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Entangled quantum systems have properties that have fundamen-
tally overthrown the classical worldview. Increasing the complexity
of entangled states by expanding their dimensionality allows the
implementation of novel fundamental tests of nature, and more-
over also enables genuinely new protocols for quantum information
processing. Here we present the creation of a (100 × 100)-dimen-
sional entangled quantum system, using spatial modes of photons.
For its verification we develop a novel nonlinear criterion which
infers entanglement dimensionality of a global state by using only
information about its subspace correlations. This allows very prac-
tical experimental implementation as well as highly efficient extrac-
tion of entanglement dimensionality information. Applications in
quantum cryptography and other protocols are very promising.
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Quantum entanglement of distant particles leads to correla-
tions that cannot be explained in a local realistic way (1–3).

To obtain a deeper understanding of entanglement itself, as well as
its application in various quantum information tasks, increasing the
complexity of entangled systems is important. Essentially, this can
be done in two ways. The first method is to increase the number of
particles involved in the entanglement (4). The alternative method
is to increase the entanglement dimensionality of a system.
Here we focus on the latter one, namely on the dimension of the

entanglement. The text is structured as follows. After a short re-
view of properties and previous experiments, we present a unique
method to verify high-dimensional entanglement. Then we show
how we experimentally create our high-dimensional two-photon
entangled state. We analyze this state with our method and verify
a 100 × 100-dimensional entangled quantum system. We conclude
with a short outlook to potential future investigations.
High-dimensional entanglement provides a higher information

density than conventional two-dimensional (qubit) entangled states,
which has important advantages in quantum communication. First,
it can be used to increase the channel capacity via superdense
coding (5). Second, high-dimensional entanglement enables the
implementation of quantum communication tasks in regimes where
mere qubit entanglement does not suffice. This involves situations
with a high level of noise from the environment (6, 7), or quantum
cryptographic systems where an eavesdropper has manipulated the
random number generator involved (8). Moreover, the entangled
dimensions of the whole Hilbert space also play a very interesting
role in quantum computation: high-dimensional systems can be used
to simplify the implementation of quantum logic (9). Furthermore, it
has been found recently (10) that any continuous measure of en-
tanglement (such as concurrence, entanglement of formation, or
negativity) can be very small, while the quantum system still permits
an exponential computation speedup over classical machines. This is
not the case for the dimension of entanglement—for every quantum
computation, it needs to be high (11, 12), which is another hint at
the fundamental relevance of the concept.
So far, high-dimensional entanglement has been implemented

only in photonic systems. There, different multilevel degrees of

freedom, such as spatial modes (13), time-energy (14), path (15,
16), as well as continuous variables (17, 18), have been used.
Entanglement of spatial modes of photons has especially attracted
much attention in recent years (19–28), because it is readily avail-
able from optical nonlinear crystals and the number of involved
modes of the entanglement can be very high (29).
In a recent experiment the nonseparability of a two-photon state

was shown, by observing Einstein–Podolsky–Rosen correlations of
photon pairs in down-conversion (30) (for a similar experiment,
see ref. 31). The authors were able to observe entanglement of
∼2,500 spatial states with a camera. In our experiment we go a step
further and not only show nonseparability, but we can also extract
information about the dimensionality of the entanglement. Pre-
cisely, we experimentally verify 100-dimensional entanglement.
One main challenge that remains is the detection and verifica-

tion of high-dimensional entanglement. For reconstructing the full
quantum state via state tomography, the number of required mea-
surements is impractical even for relatively low dimensions because
it scales quadratically with the quantum system dimension (24, 27).
Even if one had reconstructed the full quantum state, the quanti-
fication of the entangled dimensions is a daunting task analytically
and even numerically (32). If the full density matrix of the state is
not known, it is only possible to give lower bounds of the entangled
dimensions. Such methods are usually referred to as a “Schmidt
number witness” (33–35).

