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The quantum world differs from our classical
experience in many ways. Perhaps most cu-
rious is the phenomenon of quantum entan-
glement, where measuring the state of one
particle can instantaneously define the state
of another, even though the second particle
is arbitrarily distant. For much of the 20th
century, it was debated whether entangle-
ment really exists. The issue was quantified
by Bell’s formulation of the Bell inequality
(1), and the subsequent flurry of experiments
by Clauser, Aspect, and others, demonstrating
that quantum entanglement was real (2–4).
All of these early tests were applied to systems
where the measured state of one particle can
only take one of two values, but such systems
are not representative of the wider world. In
PNAS, Krenn et al. derive a new entangle-
ment test for systems where the measured
state can take on one of many values (Fig. 1)
(5). The authors apply their test to the spatial
structure (i.e., state) of two separated photons.
Krenn et al. confirmed that the photons are
entangled over at least 100 of these spatial
states. This large number of states allows en-
tanglement in higher dimensions, which can
increase both the security of communication
and the efficiency of computing protocols (6).
The first experimental tests to reveal entan-

glement were based upon the measurement
of the polarization of a bipartite system con-
sisting of two separate photons. The polar-
izations of the individual photons were found
to be correlated with each other regardless of
the photons’ separation. Equally important is
that the correlations were present regardless
of the choice of measurement basis (e.g.,
whether the polarizers were measuring hor-
izontal-vertical or left-right circular polar-
izations) (2–4). In terms of dimensionality,
studies of entanglement measuring polariza-
tion are relatively easy to characterize. Be-
cause polarization can take only one of two
values, each photon can be considered as a
discrete two-state system, referred to as a
“qubit.” Hence, what the first experimental
tests demonstrated was the bipartite entan-
glement of qubits (2–4).

A richer playground for exploring both
practical and fundamental aspects of entan-
glement is provided by entangled states that
are more complicated. For example, a collec-
tion of N qubits [e.g., a row of trapped ions
(7)] can be in any one of 2N possible states,
and can be used for communication pro-
tocols, such as quantum secret sharing (8).
Studies of nonlocality with multiple particles
are interesting; just for the case of three
qubits, one can show a stronger conflict be-
tween the predictions of quantum mechanics
and local realism (9). However, at least for
photonic experiments, there are few practical
sources of more than two entangled photons.
If one is restricted to bipartite entanglement,
increasing the complexity requires measuring
photon properties that can take on d values
(where d > 2).
Measuring properties other than polariza-

tion is beneficial for increasing the dimension
of the entanglement. For quantum cryptog-
raphy, a higher dimension means more in-
formation that can be encoded (10), more
security against eavesdroppers (11), and bet-
ter resilience to noise (12). It has been shown
that working with higher dimensions can
simplify quantum logic, perhaps pointing to
deeper aspects of entanglement that we have
yet to explore (13). High-dimensional entan-
glement is most easily observed in photons.
Nowadays, the photon pairs are generated in
the process of spontaneous parametric down-
conversion (SPDC). Here, a pump photon
interacts with a nonlinear crystal, resulting
in the creation of two lower-energy photons
endowed with various properties exhibiting
correlations. Properties, such as frequency
and spatial mode, are theoretically un-
bounded in their dimensionality. The bene-
fits of high-dimensional entanglement are
therefore accessible in principle, although
challenges remain. One of the most difficult
challenges is to certify that high-dimensional
entanglement is present in the system. The
problem amounts to answering these two
questions: (i) Is the system entangled? (ii) If
it is entangled, over how many dimensions:
that is, what is d?

The most obvious and rigorous way to
determine whether a system is entangled is to
determine the entangled state through an
approach called quantum state tomogra-
phy (14). However, for this tomography, the
number of measurements required scales
as ∼d4, making the method impractical for
higher dimensions. In the regime where
Krenn et al. are working, quantum state to-
mography would require ∼100 million indi-
vidual measurements! Moreover, although
not often said, it is necessary to assume the
dimensionality in advance of performing the
tomography itself. Defining the dimensional-
ity may be straightforward for photon polar-
ization, where d = 2, but not for other
degrees of freedom. The dimensionality of
spatial states of photons [the property ex-
ploited by Krenn et al.(5)] is theoretically
unbounded, but depends on various exper-
imental parameters, such as the geometry

