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Background: Coordinated synaptic and nuclear signaling is required for long lasting changes in neuronal morphology.
Results: Afadin undergoes activity-dependent bi-directional shuttling to synapses and the nucleus resulting in dendritic spine
remodeling and histone modifications.
Conclusion: Afadin is required for coordinated signaling at synapses and the nucleus.
Significance: Bi-directional trafficking of afadin is required for coordinated synaptic and nuclear signaling in response to
activity-dependent stimulation.

The ability of a neuron to transduce extracellular signals into
long lasting changes in neuronal morphology is central to its
normal function. Increasing evidence shows that coordinated
regulation of synaptic and nuclear signaling in response to
NMDA receptor activation is crucial for long term memory, syn-
aptic tagging, and epigenetic signaling. Although mechanisms
have been proposed for synapse-to-nuclear communication, it is
unclear how signaling is coordinated at both subcompartments.
Here, we show that activation of NMDA receptors induces the
bi-directional and concomitant shuttling of the scaffold protein
afadin from the cytosol to the nucleus and synapses. Activity-de-
pendent afadin nuclear translocation peaked 2 h post-stimulation,
was independent of protein synthesis, and occurred concurrently
with dendritic spine remodeling. Moreover, activity-dependent
afadin nuclear translocation coincides with phosphorylation of his-
tone H3 at serine 10 (H3S10p), a marker of epigenetic modifica-
tion. Critically, blocking afadin nuclear accumulation attenuated
activity-dependent dendritic spine remodeling and H3 phos-
phorylation. Collectively, these data support a novel model of
neuronal nuclear signaling whereby dual-residency proteins
undergo activity-dependent bi-directional shuttling from the
cytosol to synapses and the nucleus, coordinately regulating
dendritic spine remodeling and histone modifications.

The ability of a neuron to transduce activity-dependent sig-
nals into long lasting changes in neuronal morphology is central
to its normal function. Although changes in neuronal morphol-
ogy can occur via local signaling at synapses, regulation of gene
transcription is required to make these alterations into long
lasting effects (1). Two main mechanisms have been proposed
to allow signals generated at synapses and along the dendrite to
communicate with the nucleus and thus regulate transcription.
First, rapid synaptonuclear signaling is thought to depend on
the propagation of action potentials and subsequent calcium
influx into the nucleus (2). Second, synaptic proteins are
thought to shuttle to the nucleus in response to activity-depen-
dent stimuli. Several proteins that display dual synaptic and
nuclear localization have been shown to translocate to the
nucleus following stimulation (1, 3). However, the spatiotem-
poral relationships between synaptic, cytosolic, and nuclear
populations of these synaptonuclear proteins and the func-
tional consequences of their translocation are not well
understood.

It has been proposed that upon nuclear accumulation, these
synaptonuclear proteins participate in nuclear events that
result in gene expression changes. This includes the post-trans-
lational modification of histone protein, the core proteins
required for the packaging of tightly coiled chromatin (4). The
phosphorylation or acetylation of histones is associated with
the initiation of gene transcription (4), and they are thought of
as essential transcriptional regulatory mechanisms (5, 6).
Increasing evidence suggests that phosphorylation of the his-
tone H3 protein occurs in response to activity-dependent stim-
uli and is required for cognition (5– 8). However, the mecha-
nism(s) by which activity-dependent signaling can result in
histone H3 phosphorylation is not well understood.

In cortical neurons, the PDZ domain-containing scaffold
protein afadin (also known as AF-6) controls spine morphology
downstream of several synaptic membrane proteins (9 –11). In
hippocampal and non-neuronal cells, afadin has been localized
to the nucleus (12, 13) suggesting that it may signal in this sub-
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compartment. Moreover, our previous data have demonstrated
that afadin is a mobile protein that changes its subcellular local-
ization in response to various stimuli (9 –11). Here, we report
that afadin is present at both extranuclear sites and within the
nucleus of cortical neurons and that NMDA receptor activation
results in a time-dependent accumulation of afadin within the
nucleus. This accumulation is independent of gene transcrip-
tion or protein synthesis. Interestingly, afadin concurrently
accumulates at dendritic spines with a simultaneous decrease
in its content in dendrites, suggesting a bi-directional traffick-
ing of this protein from the cytosol to both synapses and the
nucleus. Moreover, we observed a time-dependent increase in
phosphorylation of histone H3 at serine 10 (H3S10p) and its
direct upstream target, p90 ribosomal S6 kinase (p90RSK) (5),
in cells positive for afadin nuclear accumulation. Remarkably,
blocking nuclear accumulation of afadin attenuated activity-
dependent spine remodeling and phosphorylation of both his-
tone H3 and p90RSK in a time-specific manner. Collectively,
these data support a novel model of neuronal nuclear signaling
whereby dual-residency proteins undergo activity-dependent
bi-directional and concomitant shuttling from the cytosol to
synapses and the nucleus, coordinately regulating dendritic
spine remodeling and histone modifications.

MATERIALS AND METHODS

Reagents and Plasmid Constructs—The following antibodies
were purchased: GFP mouse monoclonal (MAB3580), NeuN
mouse monoclonal (clone A60; MAB377), phospho-histone H3
serine 10 mouse (H3S10p) monoclonal (clone 3H10; 05-806),
and Myc rabbit polyclonal (06-549) were from Millipore; GFP
chicken polyclonal (ab13972) and histone 3 (total) rabbit poly-
clonal were from Abcam; Myc mouse monoclonal (9E10;
Developmental Studies Hybridoma Bank); l4/s-afadin rabbit
polyclonal (AF-6; A0224), l-afadin rabbit polyclonal (A0224),
and �-actin mouse monoclonal were from Sigma; phospho-
p90RSK (Thr-359/Ser-363) rabbit polyclonal (9344) was from
Cell Signaling Technologies; DAPI was from Invitrogen. Plas-
mids used in this study, Myc-l-afadin, Myc-s-afadin, Myc-afa-
din-�NT, or Myc-afadin-NT, have been previously described
(11).

