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Plants such as Arabidopsis thaliana respond to foliar shade and
neighbors whomay become competitors for light resources by elon-
gation growth to secure access to unfiltered sunlight. Challenges
faced during this shade avoidance response (SAR) are different un-
der a light-absorbing canopy and during neighbor detection where
light remains abundant. In both situations, elongation growth de-
pends on auxin and transcription factors of the phytochrome inter-
acting factor (PIF) class. Using a computational modeling approach to
study the SAR regulatory network, we identify and experimentally
validate a previously unidentified role for long hypocotyl in far red
1, a negative regulator of the PIFs. Moreover, we find that during
neighbor detection, growth is promoted primarily by the production
of auxin. In contrast, in true shade, the system operates with less
auxin but with an increased sensitivity to the hormonal signal.
Our data suggest that this latter signal is less robust, which may
reflect a cost-to-robustness tradeoff, a system trait long recog-
nized by engineers and forming the basis of information theory.
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Being photoautotrophic and inescapably exposed to their en-
vironment, plants have developed sophisticated ways to

adapt to their surroundings and secure access to light (1). For
example, when grown in close proximity to neighboring plants,
many species develop elongated stems and smaller leaves, a be-
havior called the shade avoidance response (SAR) (Fig. 1A) (2).
This response increases their chance of reaching out to the
sunlight above other plants and thus constitutes a competitive
advantage (3). Committing additional resources to upward growth
is so crucial that it happens at the expense of other functions, such
as defense against pest and pathogens (4). An appropriate allo-
cation of resources is vital for the plant, especially during its early
and vulnerable developmental stage (5).
The SAR is triggered not only by a reduction in the amount of

light but also by specific modifications of its spectrum due to
plant properties. Photosynthetic pigments absorb red (R) and
blue (B) light, whereas plants scatter far red light (FR), leading
to a reduction of the R:FR ratio in their vicinity. Under a foliar
canopy, access to exploitable light [the photosynthetically active
radiation (PAR)] is reduced, and plants sense both a low level of
PAR and a low R:FR ratio. Due to FR scattering, a low R:FR
ratio can also occur without a decrease in light resources when
a plant is surrounded by nonshading neighbors (potential future
competitors for light), a feature termed neighbor detection (2).
Both neighbor detection and foliar shade lead to similar growth
responses characterized in seedlings by the elongation of the
embryonic stem (hypocotyl). However, it remains poorly un-
derstood how this can be achieved either in light-limiting con-
ditions (true shade) or when plants retain access to the full solar
spectrum (neighbor detection). To investigate how the R:FR
ratio is transduced in these two contexts, we analyzed the effect
of low R:FR in high vs. low PAR using combined computational
and biological approaches. As both pathways require the hormone
auxin and the transcription factors phytochrome interacting factor

(PIF)4 and PIF5, we concentrated our analysis on these regu-
lators of the SAR (6–8), leaving out other regulators such as
PIF7, whose role have only been described in one of those
conditions (9).
Current knowledge regarding the interplay between PIF4/5

and auxin during the SAR can be summarized into a simplified
model shown in Fig. 1B. The R:FR ratio is perceived by the
phytochrome B (phyB) photoreceptor that shifts between an
inactive (PrB) and active (PfrB) form. The active form interacts
with and inactivates the PIFs, which are positive regulators of the
SAR. In high R:FR, phyB is active and targets the PIFs for
phosphorylation/degradation, thus repressing the activation of
the shade avoidance program (7, 9). In the vicinity of other
plants, the low R:FR converts phyB into its inactive form, and
the PIFs are free to activate gene expression. In particular, PIFs
modulate the auxin pathway, as well as the activation of a nega-
tive feedback loop involving the transcription factor hypocotyl in
far red 1 (HFR1) (10, 11). In low R:FR auxin is quickly produced
by the tryptophan aminotransferase of arabidopsis 1 (TAA1)-
YUCCA (YUC) pathway in the cotyledons (embryonic leaves). It is
then transported to the hypocotyl to induce its elongation (12, 13).
We modeled this regulation by a network model and rely on it

to generate different hypotheses that were experimentally vali-
dated to untangle the interaction between the PIFs and the auxin
pathways. This combination of computational modeling with
experimental validation led us to uncover that HFR1 regulates
auxin levels independently of PIF4 and PIF5 and that the intensity
of the auxin signal and its downstream sensitivity depend on the
light intensity, i.e., on the availability of resources.
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Results
Model Assessment. The network model (Fig. 1C) has the R:FR
ratio as single input and the hypocotyl elongation as the single
output. Molecular activities are represented by nodes that are
connected to each other by arrows representing positive or neg-
ative effects. The network is modeled by a dynamical system,
where the state of each node is determined by the equation in Fig.
1D at steady state. The corresponding node is set to zero when the
activity is null, for example, in a mutant (Materials and Methods).
The network model was first tested in one condition: true shade

