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The spread of Huanglongbing through citrus groves is used as a
case study for modeling an emerging epidemic in the presence of
a control. Specifically, the spread of the disease is modeled as a
susceptible-exposed-infectious-detected-removed epidemic, where
the exposure and infectious times are not observed, detection times
are censored, removal times are known, and the disease is spreading
through a heterogeneous host population with trees of different age
and susceptibility. We show that it is possible to characterize the
disease transmission process under these conditions. Two innova-
tions in our work are (i) accounting for control measures via time
dependence of the infectious process and (ii) including seasonal and
host age effects in the model of the latent period. By estimating
parameters in different subregions of a large commercially cultivated
orchard, we establish a temporal pattern of invasion, host age de-
pendence of the dispersal parameters, and a close to linear relation-
ship between primary and secondary infectious rates. The model can
be used to simulate Huanglongbing epidemics to assess economic
costs and potential benefits of putative control scenarios.

spatiotemporal model | dispersal kernel | stochastic model

Under the threat of an emerging epidemic, it is imperative to
estimate the key epidemiological parameters to predict the

likelihood and extent of further spread, as well as to quantify
the effectiveness of different strategies for disease control. In
recent years, there has been an increasing emphasis on the use
of spatiotemporal dynamical models to represent the dispersal
and transmission processes of epidemics (1–4). Such models
have an advantage over analyses that simply look at spatiotem-
poral associations in that inferences can be related directly to the
underlying processes.
The parameters for dynamical models are often estimated,

however, from relatively limited and imprecise data. The data
are limited because many disease events, for example, exposed or
infectious status, are unobservable, and the data are imprecise
because even observable events, such as symptom detection, are
typically censored in time. In this context, Bayesian inference,
supported by modern computational methods, is particularly
tractable, and is increasingly the approach of choice (1, 5–9).
There are several additional challenges in estimating the key

epidemiological parameters for a previously unknown, emerging
pathogen. For example, the patterns of spread used to estimate
the dispersal and transmission parameters may also reflect the
impacts of disease or vector control measures. Allowance for
such measures, often applied empirically to manage an emerging
pathogen, requires inferences to be made about the effects of
control on pathogen spread and disease expression. Further-
more, there is likely to be unknown heterogeneity in the sus-
ceptibility of the host population through which the epidemic is
spreading. There may also be a need to include seasonal forcing
in the model and any effect of vector population dynamics. The
host pathogen introduced in the next section exemplifies all
these issues.

Case study: Huanglongbing
Huanglongbing (HLB), also known as Citrus Greening, is the
most destructive citrus pathosystem worldwide (10). It causes
severe chlorosis of foliage and dieback, leading to tree death in
some cases, and is associated with fruit drop as well as misshapen,
discolored, and ill-flavored fruit. There is no known source of re-
sistance to HLB within commercial citrus cultivars or genetically
accessible citrus relatives, and there is no known commercially
viable cure for an infected tree. In the last decade, HLB has
inflicted increasingly severe economic losses on growers in some of
the world’s key citrus-growing areas (10).
HLB is associated with three bacteria (11): Candidatus

Liberibacter asiaticus (Las), Candidatus Liberibacter africanus
(Laf), and Candidatus Liberibacter americanus (Lam). In the
western hemisphere, Las is now the most prevalent type. The
major vector of HLB is the Asian citrus psyllid (ACP), Diaphorina
citri. During feeding, Las-carrying psyllids pass the bacteria into the
vascular system of a tree. There, the bacteria multiply and become
increasingly distributed, although not uniformly, throughout the
tree. Subsequently, a proportion of psyllids feeding on Las+ sites
on the tree become Las carriers, completing the loop of the host-
vector-pathogen system. Las appears to have minimal impact
on ACP.
The timeline of HLB in citrus is measured in years, with de-