Neuronal Culture and Transfections—Medium and high
density cortical neuron cultures were prepared from Sprague-
Dawley rat E18 embryos as described previously (14). Briefly,
neurons were plated onto coverslips coated with poly-D-lysine
(0.2 mg/ml, Sigma) and maintained in feeding media (Neuro-
basal media supplemented with B27 (Invitrogen) and 0.5 mM

glutamine). 200 �M DL-aminophosphonovalerate (Ascent Sci-
entific) was added to the media 4 days later. Cortical neurons
were transfected at days in vitro (DIV) 23 using Lipofectamine
2000 following the manufacturer’s recommendations (14).
Transfections were allowed to continue for 2 days.

Neuronal Treatments—To induce an activity-dependent
stimulus, we activated synaptic NMDA receptors on cultured
cortical pyramidal neurons by activating NMDA receptors with

the co-agonist glycine and acutely unmasking receptors chron-
ically inhibited with aminophosphonovalerate (14, 15). Briefly,
cells were preincubated in artificial cerebrospinal fluid (in mM:
125 NaCl, 2.5 KCl, 26.2 NaHCO3, 1 NaH2PO4, 11 glucose, 5
Hepes, 2.5 CaCl2, and 1.25 MgCl2) with 200 �M aminophospho-
novalerate for 30 min at 37 °C. Cells were then transferred into
treatment medium (artificial cerebrospinal fluid without
MgCl2, plus 10 �M glycine, 100 �M picrotoxin, and 1 �M strych-
nine) for 30 min, before being returned to artificial cerebrospi-
nal fluid. Inhibitors were incubated 30 min prior to treatment
with the concentrations indicated in the text. Following treat-
ment(s), cells were processed for immunocytochemistry or
biochemistry.

Immunocytohistochemistry—Neurons were fixed in either
4% formaldehyde, 4% sucrose/PBS for 10 min or in 4% formal-
dehyde, 4% sucrose/PBS followed by a 10-min fix with metha-
nol pre-chilled to �20 °C. Coverslips were then permeabilized
and blocked simultaneously in PBS containing 2% normal goat
serum and 0.2% Triton X-100 for 1 h at room temperature.
Primary antibodies were added in PBS containing 2% normal
goat serum for 2 h at room temperature or overnight at 4 °C,
followed by three 10-min washes in PBS. Secondary antibodies
were incubated for 1 h at room temperature, also in 2% normal
goat serum in PBS. Three further washes (15 min each) were
performed before coverslips were mounted using ProLong
antifade reagent (Invitrogen).

Quantitative Analysis of Nuclear Immunofluorescence—Mi-
crographs were acquired essentially as described previously
(14). Confocal images of single- and double-stained neurons
were obtained with a Zeiss LSM5 Pascal confocal microscope. Z
series images of neurons were taken using the 63� oil immer-
sion objective (N.A. 1.4; Zeiss). The acquisition parameters
were kept the same for all scans. Regions were drawn around
nuclei, as delineated by NeuN or DAPI staining, and saved as
regions of interest. These regions of interest were then applied
to a corresponding image of afadin staining from which the
mean average intensity was collected to determine nuclear
immunoreactivity levels. Images were selected by examining a z
stack series of images through the nucleus and choosing a cen-
tral/representative plane. Orthogonal images were produced
from z stack images of using MetaMorph. Immunoreactivity
levels of phospho-histone H3 or -p90RSK were analyzed by
collecting mean average intensity from regions determined by
DAPI staining. One- or two-way ANOVAs were used to com-
pare means between three or more groups, followed by Tukey’s
B post hoc test for multiple comparisons. Statistical analyses
were performed in GraphPad.

Quantitative Analysis of Synaptic and Dendritic Immuno-
fluorescence—Synaptic and dendritic localization of afadin was
quantified using MetaMorph (14). Images were acquired as
described above. The background corresponding to areas with-
out cells was subtracted to generate a “background-subtracted”
image. Images were then thresholded equally to include clus-
ters with intensity at least 2-fold above the adjacent dendrite.
Regions along dendrites were outlined using the “Parameters”
utility, and the total gray values (immunofluorescence inte-
grated intensity) of each cluster, or all clusters within a region,

4 The abbreviations used are: l, long; s, short; ANOVA, analysis of variance; DIV,
days in vitro; a.u., arbitrary unit; ActD, actinomycin D; CycHx, cyclohexi-
mide; NT, N terminus.
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were measured automatically. Quantification was performed as
detailed above.

Quantitative Analysis of Spine Morphologies—Two-dimen-
sional maximum projection reconstructions of images were
generated, and morphometric analysis (spine number, area,
and breadth) was done using MetaMorph software (Universal
Imaging) (14). Cultures that were directly compared were
stained simultaneously and imaged with the same acquisition
parameters. For each condition, 8 –16 neurons each from at
least three separate experiments were used, and at least two
dendrites from each neuron were analyzed. Experiments were
done blind to conditions and on sister cultures. To examine the
morphologies of dendritic spines, individual spines on den-
drites were manually traced, and spine dimensions were mea-
sured by MetaMorph. One- or two-way ANOVAs were used to
compare means between three or more groups, followed by
Tukey’s B post hoc test for multiple comparisons. Statistical
analyses were performed in GraphPad.

Biochemistry Cell Fractionation—Subcellular fractions were
prepared using the Proteo-Extract kit (EMD Biosciences) fol-
lowing the manufacturer’s recommendations. Lysates were
subjected to Western blotting; membranes were probed with
the appropriate antibodies.