Results
In our experiment we are in a regime where it is unfeasible to
reconstruct the full density matrix because of the required number
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of measurements due to the high dimension. Therefore, we can
only identify lower bounds of the entangled dimensions. Further-
more, all previously published methods for extracting the dimension
of entanglement turned out to be impractical for our system. They
usually require access to observables on the full Hilbert space,
which were not available for our experiment. For these reasons we
were required to develop a novel approach.
Strictly speaking, we found a mathematically well-defined and

intuitively reasonable method that answers the question, “For
a given high-dimensional two-photon state, if correlations be-
tween D dimensions of each photon are measured, what is the
minimum necessary entanglement dimensionality d required to
explain the correlations?” (The precise mathematical formula-
tion of this question is given in SI Text.)
Our approach works such that we define a measurable witness-

like quantity W and search for the d-dimensional entangled state
maximizing it. When we perform the measurement and exceed the
maximal value, we know that the measured quantum state was at
least (d + 1)-dimensional entangled. This approach is a general-
ization of conventional entanglement witnesses, which define a
boundary between separable and entangled states. We not only
want a boundary between separable and entangled states, but also
between different dimensions of entanglement.
The main idea is to look at two-dimensional subspaces, and

therewith measure the correlations of the two photons. In analogy
to two-dimensional systems (such as photon polarization), we can
measure the visibilities in three mutually unbiased bases (MUBs).
Mathematically, the visibility is defined as Vi = jhσi ⊗ σiij, i = {x,y,
z}, where σi denotes the single-qubit Pauli matrices (for polariza-
tion σx, σy, and σz represent measurements in the diagonal/anti-
diagonal, left/right, and horizontal/vertical basis, respectively). The
concept of the measurement is illustrated in Fig. 1. With these
measurements, it is possible to detect entanglement between

two-dimensional subsystems (35). What we found is one way how
such measurements in all two-dimensional subsystems imply a lower
bound of the entangled dimensions in the whole quantum system.
Our measureable quantity W is the sum of the visibilities in all

two-dimensional subspaces

W =
XD−2

a=0

XD−1

b=a+ 1

�
Va;b
x +Va;b

y +Va;b
z

�

Na;b
; [1]

where a and b stand for specific states of the photons, D is de-
fined as above (it stands for the number of modes considered),
Vi

a,b stands for the visibility in basis i, and Na,b stands for the
normalization. Na,b is the source of the nonlinearity of W which
leads to convenient experimental properties, however makes
it very difficult in general to handle mathematically. That non-
linearity is responsible for the fact that the measurement results
are automatically normalized (i.e., all visibilities can go up to 1),
because by measuring in two-dimensional subspaces, we ignore
all other modes (SI Text). Therefore, we do not need to renorm-
alize our measurement results in any way afterward. Nonlinear
entanglement witnesses have already been used in earlier experi-
ments and demonstrated specific advantages over linear wit-
nesses (36, 37).
Next we search for the d-dimensional entangled state which is

maximizing the quantityW in Eq. 1. The maximization was not yet
possible in general (which remains an interesting open problem,
especially for more realistic experimental situations). However,
we maximized W for a very large and particularly important class
which we believe to be sufficient for our experiment. In other
words, we used a physical assumption about our state in the
derivation, which we will explain in more detail later in this sec-
tion. The basis of the maximization is a combination of the
method of Lagrange multipliers and algebraic considerations.
This enables us to find the maximizing d-dimensional quantum
state for the quantityW (SI Text), and implies an upper bound on
the quantity in Eq. 1 for d-dimensional entangled states, which
can be written as

W ≤ 3
DðD− 1Þ

2
−DðD− dÞ: [2]

If the measurements exceed the bound, the quantum state was at
least (d + 1)-dimensionally entangled. Otherwise, if the inequal-
ity is fulfilled (W is smaller than the right side of Eq. 2), we
cannot make a statement about the dimensionality of entanglement.
The bounds can be understood intuitively. A maximally entan-