pendence on age and variety of tree (10, 12, 13). Once symptoms
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are evident, they become increasingly severe, and the com-
mercial value of the infected tree rapidly diminishes. Of major
concern, however, is the long incubation period of infection,
which is between 6 mo and 3 y. As a consequence, visual in-
spection is not a reliable method to assess the health of a tree,
and although the cryptic period appears to be only of order
several months, it is clear an epidemic can be underway well
before symptoms are first seen.
ACP were first identified in the US state of Florida, in the

coastal regions near Miami, in 1998, and HLB was first detected
in 2005 (10). Subsequently, ACP reached the commercially im-
portant citrus-growing regions of central Florida. HLB has been
endemic there since 2005, resulting in huge losses for growers
due to crop loss and the costs of detection efforts, control measures,
and tree removals and replantings.
The aim of this work is to provide and fit a phenomenological

model of the tree-to-tree spread of HLB on orchard scales while
accounting for contemporaneous control measures. Such a model
can then be used as the engine for simulations of HLB epidemics
to assess the economic costs and potential benefits of putative
control strategies. We used an extensive dataset, collected by
Southern Gardens Citrus, relating to more than a quarter of
a million trees in the Southern Gardens plantation in south Flor-
ida. In particular, observational sweeps for symptomatic trees,
conducted over the course of several years, give a series of spatial
“snapshots” of the progress of the epidemic. We propose a spatially
explicit, stochastic susceptible-exposed-infectious-detected-removed
(SEIDR) model and carry out Bayesian estimation of the model
parameters. Specifically, we ask the following questions. Can
the disease transmission process be characterized in the pres-
ence of control measures? If so, can we identify details of the
latent period, including possible seasonality? What are the
primary and secondary rates of infection? What is the range of
secondary infection? Are there host age dependencies in the
epidemiological parameters?
The estimation of dispersal and transmission parameters for

stochastic models from spatial snapshots of disease has attracted
previous attention (14–18); indeed, likelihood estimation of dis-
persal parameters from successive snapshots for a continuous time
stochastic model was first applied (14) to citrus tristeza disease in
plantations. The current analysis is based on subsequent Markov
chain Monte Carlo (MCMC) methods developed in refs. 15–17.
The novelty of the current work lies in model comparison and
inference for data from successive snapshots subject to interference
by disease control strategies, variable host age, and periodic envi-
ronmental forcing. A vital feature of the approach is the ability to
handle latent and censored data.

Methods and Results
Data. Southern Gardens is a commercial citrus plantation consisting of ∼4,900
ha of contiguous citrus plantings, located about 36 km south of Clewiston,
Florida. The Southern Gardens dataset concerns more than 250,000 trees in
a rectangular region of 180 contiguous blocks. Apart from its northeast
corner, the region under consideration is surrounded by further blocks of
citrus. The east-west dimension of the region is 3.5 km; the north-south di-
mension is 2.4 km. The blocks are arranged in six east-west rows of 30 blocks,
with each block typically containing around 1,500 trees arranged in 14
north-south rows. The spacing between trees along rows is between 3 and
4 m; the spacing between rows is ∼8 m; and the typical spacing between
blocks is 25 m.

The blocks are all sweet orange, Citrus sinesis (L.) Osbeck, of two scion
cultivars Hamlin and Valencia in nearly equal proportion, and grafted on
a mixture of four rootstocks: Cleopatra mandarin, Citrus reshni Hort. Ex Tan;
Swingle citrumelo, Citrus paradisi Macf. × Poncirus trifoliata (L.) Raf.; Carrizo
citrange, Citrus sinensis (L.) Osbeck) × Poncirus trifoliata (L.) Raf.; and Volk,
Citrus volkameriana Tan & Pasq. Of the 180 blocks, 103 were planted in 1988
or 1989, and 77 were planted in 1999 or 2001–2003. Thus, the blocks
naturally split into old and young blocks. The layout of the blocks is shown
in Fig. 1.