RESULTS

Afadin Localizes to the Nucleus of Cortical Neurons—We
have previously reported that afadin has a critical role in regu-
lating synapse structure and function, in response to several
stimuli (9 –11, 16). Two isoforms of afadin are present within

neural tissue l- and s-afadin (Fig. 1A). Afadin is expressed at
sites of cell-to-cell contact in a variety of cell types, including
pyramidal neurons (16, 17). Interestingly s-afadin but not l-afa-
din has been reported to localize to the nucleus non-neuronal
cells, whereas l-afadin has been reported to localize in the
nucleus of hippocampal neurons (12, 13). Therefore, to deter-
mine which isoform could be found in the nucleus of cortical
neurons, we performed a series of immunocytohistochemical
and biochemical studies. Immunostaining of cultured cortical
neurons with an antibody that detects both l- and s-afadin
revealed punctate staining along dendrites as well as in the
nucleus (Fig. 1B). Importantly, l/s-afadin colocalized with the
neuronal nuclear marker, NeuN though the X, Y, and Z planes
(Fig. 1B). Using an antibody against l-afadin, we found that the
longer isoform also displayed a similar distribution with puncta
along the dendrite and staining within the nucleus (data not
shown). We further confirmed the presence of both l- and
s-afadin in the nucleus of cortical neurons by Western blot-
ting of subcellular fractions of cultured neuron homogenates
(Fig. 1B).

To further validate the nuclear presence of both l- and s-afa-
din, we overexpressed Myc-tagged l- or s-afadin in cultured
cortical neurons. Both Myc-l- and Myc-s-afadin colocalized
with NeuN indicating a nuclear localization for both isoforms
(Fig. 1C). The presence of two nuclear localization sequences
has been described to be present within the first 350 amino
acids of afadin (12). Thus, to confirm whether the N-terminal
portion of afadin was required for its nuclear localization, we

FIGURE 1. Afadin nuclear localization is dependent on its N-terminal domain. A, schematic diagram depicting the structure and important domains of l-
and s-afadin and truncated constructs. B, confocal image of cortical neuron (DIV 25) immunostained for endogenous l/s-afadin. Red arrow indicates nuclear
afadin; yellow open arrowheads indicate dendritic afadin. Orthogonal projections show afadin colocalized with the nuclear marker NeuN. C, Western blot of
neuronal subcellular fractionations confirmed l-/s-afadin was present in multiple subcellular compartments. D, representative images of Myc-l-afadin, Myc-s-
afadin, Myc-afadin-�NT, or Myc-afadin-NT expression in neurons. E, cultured cortical neurons (DIV 25) expressing enhanced GFP and either Myc-l-afadin or
Myc-afadin-NT constructs; red arrow highlights restricted localization of Myc-afadin-NT to the nucleus. Inset image shows Myc-afadin-NT localization to the
nucleus. F, Myc-afadin-�NT, but not Myc-afadin-NT, is found at spines. Scale bars, 5 �m.

Activity-dependent Nuclear Translocation of Afadin

APRIL 11, 2014 • VOLUME 289 • NUMBER 15 JOURNAL OF BIOLOGICAL CHEMISTRY 10833



ectopically expressed constructs encoding either amino acids
1–350 (afadin N terminus (NT)) or afadin lacking the N termi-
nus (�NT) (amino acids 351–1829) (Fig. 1A) (11). When afa-
din-NT (Myc-afadin-NT) was ectopically expressed in cortical
neurons, it almost exclusively localized within the nucleus and
was not observed along the dendrite or at synapses (Fig. 1, D–F).
Conversely, exogenous l-afadin lacking the N terminus (Myc-
afadin-�NT) was not present in the nucleus but localized to
synapses (Fig. 1, D–F), demonstrating the requirement of the N
terminus of afadin for its nuclear localization. Collectively,
these data revealed that both l- and s-afadin were present in the
nucleus of cortical neurons and that the nuclear localization of
these isoforms is dependent on the N-terminal region of the
protein.

Afadin Accumulations within the Nucleus of Cortical Neu-
rons Following Activity-dependent Stimulation—Our previous
studies have demonstrated that afadin clusters at synapses in
response to several stimuli (9, 10), including chemical activa-
tion of NMDA receptors (11). As several other proteins have
been shown to shuttle to the nucleus of neurons following stim-
ulation (18 –20), we reasoned that afadin may also translocate
to the nucleus of neurons in response to NMDA receptor acti-
vation (11, 15). To investigate this possibility, we performed an
activity-dependent stimulation (15) of cortical neurons and
examined afadin nuclear content at 0 (control), 30, 120, or 240
min from the start of treatment. Afadin nuclear content was not
different from the control levels 30 min post-treatment. How-
ever, a significant increase in the nuclear localization of afadin
was seen 120 and 240 min post-treatment (relative afadin inten-
sities (arbitrary units (a.u.)) are as follows: 0 min, 1.16 � 0.03; 30
min, 1.19 � 0.02; 120 min, 1.39 � 0.05; 240 min, 1.3 � 0.05; *,
p � 0.05; **, p � 0.01; Fig. 2, A and B). Interestingly, an increase
in afadin clustering could be observed within the cell somas,
which were not associated with the nucleus 120 and 240 min
post-treatment (Fig. 2A). We have observed a similar clustering
of afadin following the stimulated clustering of N-cadherin
adhesion junctions (10), and thus we believe this to be indica-
tive of afadin accumulation at adherent junctions surrounding
the cell soma. Taken together, these data indicate that afadin is
trafficked to the nucleus of cortical neurons in response to
activity-dependent stimulation.

Previously, it has been postulated that the accumulation of
proteins within the nucleus following activity-dependent stim-
ulation may be misinterpreted (1). Indeed, observed protein
accumulation may actually result from the induction of new
gene transcription and subsequent protein synthesis, rather
than translocation from more distal cellular regions (1). There-
fore, we sought to determine whether afadin nuclear accumu-
lation was dependent on gene transcription or protein synthe-
sis. We first repeated our activation protocol in the presence or
absence of pretreatment, for 30 min, with actinomycin D
(ActD), a transcription inhibitor. Afadin nuclear content was
not altered under basal (control) conditions, and a significant
increase in afadin nuclear accumulation was observed 120 min
post-treatment, in the presence or absence of ActD pretreat-
ment (relative afadin intensities (a.u.) are as follows: 0 min,
1.12 � 0.01; 0 min � ActD, 1.13 � 0.03; 120 min, 1.37 � 0.02;
120 min � ActD, 1.34 � 0.02; ***, p � 0.001; Fig. 2, C and D).