gled state in D dimensions will have a visibility of one in all three

ψhigh-dimensional
two-photon state

σ2D subset
measurementσ2D subset

measurement

Fig. 1. Visualization of the measurement concept. The two photons are sent in
two different directions. Each of the photons is in a mixture of many modes. We
perform the same two-dimensional subspace measurement on both photons.
When we consider all two-dimensional subspaces, we can determine the di-
mensionality of entanglement.
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Fig. 2. (A) Schematic of the experimental setup. We pump a type-II nonlinear periodically poled potassium titanyl phosphate (ppKTP) crystal with a 405-nm,
∼40-mW single-mode laser. SPDC creates collinear photon pairs with 810-nm wavelength and orthogonal polarizations. We remove the pump beam at
a dichroic mirror (DM) and separate the two photons at a polarizing beam splitter (PBS). In both arms of the setup we use SLMs to perform a mode
transformation of the photons. The transformation done by a computer-generated hologram at the SLM converts a specific mode into the fundamental Gauss
mode. Only the Gauss mode couples into an SMF, thus the SLM + SMF combination acts as a mode filter (39). In the end, we detect the photons with avalanche
photodiode based single-photon detectors and analyze the time correlation using a coincidence logic. (B) An example of a two-dimensional subspace is
shown. The intensities and phases for two different modes in the z basis are demonstrated, and their superposition leads to a mode in the x basis. The y basis
can be constructed similarly.
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MUBs in every two-dimensional subspace. This is represented
by the first term on the right side. If the entanglement dimen-
sionality of the state is smaller than that of the observed Hilbert
space, the maximally reachable value decreases by D for each
nonentangled dimension (D − d), which is expressed by the
second term.
The quantity in Eq. 1 is remarkable because the number of

required measurements scales only linearly with the dimension
of the whole Hilbert space, in contrast to state tomography,
which scales quadratically. Furthermore, it only involves mea-
surements in two-dimensional subspaces, which are easier to im-
plement than general high-dimensional measurements. Moreover,
the quantity W in Eq. 1 is nonlinear, which makes it particularly
efficient for nonmaximally entangled quantum states (SI Text).
In our experiment, we apply this unique method to a two-

photon quantum system. The photon pair is created by pumping
a nonlinear crystal with a laser, where spontaneous parametric
down-conversion (SPDC) occurs. For the high-dimensional degree

of freedom we use spatial modes of light. Specifically, we use the
Laguerre–Gauss (LG) basis to analyze entanglement. LG modes
form a basis of solutions of the paraxial wave equation in the cy-
lindrical coordinate system. They are described by two quantum
numbers. One quantum number l corresponds to the orbital an-
gular momentum (OAM, or equivalently, the topological charge)
of the photon (38, 39). The second quantum number n corre-
sponds to the radial nodes in the intensity profile. Only lately this
second degree of freedom has been analyzed theoretically in a
quantum mechanical framework (40–42).
In the down-conversion process the angular momentum of the

photons is conserved, therefore this degree of freedom is anti-
correlated. For the radial quantum number n the situation is more
complicated. The full down-conversion process concerning the
correlations for the radial quantum number has been analyzed in
detail (40) and quasiperfect correlations have been found for
specific situations. Recently, these quasiperfect correlations have
been demonstrated experimentally (43). The state we expect from
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Fig. 3. (A) Normalized coincidence rate of different modes (with logarithmic scale), depending on the twomode-numbers (full-field bandwidth). The absolute count
rate was 105,500 photon pairs per second for a pump power of 60 mW. To be precise, this is the summed count rate of all 186 modes, not taking into account the
inefficiencies of the detectors or imperfect coupling into SMFs. (B) Weighted correlations between different modes in z basis. Due to different probabilities of
different modes, in these pictures we weight every correlation with the probability of the modes involved. That means, hijjiweighted = Nðhijjimeasured=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihijiihjjjip Þ,
where i and j stand for different two-photon modes, and N is a normalization constant. (Left) The correlation of modes with l = 2 is shown, and reveals good
correlation of modes with the same number of radial nodes. (Right) All correlations in the z basis are visualized.
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down-conversion can then be written as a perfectly (anti-)corre-
lated pure state jψi=P∞