Four sweeps for symptomatic trees were made through the blocks be-
tween November 2005 and July 2007, with each sweep taking approximately
3 mo to complete. The spread of HLB during the four sweeps is shown in SI
Text. The epidemic first becomes apparent in young trees in the east and
then spreads both westward and to older trees. More than 27,000 trees were
found to be symptomatic. Symptomatic trees were fully enumerated using
a differential global positioning system and tagged for subsequent removal.
In most blocks, there was a sharp increase in detections in either the second
or third observation cycle, followed by a decrease in detections in the fourth
cycle. Symptomatic means HLB symptoms are readily apparent to visual in-
spection by trained and experienced personnel. Given the skill of the
inspectors in detecting symptoms, the false-negative rate is small, and we
take it to be zero. The false-positive rate is also small: PCR analysis of clip-
pings taken from a random subsample of trees deemed to be symptomatic
confirmed detection in 98% of cases.

These data therefore describe the presence of HLB symptoms but they do
not account for cryptic or latent infection. Specifically, the dataset comprises
censored symptomatic times and removal times, with times of transition to
exposed and infectious classes unobserved. Data on the locations of host trees
not exhibiting symptoms of HLB were inferred from a secondary dataset of
block-by-block information and from satellite images. The secondary dataset
gives tree count and plant date for each block, and the satellite images show
where trees were and were not planted. Combined with the geometrical
regularity of the orchard, this allows us to reconstruct reliably the locations
of trees never seen to be symptomatic.

During the observational period, in addition to the removal of symp-
tomatic trees, a spray program was initiated to control psyllid numbers in
both the region under observation and the surrounding areas. The spray
program was sufficiently intensive that most psyllids were eradicated by the
end of 2006. Given the available data on the spraying schedule and psyllid
trap counts, we estimate that the density of psyllids decreased linearly to zero
during the course of 2006. Accounting for the control program is a crucial
component in our modeling of the epidemic.

Modeling Approach. We model the spread of HLB on orchard scales as
a spatially explicit, stochastic SEIDR epidemic in a fixed population of trees,
where S denotes susceptible, E denotes exposed, I denotes infectious but not
yet detectable, D denotes detectable or symptomatic, and R denotes re-
moved. This compartmental model therefore gives a phenomenological
description of the host-vector-pathogen system. In what follows, tXi is used to
denote the time at which tree i enters class X. The key components of the
model are the process of the exposure to HLB and the distribution of the
latent period of the disease in the trees. These two components are the main
innovations of our work. A primary, external source of infection is required
to seed the epidemic, whereas secondary infection is mediated by a distance-
dependent dispersal kernel. We consider both exponential and power
law forms for the kernel. In addition, the rates of primary and secondary
infection are allowed to be time dependent to account for control of the
vector. The latent period is known to depend on the age of the tree
at exposure. Furthermore, exploratory analysis of the data suggested

Fig. 1. Layout of the Southern Gardens dataset with subregions used to
estimate epidemic parameters. Green indicates blocks planted after 1998;
blue indicates blocks planted before 1998; red indicates a subregion of
mixed age; subregions in which the model could not be fit reliably are gray.
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a seasonal component, and we consider a variety of models to account
for this. We also compare these with models without seasonality. Two
assumptions of our model are that the primary infection is homogeneous in
space, and the dispersal kernel is isotropic. Although these assumptions are
usually considered reasonable on orchard scales, there is evidence of edge
effects in the Southern Gardens dataset (Discussion).

Initial Time. Let t0 denote the time the first infected psyllids arrive in a par-
ticular subregion. In other words, t0 marks the onset of infectious challenge
or, equivalently, the start time of the epidemic. In the absence of psyllid trap
data from the earliest times, t0 becomes a model parameter to be estimated.