We next stimulated cells in the presence or absence of pre-
treatment, for 30 min, with the translation inhibitor cyclohex-
imide (CycHx). At 120 min post-activation, afadin nuclear con-
tent was again significantly increased regardless of the presence
or absence of CycHx (relative afadin intensities (a.u.) are as
follows: 0 min, 1.0 � 0.08; 0 min � CycHx, 0.96 � 0.07; 120 min,
1.59 � 0.13; 120 min � CycHx, 1.46 � 0.11; ***, p � 0.001; Fig.
2, E and F). Taken together, these results indicate that afadin
nuclear accumulation occurs independently of gene transcrip-
tion and new protein synthesis, an important criterion for dem-
onstrating nuclear translocation of a cytoplasmic protein (1),
and thus the increase in afadin nuclear content is likely due to
the translocation of the protein from extranuclear locations
following NMDA receptor activation.

Activity-dependent Bi-directional Shuttling of Cytosolic Afa-
din to Discrete Nuclear and Synaptic Sites—To examine the
source of afadin that shuttles to the nucleus in response to
activity-dependent stimulation, we performed Western blot-
ting on neuronal cell fractions generated from stimulated cor-
tical neurons. Consistent with our immunocytohistochemical
data, we observed an increase in both l- and s-afadin in nuclear
fractions 120 and 240 min following NMDA receptor activation
(*, p � 0.05; Fig. 3A). Interestingly, we also detected an increase
of l/s-afadin 120 and 240 min after treatment in the membrane
fraction (*, p � 0.05; Fig. 3B). This is consistent with our previ-
ous study demonstrating that afadin clusters to synapses in
response to activity-dependent stimulation (11). Conversely,
examination of the cytosolic fraction revealed a congruent
decrease in the presence of l/s-afadin in the cytosol fraction 120
and 240 min following treatment (*, p � 0.05; Fig. 3C).
Together, these results suggest that following the activation of
NMDA receptors, a pool of afadin located within the cytosol is
trafficked to the nucleus and membrane.

Although our biochemical data indicate that afadin is capable
of being trafficked to both synaptic and nuclear compartments,
it does not allow us to assess whether this can occur within the
same cell and whether afadin within the cytosol is the source of
the mobile protein. To test this, we measured afadin content at
synapses and within the dendritic shaft of neurons that dis-
played increased nuclear accumulation of afadin at 120 and 240
min following treatment (data not shown) (Fig. 4A). Consistent
with our biochemical data, measurements of synaptic afadin
immunofluorescence in this subpopulation of neurons revealed
a significant increase in synaptic afadin puncta size and number
120 and 240 min post-treatment (integrated intensities in
spines (a.u.) are as follows: 0 min, 11.5 � 1.1; 30 min, 12.8 � 0.8,
120 min, 15.9 � 1.2; 240 min, 15.1 � 1.1; afadin puncta per 10
�m as follows: 0 min, 5.1 � 0.68; 30 min, 5.8 � 0.76; 120 min,
9.6 � 0.88; 240 min, 7.8 � 0.65; *, p � 0.05; ***, p � 0.001; Fig. 4,
A–C). Remarkably, as afadin content was increased at synapses
and in the nucleus, afadin content decreased in dendrites
within the same a time-dependent manner (integrated intensi-
ties in dendrite (a.u.) are as follows: 0 min, 23.9 � 2.2; 30 min,
20.7 � 0.8, 120 min, 11.7 � 0.9; 240 min, 10.32 � 0.6; afadin
puncta per 10 �m as follows: 0 min, 3.0 � 0.47; 30 min, 2.7 �
0.37; 120 min, 1.4 � 0.0.17; 240 min, 1.9 � 0.15; **, p � 0.01; ***,
p � 0.001; Fig. 4, D and E). Line scans of afadin distribution
within the cytosol and at synapses further demonstrate a loss of
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the protein from the dendritic shaft and an increase at synapses
in cells also showing an increase in nuclear afadin content 120
and 240 min post-treatment (Fig. 4F). Taken together, these
data indicate that concomitant with an increase at synapses and
within the nucleus, there is a decrease of afadin content in den-
drites. This suggests that a mobile pool of cytosolic afadin is
capable of being bi-directionally trafficked to both synaptic and
nuclear compartments within the same neuron in response to
activity-dependent stimulation.

Nuclear Accumulation of Endogenous Afadin Is Blocked
by Afadin N-terminal Domain—As Myc-afadin-NT localized
exclusively to the nucleus, we speculated that it would act as a

dominant-negative and attenuating afadin nuclear transloca-
tion. We first confirmed that exogenous afadin-NT (N termi-
nus of afadin) was present in the nucleus; Myc-afadin-NT
colocalized with the nuclear marker DAPI through the X, Y,
and Z planes (Fig. 5A). When we examined afadin nuclear
immunofluorescence under basal conditions, no differences
were observed between NT-expressing and nonexpressing
cells (Fig. 5, B and C). Moreover, expression of the Myc-afa-
din-NT was not expressed outside of the nucleus and did not
alter the distribution of the endogenous protein outside the
nucleus (Figs. 1, D and E, and 5, D–F) indicating that synaptic
afadin was unaffected. As expected, neurons not expressing

FIGURE 2. Activity-dependent afadin nuclear accumulation. A, representative images of afadin nuclear accumulation following treatment. Red dashed lines
indicate the nucleus. B, time course of afadin nuclear accumulation in all neurons 30, 120, and 240 min after activity-dependent simulation or control (0
min)-treated cells. Activity-dependent afadin nuclear localization peaked 120 min post-activation (*, p � 0.05; **, p � 0.01, ANOVA). C, representative immu-
nofluorescence images of cortical neurons staining for afadin, subjected to NMDA receptor activation (120 min) or not, in the presence or absence of 20 �M

