rows and columns
of genes have been reordered according to the hierarchical clustering of
similarity matrix. (a). Pearson correlation coefficients of 500 genes, no
transformation. (b) Jaccard similarity coefficients of 500 genes, no transformation.
(c) Pearson correlation coefficients with power transformation with β=3.
(d). Jaccard similarity coefficients derived from power transformation with
β=3. Figure S4. Comparison of lists of genes selected from different
methods. Network refers to our network-based variable selection method.
(a) Leukemia dataset and (b) Colon cancer dataset. Figure S5. Clustering
performance based on new partition structures identified by our module
analysis. The CER curve with various power functions in co-expression
network transformation for new partition structures of the Leukemia dataset
(a) and Colon dataset (b).
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