Modeling Exposure to Infection. For a vectored disease, to say a tree is in-
fectious is to say it is transmitting inoculum to the vector. The rate at which
inoculum is transmitted is proportional to the density of noninfected vectors
in the vicinity of the infectious tree. On the other hand, the rate at which
a tree becomes exposed is proportional to the density of infected vectors in its
vicinity. In the absence of specific data on the spatial and temporal de-
pendence of the densities of infected and noninfected psyllids—only a time
sequence of spatially averaged total psyllid counts is available—it is neces-
sary to make a number of approximations to model exposure.

A summary of the full analysis carried out in SI Text is as follows: we ac-
count for psyllid control in Southern Gardens by estimating the relative
psyllid density as a piecewise linear function

ρðtÞ=
8<
:

1, t ≤ 1
2− t, 1< t ≤ 2
0, t > 2

, [1]

where t is measured in years and t = 0 corresponds to the start of 2005. Then
the instantaneous rate of infection at time t for susceptible tree i is written as

_ΦiðtÞ= ρðtÞ
"
e+ β

X
j

k
�rij
α

�
1
�
tIj < t ≤ tRj

�#
, [2]

where 1 is the indicator function that returns 1 when its argument is true
and 0 otherwise. The function kð · Þ represents an isotropic dispersal kernel—
isotropic because rij is the Euclidean distance between tree i and tree j—and
we consider decaying exponential models, kðuÞ= expð−uÞ, and power law
models expressed in the form kðuÞ= ð1+u2γÞ−1. The parameters to be esti-
mated are the primary or external rate of infection «, the secondary rate of
infection β, and the dispersal length scale α.

Modeling the Latent Period. It is useful to think of the latent period as a time to
failure.Modeling the latent period then amounts to specifying ahazard rate hðtÞ,
which gives rise to the probability density function for the infection time given

the exposed time: fðtI��tEÞ=hðtIÞe−
R tI

tE
dt   hðtÞ. We suppose a tree moves from the

exposed class to the infectious class independently of other trees but that the
transition rate depends on intrinsic properties of the tree and has a seasonal
component. We use an age-dependent hazard rate with yearly oscillations

hðt,aÞ= 2AðaÞsin2 πt, [3]

where AðaÞ is the amplitude fixed by a combination of in-orchard and in-
nursery observations, and a is the age of the tree when it became exposed.
We call this the cyclic model. The cyclic model can be easily made much more
flexible without sacrificing analytic tractability: both the period and phase of
the oscillation can be changed and an overall positive constant can be added
to the hazard rate. (This last change might be appropriate in regions of less
marked seasonality, for example.) In what follows, we also consider the
effect of 6-mo oscillations.

We also compare the cyclic model with three alternative models for the
latent period: (i) the exponential model is the default model in many epi-
demiological applications: a constant hazard rate hðt,aÞ=AeðaÞ, leading to
an exponentially-distributed latent period; (ii) the gamma model posits
a gamma-distributed latent period, tI − tE

��tE ∼gamma½λEIðaÞ, νEIðaÞ�, corre-
sponding to a hazard rate that starts at zero, grows and then tends to νEIðaÞ;
it has no cyclic behavior; and (iii) the cyclic Weibull model has a hazard rate
hðt,aÞ= 2AWðaÞðt − tEÞ2 sin2 πt; this incorporates seasonality but with an
amplitude that starts at zero and increases indefinitely.

The motivation for the gamma and cyclic Weibull models is to capture in-
nursery observations of a hazard rate that is initially small and then increases.
The parameter values for the cyclic model and the three alternative models
in three age categories are given in Table 1.

Modeling the Cryptic Period. The times for the cryptic period, which measures
the time from initiation of infectiousness to the detection of visible symptoms,
are taken to be gamma distributed, tD − tI

��tI ∼gammaðλID,νIDÞ, with parameters
fixed by in-nursery observations. Specifically, we use λID = 100 and νID =500 y−1.
Note that when combined with the cyclic model for the latent period transi-
tion, this suggests a peak in detections in the autumn months.