ActD. Nuclei were identified by DAPI staining, and are indicated by the red dashed line in lower panels. D, quantification of C demonstrated that nuclear
localization of afadin increases 120 min post-activation in the presence or absence of ActD (***, p � 0.001, two-way ANOVA). E, endogenous afadin staining in
cortical neurons following NMDA receptor activation, in the presence or absence of 0.5 �M CycHx. The nucleus, identified by DAPI, is indicated by the red dashed
line in lower panels. F, quantification of E revealed increased afadin nuclear accumulation 120 min post-activation, regardless of CycHx treatment (***, p � 0.001,
two-way ANOVA). APVwd, activity-dependent stimulation.
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Myc-afadin-NT displayed a significant increase in nuclear afa-
din content 120 min post-treatment. However, a significantly
reduced accumulation of nuclear afadin was observed in afadin-
NT-expressing neurons 120 min post-treatment (relative afa-
din intensities (a.u.) are as follows: 0 min, 1.0 � 0.04; 0 min �
afadin-NT, 1.1 � 0.05; 120 min, 1.49 � 0.08; 120 min � afadin-
NT, 1.17 � 0.08; *, p � 0.05; ***, p � 0.001; Fig. 4, B and C).
These results suggest that overexpression of Myc-afadin-NT
domain does not preclude localization of endogenous afadin to
the nucleus or synapses, under basal conditions, but is sufficient
to attenuate activity-dependent translocation of afadin into the
nucleus.

Nuclear Translocation of Afadin Contributes to Activity-de-
pendent Spine Remodeling—One potential function of protein
nuclear translocation is to transduce extracellular stimuli into
nuclear signals that yield long term changes in neuronal struc-
ture (3, 21). Indeed, coordination of both local signaling and
gene expression-dependent mechanisms is thought to be
required for activity-dependent remodeling of dendritic spines.
We have previously reported that activity-dependent stimula-
tions induce a time-dependent alteration of spine morpholo-
gies (11, 15). Moreover, we have also demonstrated that afadin
is required for the maintenance of dendritic spine morpholo-
gies (16) and can play an important role in mediating the effects

of extracellular signals, including activity-dependent stimuli,
on the remodeling of dendritic spine morphologies (9 –11, 16).
As afadin nuclear translocation occurs in a time frame consis-
tent with the activity-dependent spine remodeling (11), we
asked whether this translocation was also required for activity-
dependent remodeling of spines. Expression of Myc-afadin-NT
did not alter spine linear density or the spine area under basal
conditions (Fig. 6, A–C). Activity-dependent stimulation for
120 min resulted in increased spine linear density and area in
control cells (***, p � 0.001; Fig. 6, A–C). However, in neurons
expressing Myc-afadin-NT, activity-dependent remodeling of
spines was significantly attenuated (spines/10 �m are as fol-
lows: control 0 min, 5.55 � 0.4; control 120 min, 10.1 � 0.4;
Myc-afadin-NT 0 min, 5.32 � 0.3; Myc-afadin-NT 120 min,
6.9 � 0.3; n 	 11; spine area �m2 is as follows: control 0 min,
0.71 � 0.02; control 120 min, 0.89 � 0.03; Myc-afadin-NT 0
min, 0.69 � 0.02; Myc-afadin-NT 120 min, 0.79 � 0.03; *, p �
0.05; ***, p � 0.001; Fig. 6, A–C). Notably, Myc-afadin-NT
expression did not completely block activity-dependent
remodeling of spines, as the area of dendritic spines in neurons
expressing afadin-NT was significantly different compared
with both control and control 120 min-treated cells following
activity-dependent stimulation (*, p � 0.05; Fig. 6C), indicating
that multiple pathways, possibly including local synaptic signal-
ing of afadin (11), are required for long term changes in synapse
structure. Collectively, these data indicate that activity-depen-
dent translocation of afadin plays an important role in mediat-
ing long lasting changes in neuronal structure, in response to
synaptic stimuli.

Activity-dependent Histone Modification Coincides with Afa-
din Nuclear Accumulation—The mechanisms that underlie
long lasting remodeling of dendritic spines likely require the
coordination of multiple factors, including transcriptional reg-
ulation. Indeed, a large number of genes (�45) have been
shown to be regulated in an activity- and time-dependent man-
ner (22). As the nuclear accumulation of afadin supports the
activity-dependent remodeling of dendritic spines, we hypoth-
esized that afadin translocation to the nucleus may be involved
in the regulation of nuclear events. We first sought to deter-
mine whether histone modifications are altered following acti-
vation of NMDA receptors. We thus examined the phosphory-
lation of the histone H3 protein at serine 10 (H3S10p) in
cortical neurons. Importantly, this modification has been
shown to be sufficient to induce a change in chromatin from a
condensed heterochromatin state to a euchromatin state more
amenable to gene transcription and associated with transcrip-
tional activation (4, 6, 23). Moreover, it has previously been
shown that H3S10p can be induced by activity-dependent stim-
uli in striatal neurons and in hippocampal neurons following
behavioral testing (5, 7, 8). Additionally, a variety of neurotrans-
mitters, such as glutamate, dopamine, and acetylcholine, can
elicit neuronal responses resulting in increased H3S10p (7, 23,
24); similarly, acute cocaine administration in rats induces
greater phosphorylation on histone H3 (25). Following activa-
tion of NMDA receptors, we observed an increase in H3S10p
levels 30 and 120 min post-treatment in all neurons (relative
H3S10p intensities (a.u.) are as follows: 0 min, 1.1 � 0.08; 30
min, 1.51 � 0.1; 120 min, 1.79 � 0.17; 240 min, 1.42 � 0.18;