Fig. 1. Two separate systems, 1 and 2, are said to be
entangled if the properties of 1 and 2 cannot be defined
independent of each other. Entanglement gives rise to
correlations, regardless of the distance between 1 and 2.
(A) In a 2D space, such as polarization (which can only be
vertical or horizontal), individual measurement results on
each system are random, but always correlated. Each
system is in a superposition of the horizontal and vertical
polarizations (B) In higher dimensions, one can imagine
spinning a color wheel. When individually examined, the
color where the wheel stops is random, but always the
same for 1 and 2. Each system is in a superposition of
the many colors in the wheel.
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of the photon generation and detection
scheme (15).
Fortunately, knowledge of the quantum

state is not necessary to determine whether
a system is entangled or not. The Bell in-
equality was formulated to show that quan-
tum mechanics is at odds with a classical
picture of nature, but its violation also implies
entanglement. Although the first demonstra-
tions were made with pairs of qubits, the
approach of the Bell inequality has been
extended to bipartite multistate systems in
the Collins–Gisin–Linden–Massar–Popescu
(CGLMP) inequality (16). In this case, for
an arbitrary dimension d, the number of
measurements scales as ∼d2, and experimen-
tal violations for as high as d = 11 have been
shown for the spatial modes of photons (17).
Moreover, at least for small values of d, the
amount with which the (d × d)-state system
violates the CGLMP inequality puts a lower
bound on d without any assumptions regard-
ing the form of the quantum state (18), hence
simultaneously certifying both the presence
of entanglement and the dimensionality of
the system.
It is conventional to think that to verify the

entanglement between two d-state particles,
one needs to calculate and measure states
that are superpositions of all those belonging
to the state space of each individual particle.
This approach is the case for both quantum
state tomography and demonstrations of Bell
(and CGLMP) inequality violations. It is not
impossible, but as discussed above becomes
time consuming and, hence, nontrivial as
d increases. Krenn et al. (5) show that by
assuming the entangled state is perfectly cor-
related, the number of measurements re-
quired can be greatly reduced. In fact, the
authors’ measurements are only performed
within the various 2D subspaces of the total
state space of the individual particle, making
their method experimentally feasible.
The criterion for entanglement that Krenn

et al. (5) use is based on the perfect correla-
tion and anticorrelation of the particles.
Within the 2D subspace, they measure states
that are theoretically perfectly correlated and
perfectly anticorrelated (i.e., the visibilities are
theoretically equal to 1). The authors then
derive a metric, W, from these visibilities,
which can be optimized for a particular d,
thus giving a lower bound on the dimension-
ality of the entanglement. If their observed
value of W exceeds the bound Wd for a par-
ticular d, then an individual particle can

take on any of (d + 1) possible states, and
the entanglement is over (d + 1) × (d + 1)
dimensions.
Krenn et al. (5) apply their method to pho-

ton pairs generated via SPDC, measuring the
photons’ transverse spatial modes. More spe-
cifically, they use the Laguerre–Gaussian fam-
ily of modes to define their measurement

Krenn et al. have shown
that if one is only
interested in knowing
the dimensionality of
the entangled state,
∼200,000 measure-
ments are enough.
states. The Laguerre–Gaussian states are
characterized by two quantum numbers, one
of which is associated with the orbital angular
momentum of the photons, and the other
with the radial intensity structure of the light
field. Correlations in both these quantum
numbers have been investigated previously
(19, 20), meaning that the conservation of
orbital angular momentum in SPDC has
been rigorously tested. Hence, their assump-
tion of perfect correlation in establishing the
bound is physically sound.* In practice, there
are no perfect correlations but, as the authors

point out, any imperfection only decreases
the observed value of their criterion thus
keeping their bound valid.
The authors investigated the correlation of

186 modes. They measured states belonging
to the various 2D subspaces consisting of the
186 × 186- space. They obtained an experi-
mental value of W > W100, indicating that
the dimensionality of the spatial mode of the
individual photons is at least 100. Thus,
Krenn et al. (5) have shown that if one is
only interested in knowing the dimensional-
ity of the entangled state, ∼200,000 measure-
ments are enough, and this is much smaller
than the ∼100,000,000 measurements re-
quired for full knowledge of a (100 × 100)-
entangled state.
We are now in an era where high-

dimensional entanglement can be routinely
generated in the laboratory. The creation of
a (100 × 100)-dimensional entangled state
with photons is a testament to the technolog-
ical advances that have been made by various
groups worldwide. However, characterization
and verification of high-dimensional entan-
glement has remained a difficult and time-
consuming task. The work of Krenn et al.
(5) is a significant step toward overcoming
these difficulties because they provide a prac-
tical tool for quantifying the dimensionality
in high-dimensional entanglement. Their de-
velopment hopefully takes the field closer to
our common goal of fully exploiting the ad-
vantages that high-dimensional entanglement
has to offer, in understanding fundamental
issues and in improving communication and
computation protocols.
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*The authors assume that the state jΨi is of the form jΨi=P∞
n=0

Pl=∞
l=−∞an,l

��LGn,l ,LGn,−l
�
where LGn,l refers to a Laguerre–

Gaussian mode of quantum numbers n and l, and al are complex
coefficients.
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