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ABSTRACT A central theme of cognitive neuroscience is
that different parts of the brain perform different functions.
Recent evidence from neuropsychology suggests that even the
processing of arbitrary stimulus categories that are defined
solely by cultural conventions (e.g., letters versus digits) can
become spatially segregated in the cerebral cortex. How could
the processing of stimulus categories that are not innate and
that have no inherent structural differences become segre-
gated? We propose that the temporal clustering of stimuli
from a given category interacts with Hebbian learning to lead
to functional localization. Neural network simulations bear
out this hypothesis.

Localization of function is a basic feature of brain organiza-
tion, revealed by the selectivity of impairments following brain
damage and by techniques for recording regional brain activ-
ity. For many functions, such as color vision, motor control,
and even face recognition, one can hypothesize that some
combination of genetic factors and intrinsic differences in the
stimuli themselves causes spatial segregation. However, neu-
ropsychology provides evidence of localization for the pro-
cessing of arbitrary stimulus categories, such as letters versus
digits. A genetic account is not possible, as letters and digits
entered the environment far too recently to be represented in
the genome. Neither can the physical features of letters and
digits explain their cortical segregation, as many letter—digit
pairs are physically more similar than many letter-letter and
digit—digit pairs.

Letters and digits are not the only categories that pose this
dilemma. In addition to impairments in letter recognition
relative to digit recognition (1), brain-damaged patients can
show selective impairments in the processing of music relative
to other sounds (3), in writing relative to other sensorimotor
functions of the hand (4), and even in cursive relative to print
(M. Kinsbourne and B. Hiltbrunner, personal communica-
tion). Intraoperative cortical stimulation suggests that differ-
ent cortical regions subserve different languages in bilingual
individuals (5). In all these cases, the impaired abilities are too
recent in evolutionary terms to admit genetic explanations and
yet there are no obvious, inherent differences in the required
processing that could account for the differentiation. How
might such stimulus categories come to be processed by
different brain regions?

The answer may lie in the statistics of the environment. For
all these categories, stimuli tend to co-occur in close temporal
proximity. Letters more often appear with other letters than
with numbers and vice versa. Similarly, musical sounds are
more often followed by other musical sounds than by nonmu-
sical sounds. If one has just written a letter, one is more likely
to write another than to do something else with one’s hand, and
the same temporal clustering applies to writing cursive versus
print. Finally, the elements of one language are more likely to
be spoken and heard in close temporal proximity with one

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked “‘advertisement” in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

12370

another than with those of another language. Given the
correlation-driven nature of Hebbian learning, we hypothe-
sized that this statistical property of the world could cause
neural networks to self-organize spatially segregated repre-
sentations for stimuli from such otherwise arbitrary categories.

How could the cortex pick up on this correlation in the
environment to produce segregated representations for arbi-
trary categories such as letters and digits? Fig. 1 presents a
simple mechanistic model that demonstrates one possibility.
The model is a two-layer neural network that uses a Hebbian
learning rule to modify the weights of the connections between
the input and output layers. Hebbian learning is a neurophysi-
ologically plausible mechanism that generally corresponds to
the following rule: If two units are both firing (correlated),
then their connection is strengthened; if only one unit of a pair
is firing (anticorrelated), then their connection is weakened
(6). The input layer represents the visual forms of input
characters (letters and digits) by using a localist representation
(each unit represents a different visual form). Initially, the
output layer does not represent anything (since the connec-
tions from the input layer are initially random), but with
training it should self-organize to represent letters and digits
in segregated areas. Neighboring units in the output layer are
connected via excitatory connections and units further away
are connected via inhibitory connections, in keeping with
previous models of cortical self-organization (7, 8). (Other
architectures would also be consistent with our explanation—
e.g., normalization of output activations as opposed to long-
range inhibitory connections. What is critical is that the
architecture provide a cooperative mechanism to produce
clusters of activity and a competitive mechanism to inhibit
multiple clusters. For a review of a variety of such models see
ref. 9.) The legend to Fig. 1 describes the model’s details.

Fig. 1 shows the state of the network at different points
during training with letters and digits. When the first stimulus
(“A”) is initially presented, the pattern of output activity is
random, reflecting the random initial connection strengths -
from inputs to outputs. Over time the excitatory connections
produce clusters around active units and these drive down
activity elsewhere via inhibitory connections, leading to a
single cluster (or very few). The Hebb rule then strengthens
the connections to this active cluster from the active input (A)
but weakens the connections from other (inactive) inputs and
those from A to inactive outputs because they are anticorre-
lated. Because of these weight changes, A will subsequently be
biased toward activating the same cluster whereas other inputs
will be biased toward activating other units. When another
stimulus (“17) is presented, it too leads to a random pattern of
activity, except that the units activated by A are less active than
they otherwise would be. Consequently, the “1” cluster that
develops is spatially segregated from the “A” cluster. Similarly,
the clusters for “H” and “8” are spatially segregated from the
others.