FIGURE 3. Altered afadin presence in distinct subcompartments follow-
ing activity-dependent stimulation. A, assessment of l- and s-afadin pres-
ence in nuclear (A), membrane (B). and cytosol (C) of cortical neurons before
and after NMDA receptor stimulation by Western blotting. Quantification
reveals a significant increase in l/s-afadin presence in nuclear and membrane
fractions 120 and 240 min post-treatment (A and B; *, p � 0.05; **, p � 0.01,
two-way ANOVA). Conversely, a significant decrease in both l- and s-afadin
levels was observed in cytosol fractions 120 and 240 min following activity-
dependent stimulation (C; *, p � 0.05, two-way ANOVA). APVwd, activity-de-
pendent stimulation.
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*, p � 0.05; Fig. 7, A and B), indicating that maximal afadin
nuclear accumulation occurred concurrently with a significant
increase in H3S10p levels. We next tested whether preventing
activity-induced translocation of afadin by overexpression of
Myc-afadin-NT could also attenuate the induction of H3S10p
120 min post-activation. Indeed, 120 min post-activation, neu-
rons expressing Myc-afadin-NT displayed reduced H3S10p
levels compared with non-Myc-afadin-NT expressing cells
(relative H3S10p intensities (a.u.) are as follows: 0 min, 1.06 �
0.03; 0 min � afadin-NT, 1.01 � 0.1; 120 min, 1.4 � 0.05; 120
min � afadin-NT, 0.92 � 0.06; *, p � 0.05; Fig. 7, C and D).
Importantly an increase in H3S10p could be observed at 30 min
of treatment in both, but only in nonexpressing cells after 120
and 240 min within the same cell populations (Fig. 7, E and F;
**, p � 0.01; ***, p � 0.001).

To investigate the mechanism underlying the phosphoryla-
tion of histone H3 in response to activity-dependent stimula-
tion, we examined the phosphorylation of the p90RSK protein.
This protein directly phosphorylated histone H3 at serine 10
and is itself phosphorylated directly by ERK1/2 and following
NMDA receptor activation and learning (5, 26, 27). Following
activity-dependent stimulation, a time-dependent increase in
p-p90RSK levels at Thr-359/Ser-363 was observed in the
nucleus of cortical neurons (relative p-p90RSK (Thr-359/Ser-
363) intensities (a.u.) are as follows: 0 min, 0.98 � 0.07; 30 min,
1.82 � 0.22; 120 min, 1.55 � 0.15; 240 min, 1.39 � 0.07; *, p �
0.05; **, p � 0.01; ***, p � 0.001; Fig. 8, A and B). Consistent

with our data for H3S10p, overexpression of afadin-NT
attenuated p-p09RSK(Thr-359/Ser-363) nuclear levels com-
pared with nonexpressing cells, 120 min post-treatment (rel-
ative p-p90RSK (Thr-359/Ser-363) intensities (a.u.) are as fol-
lows: 0 min, 1.00 � 0.21; 0 min � afadin-NT, 1.18 � 0.11; 120
min, 1.92 � 0.26; 120 min � afadin-NT, 0.93 � 0.15; *, p � 0.05;
**, p � 0.01; Fig. 8, C and D). Taken together, these data suggest
that activity-dependent stimulation increases H3S10p in a
time-dependent manner, potentially via the direct actions of
p90RSK, in cortical neurons. Interestingly, our data suggest
that phosphorylation of histone H3 and p90RSK specifically at
120 min post-stimulation may require the increased presence
of afadin within the nucleus.

DISCUSSION

In this study, we have demonstrated that NMDA receptor
activation results in a time-dependent accumulation of afadin
in the nuclei of cortical neurons. In addition, neurons that dis-
played afadin nuclear accumulation also exhibited an increase
of afadin presence at synapses. Importantly, this synaptic and
nuclear accumulation occurred within the same time frame,
suggesting a bi-directional shuttling of afadin as opposed to a
singular synapse-to-nucleus movement. Interestingly, this bi-
directional shutting was paralleled by a reduction in afadin con-
tent in dendrites, indicating that a mobile population of afadin
located in the cytosol was the source protein being bi-direction-
ally trafficked into synapses and nuclei. We have previously

FIGURE 4. Bi-directional translocation of afadin following activity-dependent stimulation. A, representative images of afadin nuclear and dendritic
localization in neurons with increased nuclear content following NMDA receptor activation. Insets show magnified regions of dendrites outlined by yellow
boxes; images were pseudo-colored or binarized to demonstrate endogenous afadin puncta in dendrites and synapses of control and treated neurons. B and
C, quantification of afadin puncta linear density at synapses or within dendrites following activity-dependent stimulation. At 120 and 240 min post-treatment,
a significant increase in afadin puncta linear density at synapses (B) concurrent with a decrease of afadin puncta in dendrites (C) is observed (*, p � 0.05; **, p �
0.01; ***, p � 0.001, ANOVA). D and E, quantification of afadin puncta intensity at synapses and dendrites following activity-dependent stimulation reveals an
increase in afadin puncta intensity at synapses (D) and concomitant decrease in dendrites (E) (*, p � 0.05; ***, p � 0.001, ANOVA). F, high magnification images
of endogenous afadin following NMDA receptor activation. Yellow dotted lines outline the dendritic shaft; red lines represent line scans taken through dendritic
spines and shaft. Graphical representation of line scans of endogenous afadin localization following treatment was produced by averaging values of three line
scans (6 �m) performed at three different sections of the dendrite, of equal width, from six cells per condition. Values were then averaged and plotted; region
where line scans pass through dendrites (dendritic shaft) is indicated. Scale bars, 10 and 5 �m (A) and 1 �m (F). APVwd, activity-dependent stimulation.
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shown that afadin signaling at synapses contributes to activity-
dependent spine morphogenic activity (9 –11); however, here
we observed that preventing afadin nuclear entry abrogated
activity-dependent spine remodeling. We further showed that
phosphorylation of histone H3 and of p90RSK occurred follow-
ing activity-dependent stimulation and that blocking afadin
nuclear entry attenuated phosphorylation of both proteins in a
time-specific manner. Collectively, these data indicate that the
activity-dependent nuclear accumulation of afadin results in
histone H3 phosphorylation and is required for long lasting
changes in neuronal morphology (Fig. 9).