(low R:FR and low PAR). To do so, we determined hypocotyl
length of seedlings grown for 4 d in high R:FR before being
transferred to high or low R:FR for an additional 4 d. The elon-
gation during these last 4 d was used as an experimental read-out
corresponding to the elongation node of the network model (Fig.
S1). This protocol was performed with the WT (Col) and the
following genotypes pif4pif5, hfr1, a taa1 allele called sav3-2,
hfr1pif4pif5, hfr1taa1, and pif4pif5taa1 (Materials and Methods).
Rather than estimating or optimizing the parameters as it

is usually done (14), we sample them from a distribution de-
termined from the biological data. This parameter distribution is
used to predict the hypocotyl elongation in a given condition. To
evaluate the network model, a leave-one-mutant-out cross-vali-
dation procedure was applied, and the mean prediction error was
used as the model score. This procedure makes the model
evaluation independent from a particular choice of parameters
(which are hardly accessible), takes into account the intrinsic
variability of the biological data, and avoids overfitting (Materials
and Methods). This procedure was applied to test the ability of
our initial model to predict the elongation of seedlings in re-
sponse to high or low R:FR, when trained on all other mutants
and the WT elongation data. This analysis showed that the
elongation of many mutants was not properly predicted (Fig.
2A), hinting at some weakness in the model.

HFR1 Inhibits Auxin Production, Whereas PIF4 and PIF5 Regulate Auxin
Sensitivity in True Shade. To increase the prediction accuracy of
the model, we tried to add edges to our network. Looking at the
elongation data, we noticed that the hfr1pif4pif5 mutant differs
from the pif4pif5 mutant, a fact that cannot be accounted for
from the literature or in our present network, as it assumes that
HFR1 acts through PIF4 and PIF5 (10). The best improvements
we found was adding a negative edge from HFR1 to auxin or to

the YUCs, the simulations being unable to significantly distin-
guish between both scenarios. This result suggests that HFR1
(directly or indirectly) inhibits the production of auxin in a
pathway parallel to PIF4 and PIF5 (Fig. 2B).
This new edge significantly increased the network prediction

accuracy; however, some mutants were still poorly predicted,
especially the pif4pif5 double mutant (Fig. 2B). In a previous
paper, we reported that PIF4 and PIF5 control auxin production
but also sensitivity (8). We thus tested whether the model pre-
dicted that PIF4 and PIF5 increased auxin sensitivity rather than
production or both. As sensitivity cannot be described with the
equation in Fig. 1D, we model it as a product between PIF4/5
and auxin activities (Materials and Methods). This link rather
than the PIF4/PIF5-YUC link provided a strong improvement in
the prediction accuracy (Fig. 2C and Fig. S2).
Taken together, the results of our network simulation suggest

that (i) HFR1 inhibits auxin production, (ii) HFR1 also acts
independently of PIF4 and PIF5, and (iii) PIF4 and PIF5 regu-
late auxin sensitivity rather than production in low light intensity.
To determine whether the excessive growth of hfr1 was me-

diated by an increase in auxin levels, we first grew seedlings in
the presence of the polar auxin transport inhibitor NPA, which
totally suppressed growth (Fig. 3A). We then determined the
sensitivity of hfr1 to the auxin biosynthesis inhibitor L-kynurenine
(15). The hfr1 mutant was less affected by L-kynurenine than the
WT, suggesting that auxin production is up-regulated in hfr1
(Fig. 3B). This hypothesis was further confirmed by measuring
auxin content, which was higher in hfr1 than in the WT (Fig.
3C). To explore how HFR1 regulates auxin content, gene ex-
pression quantification using quantitative RT-PCR (qRT-PCR)
was performed. YUC2, YUC8, and YUC9, which encode rate-
limiting enzymes in auxin synthesis downstream of TAA1, were
overexpressed in hfr1 (Fig. 3D and Fig. S3) (16). This is consis-
tent with the finding that auxin levels are also increased in
hfr1taa1 compared with taa1 (Fig. 3C). The second prediction
from our simulations was that HFR1 represses auxin production
independently from PIF4 and PIF5. The normal expression of
YUC2, YUC8, and YUC9 in pif4pif5 and the elevated expression
of YUC genes in hfr1pif4pif5 support this hypothesis (Fig. 3D and
Fig. S3). The important role played by PIF7 during the shade
avoidance prompted us to check whether HFR1 may act by
inhibiting this member of the PIF family (9). Expression quan-
tification of YUC genes in pif7 and hfr1 and the double mutant
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showed that elevated YUC expression levels in hfr1 depended
partially or totally on PIF7 (Fig. S4). Finally, our third prediction—
that PIF4 and PIF5 rather act downstream of auxin production—is
consistent with our gene expression data (Fig. 3D and Fig. S3). We
thus propose that in low light, PIF4 and PIF5 modulate the low
R:FR signal through HFR1 inhibition of auxin production and
through their effect on auxin sensitivity.