n=0
P∞

l=−∞an;ljLGn;l;LGn;−li with l and
n dependent coefficients a. In the derivation of the bounds in Eq.
2we restricted the states to be perfectly correlated. This means we
assume a physical property of our input state, namely perfect (anti-)
correlation of the modes. Small deviations from this assumption
(which we have observed in the experiment) have been analyzed
numerically (SI Text), andwe found that it only reduces our observed
W, thus justifies the application of the criterion in Eq. 2 in our ex-
periment. The full analytical treatment in the general case is an in-
teresting open problem.
The experimental analysis of the LG modes of the photon pair

produced is done by a holographic mode transformation using a
spatial light modulator (SLM). With that we can transform any
desired mode to a Gauss mode. By using a single-mode fiber (SMF),
we filter only for Gauss modes and thereby project the quantum
state into the desired mode (39). The setup and exemplary LG
modes are shown in Fig. 2.
In our experiment we analyze the correlations of 186 modes of

two photons (Fig. 3). The number of modes, 186 in our case, cor-
responds toD in Eq. 2. We use LGmodes with an angular quantum
number up to l = 11, and a radial quantum number up to n = 13. To
calculate the quantity in Eq. 1, we need to measure in every two-
dimensional subspace [there are (186 × 185)/2 = 17,205 two-
dimensional subspaces] the visibility in x, y, and z basis, which cor-
responds to 3 × 4 measurement per subspace. Altogether this
results in ∼200,000 measurements (with ∼750 million detected
photon pairs). For comparison, if we had performed a full state
tomography, we would have needed to perform more than 1 bil-
lion measurements. When we sum up all of our measured visi-
bilities according to Eq. 1, we find

WD=186 = 35; 529± 6; [3]

which corresponds to at least 100-dimensional entanglement accord-
ing to inequality 2 (101-dimensional: W > 35,619; 100-dimensional:
W > 35,433; 99-dimensional: W > 35,247). The confidence in-
terval corresponds to one SD due to the statistical uncertainty. It
has been calculated using Monte Carlo simulation assuming Pois-
son distribution of the count rates. The detailed measurement
results and the calculation of [3] can be seen in Fig. 4 and in SI Text.
The quantity W in [1] corresponds to measurements of all two-
dimensional subspaces in aD ×D-dimensional quantum state. It can
be seen in Fig. 4A that some modes contribute more to the quantity
than others, thus we can try to find a smaller optimal set of modes
that shows the higher-dimensional entanglement. We find that by
removing 19 modes (that means, not taking into account all two-
dimensional subspace measurements with them), we can find at least
103-dimensional entanglement.
One way to bring this in relation with other photonic and

multipartite entanglement experiments is the following. The

dimension of the entangled Hilbert-space scales with dim = dN,
where d stands for the entangled dimensions and N is the number
of involved parties. Our experiment shows an entangled Hilbert-
space dimension of dim = (103 × 103) ≈ 213.4 that is larger than the
largest entangled photonic Hilbert space reported so far (with
dim = 210) (44). Interestingly, it is of similar magnitude as that of
the largest quantum systems with multipartite entanglement mea-
sured so far, such as 14-qubit ion entanglement with dim = 214 (45).

Discussion
Our results show that we can experimentally access a quantum state of
two photons which is at least (100 × 100)-dimensionally entangled.
This was possible by developing a uniquemethod to analyze efficiently
and in an experimentally practical way quantum states with very high
dimensions. Furthermore, we exploited the full potential of transverse
spatial modes, namely both radial and angular quantum numbers.
Such high-dimensional entanglement offers a great potential for

quantum information applications. There are situations where
two-dimensional entanglement is no longer sufficient but high-
dimensional entangled systems are able to perform the task. In re-
alistic quantum cryptography schemes, for example where noisy
environment or manipulated random number generators lead to
a breakdown of the system for low-dimensional entangled states,
high-dimensionality of the entanglement sustains the security (6–8).
The experimental setups as presented here are suitable for such tasks.
Additionally, for quantum computation it is necessary to use a large
entangled Hilbert space for any quantum speedup. As our result
shows that very high-dimensional entangled Hilbert spaces are
experimentally accessible, we envision that it will trigger future
experiments to solve the next important open question: How to
implement experimentally arbitrary controlled transformations
between spatial modes to realize quantum computational or
similar tasks.
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