The molecular mechanisms whereby neurons communicate
signals generated at dendrites and synapses to the nucleus are
not well understood (1, 3, 21). Several models have been pro-
posed. Signals initiated at the synapse by neuronal activity can
be rapidly propagated to the nucleus by calcium signaling and
can trigger new gene transcription within a short time frame
(21, 22). Shuttling of proteins directly from synapses to the
nucleus is another modality by which activity-dependent

signals are communicated to the nucleus. Protein-mediated
nuclear signaling is a slower process that occurs over the course
of minutes to hours (1, 3). Although extensive evidence supports
the idea of synapse-to-nucleus protein shuttling, several important
questions remain unanswered, including the lack of unequivocal
evidence for translocation of synaptic proteins from individual
synapses to the nucleus (1). Furthermore, it is possible that addi-
tional modalities might also exist for communication between the
synaptic, cytosolic, and nuclear compartments.

An interesting observation from this study is that the N ter-
minus of afadin (afadin-NT) was sufficient to block the accu-
mulation of afadin in the nucleus following activity-dependent
stimulation. It is important to note that two nuclear localization

FIGURE 5. Myc-afadin-NT blocks activity-dependent afadin nuclear accu-
mulation. A, confocal image of cortical neuron costained for endogenous
l/s-afadin, DAPI, and Myc (afadin-NT). Orthogonal projections of XZ and YZ
planes reveal that afadin-NT colocalizes with DAPI, demonstrating restricted
localization of afadin-NT to the nucleus. B, representative images of control (0
min) or NMDA receptor-activated (120 min) neurons expressing, or not, Myc-
afadin-NT. C, quantification of afadin nuclear content in B (*, p � 0.05; ***, p �
0.001, two-way ANOVA). Scale bars, 15 �m. D, representative image of cortical
neurons expressing, or not, Myc-afadin-NT. Yellow box indicates a dendrite
from a cell not expressing Myc-afadin-NT; white box indicates a dendrite from
a Myc-afadin-NT positive cell. E, high magnification image of dendrite from a
non-Myc-afadin-NT positive cell, outlined by a yellow box in D. D, high mag-
nification image of dendrite from a Myc-afadin-NT positive cell, outlined by a
white box in D. Scale bar, 15 �m (A and B) and 5 �m (F). APVwd, activity-depen-
dent stimulation.

FIGURE 6. Afadin nuclear accumulation contributes to activity-depen-
dent spine remodeling. A, representative images of treated cortical neurons
expressing enhanced GFP with or without Myc-afadin-NT; red arrows indicate
restricted nuclear expression of Myc-afadin-NT. Insets are representative of
high magnification images of secondary dendrites and dendritic spines. B and
C, quantification of spine morphology and linear density. B, NMDA receptor
activation (120 min) results in an increase in dendritic spine linear density; this
effect is attenuated in neurons expressing Myc-afadin-NT (***, p � 0.001,
two-way ANOVA). C, examination of dendritic spine area reveals an increase
in spine area following treatment. In neurons expressing Myc-afadin-NT,
activity-dependent stimulation increased spine area compared with control
but was significantly reduced compared with control stimulated cells (*, p �
0.05; ***, p � 0.001, two-way ANOVA). Scale bars, 5 �m. APVwd, activity-de-
pendent stimulation.
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sequences have been identified within the first 350 amino acids
of the protein (12). Indeed, the restricted localization of afa-
din-NT within the nucleus is consistent with that fact that the
afadin-NT construct encodes the first 350 amino acids and thus
contains the putative nuclear localization sequences. Thus, one
explanation is that afadin-NT acts as a dominant-negative
mutant that competes for binding sites or transport mecha-
nisms and therefore attenuates the ability of endogenous afadin
to translocate into the nuclear compartment.

The bi-directional protein trafficking processes, as described
in this study, could simultaneously mediate local synaptic and
global nucleus-mediated changes. Simultaneous translocation

to synapses and nucleus of one protein species, in response to
one specific stimulus, would be a simple mechanism to achieve
a coordinated cellular response to specific stimuli. It should be
noted that inhibiting afadin accumulation within the nucleus,
by overexpression of afadin-NT, was not sufficient to com-
pletely block activity-dependent spine remodeling. Even in the
presence of ectopically expressed Myc-afadin-NT, the average
spine area is significantly increased compared with control and
NMDA receptor-activated control cells. Interestingly, our pre-
vious data have shown that disrupting afadin’s PDZ binding
domain is sufficient to completely block activity-dependent
increases in spine area (11). At the synapse, afadin likely medi-

FIGURE 7. Activity-dependent phosphorylation of histone H3 at serine 10 requires afadin nuclear translocation. A, representative high magnification
images of cortical neurons costained for H3S10p and afadin following activity-dependent stimulation. Red dashed lines outline the nucleus (DAPI) in lower
panels. B, quantification of H3S10p in afadin-positive cells revealed an increase in H3 phosphorylation 30, 120, and 240 min post-stimulation; neurons also
display an increase in afadin nuclear content 120 min post-treatment (*, p � 0.05, ANOVA). C, representative high magnification images of neurons overex-
pressing, or not, Myc-afadin-NT and costained for H3S10p, following NMDA receptor activation. Red dashed lines outline the nucleus (DAPI) in lower panels. D,
quantification of H3S10p in C revealed that in cells expressing Myc-afadin-NT H3 phosphorylation levels are significantly decreased compared with nonex-
pressing cells (*, p � 0.05; ANOVA). E, low magnification images of H3S10p and Myc-stained cortical neurons following activity-dependent stimulation for 0, 30,
120, or 240 min. Cortical neurons (DIV 25) were transfected with Myc-afadin-NT or not and probed with H3S10p. Red dashed boxes indicate cells expressing
Myc-afadin-NT, and yellow dashed boxes enclose cells not expressing Myc-afadin-NT. H3S10p (images are pseudo-colored) increases in a time-dependent
manner after activity-dependent stimulation in non-Myc-afadin-NT expressing cells. In Myc-afadin-NT expressing cells, H3S10p levels are significantly
increased after 30 min but not at 120 or 240 min. F, quantification of relative H3S10p intensity in stimulated nontransfected and Myc-afadin-NT expressing cells
shown in yellow boxes (nontransfected) or red boxes (transfected) in E. (**, p � 0.01; ***, p � 0.001, two-way ANOVA.) Scale bar, 15 �m. APVwd, activity-depen-
dent stimulation.
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ates an immediate, local, and highly regulated response to
synaptic activation. Indeed, synaptic afadin is rapidly regu-
lated by a variety of stimuli, including NMDA receptor acti-
vation, Rap1 activation, N-cadherin-mediated adhesion, and
estrogens (9 –11), providing the ability to locally control its
spine morphogenic activity. These direct spine morphogenic
effects of afadin are mediated by afadin’s PDZ domain-depen-
dent interactions with proteins like kalirin-7 (10, 11). Con-
versely, the spatiotemporal integration of nuclear afadin likely
controls global and long lasting changes in neuronal structure
and possibly function. Thus, these data suggest that multiple
pathways, including local signaling at synapses, potentially

mediated by afadin, are required for long lasting changes in
both dendritic spine linear density and morphology.