We do not attempt to estimate the latent period and cryptic period
parameters. It has previously been noted (19) that the issue of identifiability
arises in epidemiological models with unobserved compartments. This problem
is further aggravated by the use of uninformative priors.

Parameter Estimation. We adopt a Bayesian approach to parameter estima-
tion. We use data augmentation (15–17) and reversible-jump (20) MCMC
techniques, with uninformative exponential priors, to obtain, after a burn-in
period, a joint posterior density for the parameters α, β, e, and t0. The
technical details are provided in SI Text.

Estimation in Subregions.Model parameters were estimated in 16 subregions
of the Southern Gardens dataset. Carrying out separate analyses of the data
over disjoint subregions enables investigation of the spatial dependence of
the parameters—notably, the initial time t0—and ensures estimation via
MCMC remains computationally feasible. The choice of subregions was
motivated by the need to balance the competing requirements that the
number of symptomatic trees in a subregion was sufficiently large to obtain
reliable parameter estimates and that the subregion was small to afford
reasonable spatial resolution of the epidemic in Southern Gardens. Ideally,
subregions would comprise either young or old trees, but unavoidably some
subregions are of mixed age. The mixed-age subregions, however, do pro-
vide a check of robustness of the model: typically, their inferred parameters
interpolate between those for young and old subregions. The subregions
are shown in Fig. 1. The smaller subregions consist of 7,000–8,000 trees; the
larger subregions consist of 25,000–30,000 trees.

Temporal Pattern of Invasion. The posterior estimates for t0 by subregion are
summarized in Fig. 2. Although it was not possible to estimate t0 in the
southeast corner, there is a clear east-to-west spread of the disease. Note

Table 1. Parameters for the cyclic, exponential, gamma, and
cyclic Weibull models for the latent period

Age (y) A (y−1) Ae (y−1) λEI νEI (y
−1) AW (y−1)

0<a≤3 2.4 2.4 12 15 4.6
3<a≤10 1.1 1.1 14 8 0.43
a>10 0.8 0.8 10 4 0.17

Note that in the Southern Gardens dataset, there were no trees in the age
range of 0–3 y.

Fig. 2. Estimated epidemic start time by subregion in years from the start
of 2005. The large number in each subregion is the mean posterior value for
t0 and the smaller numbers give the 95% credible interval. The transparency
of the pink shading is linearly proportional to the mean value of t0.
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that the old blocks tend to have earlier values of the start time even though
HLB is first clearly evident in young blocks, because of the shorter latent
period for young trees. Furthermore, t0 is not correlated with the first de-
tection time in each subregion.

Age Dependence of the Dispersal and Transmission Parameters. The de-
pendence of the dispersal and transmission parameters on age can only be
interpreted in an averaged sense. Consider the impact of infectious tree j on
susceptible tree i: age dependence means the rate of secondary trans-
mission, β, for example, depends on the ages of both trees and varies during
the interval ½tIj ,tEi �, where of course both tIj and tEi are unknown. As a con-
sequence, the imputed value of β will be the average over all pairwise
interactions and over time. In addition, there is some uncertainty in the age
in which trees were planted out in the orchard. Thus, there is an intrinsic
uncertainty in specifying a quantity like βðaÞ, and the same argument applies
to αðaÞ and eðaÞ. Nevertheless, a reasonable proxy for age is the average age
of trees in the subregion of interest at the start of the epidemic. Note that
the uncertainty in the inferred value of t0 is small in comparison with the
intrinsic uncertainty. In the boxplots below, the subregions are color-coded
by age: young (green), old (blue), and mixed (red).

The length scale of the dispersal kernel, shown in Fig. 3, grows approxi-
mately linearly with the age of the trees in the subregion. More precisely,
a linear model for the mean posterior length scale, αk , in terms of the av-
erage age of the kth subregion, ak , is

αk = c+mak + «k , [4]

where c and m are, respectively, the intercept and slope terms, and
«k ∼N ð0,σ2Þ is a Normal error term capturing between-subregion variability.
Standard analysis shows 67% of the variation in the mean length scale is
explained by the linear trend, and the distribution of residuals is consistent
with the modeled error with σ= 1:5 m. One explanation as to why this linear
relationship should hold is that psyllids prefer the new growth and open
structure of young trees to the mature and tight canopy structure of old
trees. Consequently, psyllids travel further in old-aged subregions.