Stronger Auxin Production but Weaker Sensitivity in Neighbor Detection
than in True Shade. To determine whether the same regulatory
network explains the growth response during neighbor detection,
we repeated this experimental protocol but in high PAR. The
network providing the best predictions was the one where PIFs
induce auxin production and do not influence auxin sensitivity
(Fig. 4A and Fig. S5). This result, along with the best-performing
network obtained in true shade conditions, suggests a differen-
tial role for PIF4/5 in low and high light intensity in response to
low R:FR treatment. This hypothesis is consistent with our
previously published results that PIF4 and PIF5 have a weaker
effect on auxin sensitivity in high than in low light intensity (8).
To test whether PIF4 and PIF5 have a differential effect on
auxin production depending on PAR, we analyzed the sensi-
tivity of pif4pif5 to yucasin, an inhibitor of YUC enzymes (17),
in seedlings grown in high vs. low PAR and subjected to low
R/FR. Interestingly, pif4pif5 displayed an increased sensitivity
to yucasin only in high PAR, consistent with the hypothesis that
PIF4 and PIF5 primarily control YUC-mediated auxin pro-
duction in this condition (Fig. S6).
More generally, the difference between the best-performing

network in both conditions hints at a modulation of auxin pro-
duction vs. sensitivity dependent on light intensity. We thus
propose that for low R:FR signaling, in low light intensity, auxin
sensitivity is enhanced, whereas auxin production is stronger in
high light intensity. This modulation would suggest an adaptive
signaling depending on the availability of resources. As photo-
synthesis is less productive in low light, we hypothetized that less
auxin would be produced (18, 19). Consequently the SAR would
involve lower levels of auxin that would be compensated at least
partially by a higher sensitivity.
Supporting our hypothesis, we measured more auxin in the

aerial part of the plant in high than in low light intensity (Fig.
4B). Another observation points to elevated auxin levels in high
light that involves both TAA1-dependent and -independent
pathways. In our conditions, the taa1 mutant reacted to the low
R:FR treatment in high but not in low light intensity, a response
that was inhibited by the auxin perception inhibitor α-(phenyl
ethyl-2-one)-IAA (PEO-IAA) (Fig. S7).
The effect of light intensity on auxin production and sensitivity

was further validated by the differential effect of competitive
inhibitors (Fig. 4C). On one hand, the auxin biosynthesis in-
hibitor L-kynurenine was more efficient to inhibit hypocotyl
elongation under low than under high light conditions, whereas
the auxin perception inhibitor PEO-IAA was more efficient in
high than in low light intensity. This observation is consistent
with more auxin production under high PAR (Fig. 4B), whereas
in low PAR, auxin sensitivity is enhanced. The mechanisms un-
derlying auxin sensitivity are presumably multifactorial; however,
the effect of PEO-IAA suggested a possible role for auxin
receptors (Fig. 4C). Our previous ChIP-seq analysis identified
AFB1, a gene coding for an auxin receptor, as a potential PIF5
target gene (8). We reasoned that to control auxin sensitivity of
hypocotyl growth, this gene should be expressed in hypocotyls.
We thus analyzed expression of AFB1 in dissected seedlings
grown in high or low PAR and transferred into low R:FR. In-
terestingly, low R:FR led to up-regulation of AFB1 expression in
hypocotyls, whereas in cotyledons, this response was marginal
(Fig. 4D and Fig. S8). Moreover, low R/FR-mediated AFB1
expression was significantly stronger when seedlings were grown
in low than in high PAR (Fig. 4D). Finally, we showed that in
seedlings grown in low PAR, low R/FR-mediated AFB1 expres-
sion largely depended on PIF4 and PIF5 (Fig. 4E).
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Collectively, our results indicate that light quantity and thus
resource availability determines the amount of auxin produced: in
other words, the hormonal signal intensity. A strong signal (high
auxin level) is more costly and requires more resources, but is
likely to be more robust than a cheaper and weaker signal. To
verify whether this tradeoff prediction is supported by our data, we
fitted the data to a noise model that distinguishes the measure-
ment noise from the auxin signal read-out noise (SI Materials and
Methods). The latter was indeed significantly reduced in high vs.
low PAR for Col, (F test, P < 1 × 10−7). This effect was repro-
duced in an independent dataset (F test, P < 1 × 10−4) but was not
observed in pif4pif5 and hfr1pif4pif5 (Fig. S9), in line with a puta-
tive role of the PIFs in the modulation of the auxin signal intensity.