Multiple studies have demonstrated that histone H3 can
undergo post-translational modifications in response to both
activity-dependent stimuli and in vivo in behavioral situations
(5, 7, 8). Phosphorylation of histone H3 at serine 10 has been
shown to be sufficient to induce a change in chromatin from a
condensed heterochromatin state to a euchromatin state more
amenable to gene transcription (4, 6). A variety of neurotrans-
mitters, such as glutamate, dopamine, and acetylcholine, can
elicit neuronal responses that result in increased H3S10p (7, 23,
24). Moreover, acute cocaine administration in rats induces

FIGURE 8. Afadin nuclear shuttling is required for long term phosphorylation of nuclear p90RSK following activity-dependent stimulation. A, repre-
sentative high magnification images of cortical neurons costained for p-p90RSK (Thr-359/Ser-363) and NeuN; red dashed lines outline the nucleus (NeuN) in
lower panels. B, quantification of p-p90RSK (Thr-359/Ser-363) following activity-dependent simulation revealed an increase in p90RSK phosphorylation 30, 120,
and 240 min post-stimulation (*, p � 0.05; **, p � 0.01; ***, p � 0.001, ANOVA). C, representative high magnification images of neurons overexpressing, or not,
Myc-afadin-NT and costained for p-p90RSK (Thr-359/Ser-363), following NMDA receptor activation. Red dashed lines outline the nucleus (DAPI) in lower panels.
D, quantification of p-p90RSK (Thr-359/Ser-363) in C revealed that in cells expressing Myc-afadin-NT H3 phosphorylation levels are significantly decreased
compared with nonexpressing cells (*, p � 0.05; **, p � 0.01, ANOVA). APVwd, activity-dependent stimulation.

FIGURE 9. Model of afadin nuclear shuttling. Following activity-dependent stimulation, a mobile pool of afadin located in the cytosol is bi-directionally
trafficked to both synapses as well to the nucleus in a time-dependent manner. In the nucleus, afadin’s presence is required for the late phosphorylation of
p90RSK that can directly phosphorylate histone H3 at serine 10. This in turn contributes to long term alterations in synapse structure.
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greater phosphorylation on histone H3 (25). However, the sig-
naling events that mediate activity-dependent histone modifi-
cations are not well understood. The p90RSK protein has been
previously shown to be phosphorylated with a response to
activity-dependent stimulation and learning (26, 27), and it has
also been shown to translocate to the nucleus and directly phos-
phorylate histone H3 at serine 10 (5). In this study, we observed
that H3S10p at 120 min post-activation was dependent on afa-
din nuclear translocation. In contrast, the increased histone H3
phosphorylation noted at 30 min post-activation persisted even
when nuclear afadin accumulation was attenuated. Moreover,
we observe that p90RSK phosphorylation occurred within the
nucleus in a time-dependent manner, and at 120 min, it is
dependent on afadin nuclear translocation. Interestingly, it has
recently been shown that uncaging of glutamate on seven
spines is sufficient to increase phospho-ERK1/2 levels in the
nucleus of neurons, up to 120 min (20). Critically, p90RSK is
directly phosphorylated by ERK1/2 (5); an intriguing possibility
is that in the nucleus afadin could function as a scaffold to
assemble transcription factors or histone-modifying proteins
such as p90RSK, bringing these proteins together as a signaling
complex, although future studies will need to test this hypoth-
esis directly. Nevertheless, our data indicate that at 120 min
afadin nuclear accumulation is permissive for the phosphory-
lation of p90RSK, which in turn can directly phosphorylate his-
tone H3 at serine 10. Taken together, these data suggest a func-
tional role for afadin in the nucleus but also provide support for
the idea that activity-dependent nucleosomal events are medi-
ated by multiple signaling pathways operating along different
time scales.

Several proteins with dual nuclear and synaptic localization
have been identified; many of these proteins accumulate in the
nucleus within minutes of stimulation (19, 24), whereas others,
like afadin, show increased accumulation over the course of
hours (28, 29). The functional significance and cellular conse-
quences of the spatiotemporal nuclear integration of dual resi-
dency synaptic proteins are not well understood. Here, we show
that afadin nuclear accumulation is required for spine morpho-
genesis. Previous reports support a role for neuronal activity-
dependent nuclear translocation of other synaptic proteins in
transcription initiation and repression, synapse elimination,
and altering behavior (28, 30). Furthermore, both long term
potentiation and long term depression are shown to induce
nuclear translocation of some synaptic proteins (18 –20).
Future studies will aim to examine the roles of afadin in these
processes.

Collectively, our data suggest a novel model whereby the
concomitant translocation of proteins from the dendritic cyto-
plasm to synapses and the nucleus occurs in response to synap-
tic activity to control neuronal plasticity. Moreover, the ability
to influence histone modification adds to the growing reper-
toire of afadin cellular functions, such as regulation of synapse
structure and function (9 –11, 16). Recently, afadin has also
been reported to regulate the accumulation of PINK1/parkin to
mitochondria, indicating a potential role in the pathophysiol-
ogy of Parkinson disease (31). Therefore, our findings have
implications for the understanding cytonuclear shuttling in
general and add to a growing understanding of activity-depen-

dent nuclear signaling pathways and the roles they play in syn-
aptic plasticity.
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