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Plant salt stress status is transmitted
systemically via propagating calcium waves
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The existence and relevance of rapid long-
distance signaling in plants is evident to any
observer of the nastic movements of the
Venus flytrap (Dionaea muscipula) or the
sensitive plant (Mimosa pudica). However,
all plants require the transmission of sensory
information from the site of perception to
other tissues to adjust their physiological
states according to their environment. It
is becoming increasingly apparent that rapid
long-distance signals exist throughout the
plant kingdom and may be responsible for
initiating a multitude of physiological re-
sponses: electrical “action potentials” have
been shown to convey wounding and salt-
stress information from leaf-to-leaf (1, 2);
a “hydraulic signal” transmitted by the direc-
tion of water movement within the xylem can
mediate long-distance signaling of water
stress experienced by the roots to the leaves
in Arabidopsis (3); and reactive oxygen spe-
cies (ROS) have been shown to propagate
across a plant and carry stimulus-specific in-
formation to a variety of stresses (4). In
PNAS, Choi et al. (5) use elegant approaches
and present advances demonstrating that
calcium can function as a long-distance sig-
naling messenger, propagating in waves
from roots and carrying salt-stress signals
to induce expression of salt tolerance genes
in leaves.

Calcium Waves Revealed
Choi et al. (5) expressed a genetically enco-
ded FRET-based “cameleon” calcium sensor
in the reference plant Arabidopsis thaliana
and applied salt (NaCl) locally to seedling
root tips (5). The authors observed calcium
waves originating at the site of application
and propagating to the shoot at a rate of
0.37–0.42 mm/s, requiring ∼2 min to travel
the length of the plant.
Choi et al. (5) reveal that the NaCl-induced

calcium wave could be blocked by applica-
tion of drugs to the root that are known to
inhibit plasma membrane calcium-perme-
able channels or calcium release pathways
from intracellular organelles. Furthermore,
they show that disruption of the Two Pore

Channel 1 (TPC1) gene results in a drastic
25-fold slowing of the salt-induced calcium
wave, and overexpression of TPC1 increases
the speed of the calcium wave by 1.7-fold.
TPC1 is a single gene in the Arabidopsis ge-
nome and encodes the slow vacuolar (SV)
calcium-permeable ion channel (6). The
calcium-permeable SV channels and TPC1
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orthologs are ubiquitous in land plants and
have been found in the vacuolar membrane
of all plant cell types analyzed to date. How-
ever, their biological functions have re-
mained a matter of debate. The authors
conclude with the tantalizing hypothesis that
these channels may be required for stimulus-
induced calcium waves in many plant bi-
ological processes.

Unraveling the Function of the
Ubiquitous Vacuolar SV Channels
Plant vacuoles occupy the majority of the
volume of plant cells, and serve as a major
intracellular calcium store. The SV channel
represents the dominant conductance in
plant vacuoles (7), and was shown to be ac-
tivated by elevated cytosolic calcium (8).
Subsequent research found that the SV
channel is itself permeable to calcium ions
(9, 10). Studies have suggested that diverse
stimuli in plants cause intracellular cal-
cium release from organelles (11). In animal
cells “ryanodine receptor” channels in or-
ganelle membranes mediate calcium re-
lease into the cytosol in response to
cytosolic calcium elevations, a process re-
ferred to as calcium-induced calcium re-
lease (CICR). These channels can produce
propagating calcium waves (12). However,
genome-sequencing efforts demonstrated
that land plant genomes do not include
homologs of ryanodine receptors, nor inositol

1,4,5 trisphosphate-gated calcium chan-
nels, showing that a different paradigm
for organellar calcium release is required
in plants. The finding that the ubiquitous
SV channels are permeable to calcium
ions led to the model that SV channels
could be a distinct mechanism mediating
CICR in plants (9).
However, a counter-hypothesis proposed

that SV channels cannot mediate CICR (13).
The reason for this counter-hypothesis lay in
findings that the voltage dependence and
vacuolar calcium dependence of SV channels
in isolated vacuoles precludes steady-state ion
fluxes from the vacuole to the cytoplasm
(13, 14). Other evidence suggested that SV
channels could mediate CICR (15). However,
how could SV channels mediate calcium re-
lease? Two mechanisms are plausible. First,
the typical free calcium gradient from vac-
uoles to the cytoplasm can be about 10,000-
fold. Some studies have shown that shifts in
the voltage dependence of SV channels can
occur in response to hydrogen peroxide and
lipid modulators (16–18). Because plant ion
channels are hubs of many signaling path-
ways, it is conceivable that mechanisms
exist that can slightly shift the voltage de-
pendence to permit calcium release. How-
ever, direct biological evidence for SV
channel-mediated CICR remains elusive.
Second, experiments showed that calcium
ions can flow freely, albeit transiently, from
vacuoles to the cytoplasm during transient
voltage shifts through so-called “tail currents”
(19). These findings demonstrated that SV
channels are not strictly unidirectional
(diode-like) vacuole-directed cation channels.
However, whether higher plant vacuoles un-
dergo the necessary voltage shifts for this
“transient” calcium release mode remains to
be determined.
The finding that the TPC1 SV channel is