Discussion
This work, which integrates modeling and experimental ap-
proaches, provides insights both in terms of biology and meth-
odology. Regarding the methodological aspects, it shows that
although the model is very coarse, it can provide new insights
into a biological system, something that has long been argued by
the Boolean network community (20). However, in contrast to
standard Boolean networks and their continuous extension (21),
our model can make accurate quantitative predictions, which is
particularly appropriate for a system with a continuous output
such as hypocotyl elongation. The accuracy of the predictions is
attributable to the parameter sampling approach that we used.
This approach, which is reminiscent of approximate Bayesian

computation (Materials and Methods), marginalizes over the param-
eters and seems to extract the global constraints imposed by the
network topology, irrespective of particular parameter values.
As a consequence, the coarseness of the model, assuming only
linear and bilinear activation and inactivation, does not hamper
the precision of the predictions.
Regarding the biological aspects, our experimental validations

made extensive use of drug treatments. This pharmacological
approach allows us to deal with the genetic redundancy at the
level of auxin biosynthesis and auxin receptor genes. Moreover,
it allowed us to challenge auxin signaling or biosynthesis at
specific times, which is otherwise only doable with conditional
mutants that are, to our knowledge, unfortunately inexistent.
Pharmacological experiments indicated that HFR1 inhibits auxin
production (Fig. 3 A and B), which was further demonstrated by
direct auxin measurements (Fig. 3C). Moreover, we show that in
the conditions tested here, HFR1 acts independently from PIF4
and PIF5 (Fig. 3D). In contrast, HFR1 acts partially but not
exclusively through PIF7, as the epistatic relationship between
hfr1 and pif7 is distinct for the expression of different YUC genes
(Fig. S4). We propose that the elevated levels of auxin in hfr1 are
the result of the increased expression of the YUC genes in the
mutant as it has been reported that overexpression of YUC1 can
rescue the short hypocotyl phenotype of taa1 in shade (16).
Consistent with this idea, hfr1 partially suppresses the shade
phenotype of taa1 (Fig. 2 and Fig. S5).
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More globally, our study indicates that the way the low R:FR
signal is transduced into auxin signaling pathway depends on the
availability of light resources (Fig. 4). Under high light con-
ditions where resources are abundant, plants produce more
carbohydrates that may be associated with more auxin pro-
duction (18, 19). Thus, in response to low R:FR, a strong auxin
signal can be produced. However, in a low light environment, the
overall auxin production is weaker (Fig. 4B), and thus signal
intensity may be reduced. We propose that to compensate for
reduced auxin levels due to a lack of resources in low light
conditions, the sensitivity to auxin is enhanced, as if the hypo-
cotyl expecting a lower signal, was “listening” more carefully
(Fig. S10). How auxin sensitivity is translated in terms of mo-
lecular activity is complex and poorly understood. Auxin is per-
ceived by a coreceptor formed by a member of the TIR1/AFB
family and an Aux/IAA protein (22, 23). Here we show that in
response to shade AFB1 is selectively up-regulated in the hypo-
cotyl, which may contribute to enhanced sensitivity of this organ
to auxin (Fig. 4 D and E and Fig. S8). Interestingly, robust AFB1
up-regulation depends on PIF4 and PIF5 and is greater at low
than high PAR (Fig. 4 D and E). Moreover, PIF4 and PIF5 di-
rectly control the expression of members of the Aux/IAA family
(8), which may also contribute to the control of auxin sensitivity.
The increased sensitivity to auxin could also be achieved through

the brassinosteroids, previously shown to be required for low
blue induced shade avoidance (13), and to increase auxin sen-
sitivity (24).
This signal modulation is likely related to the energetic cost of