The age dependence of the secondary and primary rates of infection is
shown in SI Text. Both infection rates tend to decrease with age, and there
appears to be rather sharp behavioral difference between subregions less
than 8 y old and those more than 8 y old. We attribute this to the fact that
8 y is the approximate age at which tree canopies begin to touch and in-
termingle along rows. Before this age, host canopies are isolated. The con-
clusion is that tight canopies are a barrier to infection, in the sense that
infection rates are reduced. This reduction is partially offset, however, by the
fact that the dispersal kernel length scale is increased. Note that canopies
are not allowed to intermingle across rows; this implies that the actual dis-
persal kernel in old-aged subregions will be anisotropic.

Linear Relationship Between Primary and Secondary Infectious Rates. A log-log
plot of the infection rates is shown in Fig. 4. The clustering about the 45° line
suggests that the ratio of primary and secondary infection rates is roughly
constant across subregions. To make this statement more rigorous, we first
note that the marginal posterior distributions for loge and log β are well
approximated by a Normal distribution in each subregion. We are then
justified in fitting a linear model to the infection rates across subregions

log e
���
k
= c′+m′log β

���
k
+ «k′ , [5]

where «k′∼N ð0,σ′2Þ. Standard analysis shows 77% of the observed variation
is explained by the linear trend, and the distribution of residuals is consistent
with the modeled error with σ′= 0:44. The 95% CI for the slope m′ is [0.52,
1.18]. The fact this interval contains 1 supports the contention that the ratio
e=β is invariant over subregions. We show in SI Text that the observed in-
variance can be understood as a consequence of certain biological and
physical assumptions concerning the exposure process. Note that subregions
with both young and old trees have been omitted because psyllid density is
likely to be uneven in these cases.

Model Checking and Model Comparison. To carry out model checking and
model comparison, we focus on subregion 13a. This subregion was chosen
because the course of the epidemic was the most consistent with the
assumptions of homogeneity of primary infection and isotropy of the dis-
persal kernel. The subregion comprises five blocks and 7,700 trees.

We compare eight different models, amodel being specified by a choice of
dispersal kernel and latent period model: (a) exponential kernel plus cyclic
model with yearly oscillations; (b) exponential kernel plus exponential latent
period; (c) Cauchy kernel (r−2 power law kernel) plus yearly cyclic model; (d)
exponential kernel plus gamma model; (e) r−4 power law kernel plus yearly
cyclic model; (f) exponential kernel plus cyclic Weibull model; (g) r−8 power
law kernel plus yearly cyclic model; and (h) exponential kernel plus twice-
yearly cyclic model.

We fit each model using reversible jump MCMC with data augmentation.
From the resulting joint posterior for Θ0, we randomly drew 100 parameter
sets and simulated epidemics using the Selke algorithm. We then compared
the temporal and spatial structure of simulated outcomes with those of the
actual outcome. Specifically, we considered the counts of symptomatic trees
in each of the four sweeps and the two-point spatial correlation of all
symptomatic trees observed up to and including the final sweep.

The counts of symptomatic trees are shown in SI Text. Only in models
a and c are all actual counts well within the distribution of simulated counts.
Model d, the only model that favors a long latent period, is completely
ruled out.

Fig. 3. Length scale of the dispersal kernel, α, by average age of subregion
at estimated epidemic start time. The line in black is the linear model fitted
to the mean length scale in terms of the mean age.