Fig. 2 shows the network’s behavior when multiple char-
acters are presented simultaneously. Here clusters form for
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FiG. 1. The state of the network at different points during training with individual characters. Each row represents the presentation of a stimulus
during training (only a few illustrative stimuli are shown). The stimulus is on the left. The rest of the row shows the state of the output units after
1, 3, and 5 cycles. The network had 116 total units. Sixteen were inputs (the first 8 for the letters A-H and the other 8 for the digits 1-8) and the
other 100 were outputs in a 10 X 10 arrangement. All input units were connected to all output units with plastic connections. Output units were
connected to neighbors (in two dimensions) by fixed excitatory connections (weight = 0.3) and to other output units by fixed inhibitory connections
(weight = —0.03). The minimum and maximum unit firing rates were fixed at 0.0 and 100.0, while the minimum and maximum connection weights
were fixed at 0.0 and 3.0. Initially, the activity of output units was uniform random between 0.0 and 10.0 and the connection weights from inputs
to outputs were uniformly random between 0.0 and 0.5. The following Hebbian learning rule based on firing rate was used after every cycle to
update connection strengths between input and output units: if both pre- and postsynaptic units are firing above threshold (50.0), increase connection
weight by 0.08; if both units are below threshold, make no change; otherwise, decrease the connection weight by 0.025. The output units used a
sigmoid transfer function:

100.0
1+e” (input—40.0)-
The total input to each output unit was multiplied by a 0.9 gain factor before passing through the transfer function. The input units were clamped
to their values and did not decay.

output =

character sets instead of for individual characters. If two
stimuli initially activate widely separated clusters but then
appear together, the initial clusters will compete with each
other (via the inhibitory connections) in representing the
pair. One cluster will eventually win out and Hebbian
learning will strengthen the connections from both inputs to
the victorious cluster. The result is that co-occurring stimuli

will be biased toward exciting nearby units, even if they
initially excited quite different sets of units. In other words,
spatially localized areas will develop for stimuli that tend to
co-occur (as we assume within-category stimuli do). Stimuli
that occur in rapid succession could also become associated
if some residual activation from the first stimulus occurs

(10).

FIG. 2. The state of the network at different points during training with multiple characters. Conventions are the same as in Fig. 1.
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FiG. 3. The state of the neural network after five epochs of training under varying initial conditions. The left of each pair shows the activation
when all eight letters are present (after six cycles), and the right shows the activation when all eight digits are present. The central pair shows the
final state of a network that used the initial conditions given in the caption to Fig. 1. The other pairs used initial conditions that were identical
except that the value of one parameter was changed. The pair directly above it (Top Center) used an initial excitatory connection weight of 0.5
between neighboring output units, instead of 0.3. The pair below (Bottom Center) used an excitatory weight of 0.1. The pair at Top Right used an
inhibitory connection weight of —0.01 (instead of —0.03) and that at Bottom Left used one of —0.05. The pair at Middle Right used a different Hebbian
rule in which the connection between simultaneously active units was increased by 0.1 (instead of 0.08) and the pair at Middle Left increased such
connections by 0.06. Finally, if only one unit in a pair fired above threshold, the pair at Bottom Right decreased the connection strength by 0.01
(instead of 0.025), while the pair at Top Left decreased it by 0.04. Stimuli were presented in the following order during each epoch: A, 1, B, 2, .. .,
H, 8 (16 single characters), AB, 12, BC, 23, .. ., HA, 81, AB, 12, .. ., HA, 81 (32 pairs of characters), ABC, 123, BCD, 234, .. ., HAB, 812, ABC,
123, ..., HAB, 812 (32 sets of character triples). Each stimulus was presented for six cycles after which the output units were reset to 0.0 activation.

The same argument implies that stimuli that do not co-occur
will be biased away from exciting nearby units. When one
stimulus is present, the connections from any other (inactive)
stimulus to the currently active output units will be weakened,
and this will bias the inactive stimulus away from exciting those
units. Consequently, stimuli from different categories (e.g.,
letters versus digits) will tend to be represented by spatially
segregated sets of units (because we assume they co-occur
much less frequently). And even within a category, as long as
particular stimuli do not always co-occur, they will have distinct
representations within their cortical areas.

Fig. 3 shows the results with different initial conditions.
Distinct, spatially localized areas develop in almost every case.
The parameters affect the size, coherence, and degree of
overlap of clusters but do not change the qualitative pattern of
results. Also note that the resulting letter and digit areas do not
always form in the same locations. In some simulations, the
letter area arises on the left of the output layer with the digit
area on the right. In others, these locations are reversed, or
horizontal or diagonal patterns arise. Whether the locations of
letter and digit areas in human cortex vary across individuals
in a similar way is not well established, although a recent study
using electrodes chronically implanted on the surface of striate
and extrastriate cortex suggests that they do (11).

The most important parameter is the strength of excitatory
connections, with increasing strength leading to larger, more
coherent clusters (Fig. 3 Top Center) and decreasing strength
reducing the size and coherence of the clusters enough to
undermine the formation of clusters (Fig. 3 Bottom Center;
note the segregation in both cases). The inhibitory connections
are important in driving down activation outside the major
clusters. Thus, decreasing their strength leads to larger clusters
with more overlap (Fig. 3 Top Right) while increasing their
strength leads to smaller clusters with no overlap (Bottom
Left). Although the learning rate for simultaneously firing
units has no effect in the range we tried (Middle row), the
learning rate for anticorrelated firing affects the degree of

segregation. Increasing it biases different stimuli to activate
different units and leads to greater segregation (Top Left),
whereas decreasing it has the opposite effect (Bottom Right).

We have shown that some simple and familiar properties of
self-organizing systems—namely, correlation-driven learning
and short-range excitatory connections—in conjunction with a
robust statistical feature of the environment, will lead to
spatial localization for arbitrary stimulus categories. Principles
of self-organization have previously been used to explain the
development of map-like cortical representations, in which
location within the network corresponds to stimulus location
on the retina, skin, or cochlear membrane (12-19). Organi-
zations reflecting the structure of more abstract spaces have
also been obtained, including maps in which network location
corresponds to location in a semantic space (e.g., the repre-
sentations of “dog” and “cat” are closer together than those of
“dog” and “table”) (2). Unlike this semantic organization, the
mechanism responsible for the localization of arbitrary cate-
gories involves simple, first-order stimulus statistics. It appears
that the arbitrary categories for which there is evidence of
cortical specialization occur in the world with just such sta-
tistics.
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