required for long-distance calcium wave
propagation (5) provides a physiological
basis to investigate the precise roles that SV
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channels play in this response. In addition
to a direct CICR function of SV channels,
Choi et al. also consider a model that has
presently not been excluded, in which SV
channels may regulate a different calcium
channel that produces the calcium wave.
Further research will be needed to investigate
this hypothesis and other possible models for
TPC1/SV channel-dependent calcium wave
propagation in plants.

Consequences of Altered Salt-Induced
Calcium Wave Propagation
Choi et al. observed that following the cal-
cium wave signal, many salt-induced genes
are up-regulated in the leaves subsequent to
salt application to the roots (5). To determine
whether the calcium waves were required for
up-regulation of these genes, the authors
blocked these calcium waves by pharmaco-
logical or genetic means. They found that
blockage of the Ca2+ waves correlates with
the absence or reduction of expression of
many of these salt-induced genes. Over-
expression of TPC1, which accelerates the
calcium wave propagation, results in an
increase in expression of many of these
same genes.
Finally, Choi et al. tested the sensitivity of

plant growth on salt-containing agar plates
(5). Interestingly, the authors found that
TPC1-overexpressing lines show enhanced
growth under salt stress compared to wild-
type plants. Remarkably, the TPC1-over-
expressing lines show enhanced growth even
under nonsalt-stress, although to a lesser
degree. The tpc1 mutant plants did not show
any salt sensitivity in this assay.

Open Questions and Future Outlook
The triggering of calcium waves in response
to salt stress found by Choi et al. (5) is
consistent with the findings of another recent
study in plants using an independent bio-
luminescence resonance energy transfer-
based calcium sensor (20). The existence of
long-distance calcium signaling in plants
opens up a variety of exciting new questions.
For example, is the salt-induced calcium
wave independent of the other charac-
terized long-distance signaling mechanisms,
or are they related? Some evidence exists that
could link systemic ROS signaling with a
calcium wave; calcium elevation activates

NADPH oxidases (4), and ROS can induce
calcium influx by activation of plasma-
membrane calcium-permeable channels
(21–23), providing a positive feedback mech-
anism for continued calcium/ROS wave prop-
agation (4). Additionally, it remains to be
determined which array of stimuli induces
which types of long-distance signals, and
how stimulus-specific information might be
preserved.
Choi et al. showed that a tpc1 knock-out

allele greatly slows but does not abolish the
calcium wave altogether, implying that more
than one calcium channel must contribute
to the salt stress-induced calcium wave (5).
Furthermore, the likely plasma membrane
calcium channel blocker, lanthanum, inhibits
the calcium wave but does not block up-
regulation of all salt-induced genes (5).
Thus, a more complex model will need to
emerge that accounts for distinct roles of
calcium fluxes from different compartments
and that provides a mechanism that links
these signals together.
Relatively little is known regarding the

perception events that initiate this systemic

calcium wave in response to salt stress. Before
the calcium wave propagation, salt stress
induces a rapid calcium influx at the site of
stress application (24). Choi et al. report that
TPC1 largely does not influence this rapid
initial salt-induced calcium influx, suggesting
that TPC1 plays a distinct role for propa-
gating the stress status signal (5) but not for
perceiving the stress. Future work is needed
to shed light on these earliest sensory mech-
anisms. Additionally, Choi et al. report that
although many abiotic stresses induced a
rapid calcium influx at the site of application,
only salt stress resulted in a propagating
calcium wave (5). How some calcium signals
propagate while others do not will need to be
determined in the future.
The work by Choi et al. (5) and other re-

cent studies (2, 4) open an exciting new era in
rapid long-distance plant signal transduction.
The idea that plants are transmitting rapid
systemic signals in response to stress is cap-
tivating, even if at first sight the end re-
sult isn’t quite as dramatic as a plant that
traps flies.
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