signal transduction, the reduction of which would be advanta-
geous in conditions of low resources even at the cost of its
robustness. The difference between signaling cascades in the
context of neighbor detection and canopy shade avoidance may
thus depend not only on light signals as such, but also on the
internal energy status of the plant. The coregulation of hormonal
signal production and downstream sensitivity to the same hor-
mone has also been described in the case of insulin (25). The
present study begs the question of the optimization by the plant
of a tradeoff between cost and robustness of the signal. This
tradeoff has long been recognized as fundamental by engineers,
and its study laid the foundation of information theory to
quantify the amount, cost, and reliability of information trans-
mission (26). Biological systems also face this tradeoff, which was
investigated in the case of neural signal transduction (27). Our
work on shade avoidance suggests that, in plants, hormonal
signaling can also be subjected to this tradeoff. Interestingly,
a recent study involving information theoretic measures on
mammalian cells showed that transmitting an information
through the amplitude of a signal (as is usually assumed) is not
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Fig. 4. Auxin sensitivity and production depends on the light intensity. (A) Modeling suggests different networks for low and high light intensity (best score
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the most robust way (28), thus also hinting that more elaborate
modes of signaling should also be envisaged in the study of
biological systems.

Materials and Methods
Growth Conditions. For determination of hypocotyl length, ∼40 seeds were
plated on 1.6% (wt/vol) agar 1/2 Murashige and Skoog plate on a 180-μm nylon
net filter (Millipore). Plates were kept 3 d in the dark and cold before being
transferred at 20–21 °C in a Percival AR22L incubator (www.percival-scientific.
com/products/arabidopsis-chamber) in constant white light (PAR = 110 μmol/m2/s,
R:FR = 12.2 or PAR = 30 μmol/m2/s, R:FR = 13.8). The spectral light composition in
the Percival incubator was measured as described in ref. 29. Plates were kept
vertically so that seedlings grew along the mesh. After 4 d in the high R:FR
ratio, plates were transferred into low R:FR conditions (PAR = 110 μmol/m2/s
supplemented with FR = 60 μmol/m2/s, R:FR = 0.7 or PAR = 30 μmol/m2/s, R:FR =
40 μmol/m2/s, R:FR = 0.3) or kept in the same conditions as a control for an
additional 4 d. Pictures of the plates were taken at days 4 and 8. Hypocotyl
length was measured using the ImageJ software (http://rsbweb.nih.gov/ij/).

Further information on the biological material and methods is available in
SI Materials and Methods.

Computational Method. A detailed account of the computational method is
provided in SI Materials and Methods. In summary, the network is modeled
using the following ordinary differential equation (ODE) system:

_xi = si +Σjajixi − kixi −Σjdjixjxi ,

where xi is the positive molecular activity of node i, si is a constant activation
term, ki is a constant inactivation rate, and aji and dji are the activation and
inactivation effects of node j on node i. To model sensitivity, a bilinear ac-
tivation term aijkxjxk is added to this equation. The network output (elon-
gation) is gated by a sigmoidal function of the form y = β½1+ expð−x + β=2Þ�−1
of amplitude β.

The network parameter vector θ thus contains one (effective) parameter
per node (si/ki), one parameter per edge, and β. To train the network, a
parameter sampling approach is taken rather than optimizing the parame-
ters. The training is done by sampling the parameter space such that the
distribution of network outputs generated by the distribution of network
parameters approximates the distribution of observed elongation data.

More formally, if the vector λ describes the network inputs reflecting the
experimental conditions (light conditions and inactivated genes), g(θ, λ) is
the vector of network outputs for inputs λ and parameter θ, and Ω is the
(multidimensional) distribution of observed elongations in the conditions
corresponding to λ, then the parameter space is sampled according to

pðθÞ∝pΩ½gðθ,λÞ�:

This way, not only the average of observed elongations is taken into account,
but also their variability, which also provides additional useful information.
Sampling is done using aMarkov chainMonte Carlomethod (GaA-MCMC) (30),
resulting in a distribution for the parameter vector θ. This distribution can then
be used to make predictions for a new experimental condition by looking at
the corresponding distribution of the network output for this new input. The
mean of this distribution is estimated and used as prediction value.

To evaluate a network, a leave-one-mutant-out procedure is followed,
whereby the data for all genotypes but one mutant are used to train the
parameters (i.e., estimate the distribution of θ) and predict the remaining
mutant. This prediction is then compared with the actual observations for
that mutant. This whole procedure is repeated 10 times for each mutant to
evaluate the robustness of the prediction to random sampling effects. The
network score is defined by the average Mahalanobis distance between the
observed elongations and the predicted ones.

The model is implemented in C++, and the code is freely available under
a GNU general public licence on www.unil.ch/cbg. It uses the CVODE library
(31) as the numerical equation solver. The sampling GaA-MCMC algorithm is
implemented in MatLab and provided by ref. 30. Generating the simulation
data presented in Fig. 2 takes about 2 d on 30 CPUs (2.27 GHz, 256 GB RAM).
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