Fig. 4. A log-log plot of primary rate of infection, «, vs. secondary rate of
infection, β; 1,000 draws from the posteriors for 12 subregions are shown.
Subregions less (more) than 8 y old are shown in green (blue). Mean pa-
rameter values for each subregion are labeled by subregion number. The
clustering about the 45° line shown in red shows e=β is roughly constant
across subregions.
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The two-point correlation function we use is a modified Moran’s I statistic
for presence-absence data and is detailed in SI Text. Each model gives cor-
relation functions that are consistent with the vanishing of the observed
correlation function for r > 80 m. Conversely, only model a accommodates
the observed correlation function for r > 80 m. Models e and g fit reasonably
well except for a lack of power in the range of 30–40 m. Once again, model
d appears to be completely ruled out.

Model c gives widely varying outcomes in terms of counts of symptomatic
trees and spatial correlation. The reason for this is that the favored dispersal
length scale is close to zero (SI Text), essentially implying external infection
alone is responsible for disease transmission. We consider this model to be
highly implausible from a biological viewpoint.

Discussion
When faced with a fast-moving and destructive emerging epi-
demic, there is often a conflict between the need to observe the
epidemic to estimate the key epidemiological parameters and the
need to deploy control measures to contain the epidemic (21).
We used the spread of HLB on orchard scales as a case study to
test the feasibility of estimating parameters for models of an
emerging epidemic that is subject to perturbation by control.
Using just four censored successive snapshots of disease, we
demonstrated that the disease transmission process can be char-
acterized despite contemporaneous control measures. The statis-
tical analyses have yielded previously unidentified aspects of the
epidemiology of HLB. Our analyses were able to establish the
temporal pattern of invasion, including the likely sequence of
invasion through uneven aged groves of citrus. The analyses
successfully demonstrated how dispersal and transmission parame-
ters for HLB varied with host age and supported seasonal changes
in host susceptibility. We also confirmed a linear relationship
between primary infection of citrus by HLB, driven by inoculum
arriving from outside the study area, and secondary infection
from tree to tree within the groves.
Our analyses demonstrated the power of computational meth-

ods to extract these insights about disease spread through a spa-
tially and temporally heterogeneous environment despite the high
degree of censoring present in the observations. Given the severity
of the challenge to extract meaningful and consistent results, we
commend the use of these statistical methods to aid understanding
of other pathosystems of similar complexity and scale. Although
this paper is focused on demonstrating the robustness of the
methodology for estimation, the power of the parameterized ep-
idemiological models to predict the likely future of epidemics is

shown in SI Text. The parametized models may also be used to
compare the effectiveness of alternative control strategies. The
use of the model to predict future outcomes of disease spread, as
well as the effectiveness of control, together with the consistency
of results, for example, with respect to the effects of host age, all
provide means to check the longer-term value of the deductions
from the model.
Two of the principal innovations within the general strategy

for model fitting in our work are modeling time dependence in
a vectored disease due to control of the vector, and incorporating
seasonal and host age effects during the latent period. Recent
work by Chiyaka et al. (22) has also incorporated seasonal
forcing into a model for HLB spread within trees. Chiyaka et al.
also modeled the dynamics of vector infection on a single tree.
Here we treated the tree as the unit of interest within large
populations of 7,000–30,000 trees, for which we inferred trans-
mission and important dispersal parameters from censored maps
of disease spread. There is scope in future research to assess the
potential to use within-tree dynamics to assess the dynamics of
the force of infection on individual trees for tree-to-tree spread.
The models used in the current analysis of HLB assume ho-

mogeneous distribution of primary infections. This assumption
could easily be dropped to allow for a directional or spatially
decaying source of external infection, when there is evidence for
such effects. The models also assume isotropic secondary in-
fection. By assuming isotropic spread, our estimates have utility
by setting an upper bound for the worst case scenario for un-
impeded spread of HLB. Future research will address aniso-
tropic secondary infection to test for differences in transmission
rates along and between rows and for edge effects, where vectors
congregate, for example, along trees at the edge of a grove.
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