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MULTIPROSPECTOR, a multimeric threading algorithm for the prediction of protein—protein interactions, is
applied to the genome of Saccharomyces cerevisiae. Each possible pairwise interaction among more than 6000
encoded proteins is evaluated against a dimer database of 768 complex structures by using a confidence estimate
of the fold assignment and the magnitude of the statistical interfacial potentials. In total, 7321 interactions
between pairs of different proteins are predicted, based on 304 complex structures. Quality estimation based on
the coincidence of subcellular localizations and biological functions of the predicted interactors shows that our
approach ranks third when compared with all other large-scale methods. Unlike other in silico methods,
MULTIPROSPECTOR is able to identify the residues that participate directly in the interaction. Three hundred
seventy-four of our predictions can be found by at least one of the other studies, which is compatible with the
overlap between two different other methods. From the analysis of the mRNA abundance data, our method
does not bias towards proteins with high abundance. Finally, several relevant predictions involved in various
functions are presented. In summary, we provide a novel approach to predict protein—protein interactions on a

genomic scale that is a useful complement to experimental methods.

Cellular operations, such as enzymatic activity, immunologi-
cal recognition, DNA repair and replication, and cell signal-
ing, are largely sustained by various types of protein—protein
interactions (Alberts et al. 1994). Because many of the prop-
erties of complex systems seem to be more closely determined
by their interactions than by the characteristics of their indi-
vidual components, protein-protein interactions have been
extensively studied over the past several decades (Frieden
1971; Legrain et al. 2001).

Being a model system relevant to human biology, baker’s
yeast (Saccharomyces cerevisiae) has attracted special interest
from the scientific community. As biology enters the postge-
nomic era, genome-wide explorations of the protein—protein
interactions in yeast have been initiated using a variety of
high-throughput experimental techniques (Marcotte et al.
1999; Uetz et al. 2000; Ito et al. 2001; Tong et al. 2001; Zhu et
al. 2001; Gavin et al. 2002; Ho et al. 2002). These approaches
can be divided into two categories: the top-down proteomic
approach and the bottom-up genomic approach (Ito et al.
2001). In the former approach, multiprotein complexes are
purified and analyzed by mass spectrometry. This analysis
provides a valuable outline of a higher-order map of the pro-
tein network; however, the question of whether two proteins
within the same complex directly interact requires further
investigation (Gavin et al. 2002; Ho et al. 2002). In the latter
type of approach, each protein encoded in the genome of
interest is expressed and examined for mutual interactions by
in vitro assays such as the yeast two-hybrid system (Uetz et al.
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2000; Ito et al. 2001) and protein chip analysis (Zhu et al.
2001). Based on these binary interaction data, a protein-
protein interaction network can be constructed (Ito et al.
2001).

Due to the labor-intensive nature of experimental ap-
proaches, in silico algorithms for studying protein—protein
interactions have also been formulated over the past several
years (Marcotte et al. 1999; Overbeek et al. 1999; Huynen et
al. 2000; Lu et al. 2002, 2003). With the successful advent of
genome sequencing efforts, pure sequence-based approaches
such as conserved gene neighboring (Huynen et al. 2000),
co-occurrence of genes (Pellegrini et al. 1999), protein fusion
(Marcotte et al. 1999), and an in silico two-hybrid system
(Pazos and Valencia 2002) have been developed to predict
protein—protein interactions. Because these methods are se-
quence-based, the question of which residues in the protein—
protein interface actually interact often cannot be addressed,
with the notable exception of the approach of Pazos and Va-
lencia (2002). Another type of computational method, dock-
ing, is designed to reveal the spatial relationship between the
interacting pairs; however, contemporary docking algorithms
cannot assess which proteins interact and which do not (Gil-
son and Honig 1988; Helmer-Citterich and Tramontano
1994; Vakser and Aflalo 1994; Janin 1995; Gabb et al. 1997).
In addition, docking requires the knowledge of the tertiary
structure of both partners prior to predicting the quaternary
structure; this makes docking unsuitable for genomic-scale
predictions, where most protein structures have not yet been
experimentally determined. Moreover, as a practical matter,
the expensive computational time that docking algorithms
consume prevents them from being used in genome-scale
protein quaternary structure prediction.

Due to the limitations of each of the experimental and
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theoretical methods, none of them covers more than 60% of
the proteins in the yeast genome, and among the available
80,000 interactions generated by the large-scale studies men-
tioned above, only a small fraction (3%) is supported by more
than one method. This suggests that any specific method may
have special strengths toward certain functional groups and
may complement other methods (von Mering et al. 2002);
thus, new approaches based on different principles are still
needed to explore protein—protein interactions on a genomic
scale.

Our recently developed multimeric threading algorithm,
MULTIPROSPECTOR, was previously shown to predict pro-
tein-protein interactions with a reasonable degree of success,
and can be applied on a genomic scale (Lu et al. 2002). The
principle of this algorithm is based on protein structure; how-
ever, it does not require the knowledge of the query proteins’
structure. The application of this method to the prediction on
the whole proteome of yeast and the detailed evaluation of
the results will provide us with a benchmark for further large-
scale predictions. But the problem still remains that there is
no genome whose protein—protein interactions are com-
pletely characterized by biophysical methods that determine
the molecular weight and structure of the complexes. There-
fore it is very difficult to fully assess the accuracy of any
method.

The organization of this paper is as follows: In the Meth-
ods section, we briefly describe MULTIPROSPECTOR, and in-
troduce the data sources of our analysis. In the Results section,
we first present the general statistics for the genome-scale pre-
dictions in S. cerevisiae. Next, we analyze the predicted inter-
actions with respect to their structures and functions, com-
pare our predictions with interaction data determined by
other approaches, and then we present examples of some bio-
logically relevant predictions. Finally, in the Discussion sec-
tion, we summarize the present work, highlight its signifi-
cance, and discuss its limitations.

METHODS

MULTIPROSPECTOR Procedure

MULTIPROSPECTOR is a two-phase procedure. Phase I in-
volves single-chain threading, where each sequence is inde-
pendently threaded and assigned a list of possible candidate
structures according to the Z-scores of the alignments. A per-
missive Z-score cutoff is used so that sequences that weakly
prefer monomers but strongly prefer multimers are not
missed. The Z-score for the Kth structure having energy Ey is
given by

Ex —(E)
Zg=——1 1)
where <E> and o are the mean and standard deviation values
of the energy of the probe in all templates of the structural
database. The Z-score gives the average number of standard
deviations between the Kth and the random fold energy. In
this phase, we employed our single-chain threading algo-
rithm PROSPECTOR (Protein Structure Predictor Employing
Combined Threading to Optimize Results; Skolnick and
Kihara 2001).

Phase II uses multichain threading, where a set of probe
sequences, each at least weakly assigned to a monomer tem-
plate structure that is part of a complex, is then threaded in
the presence of each other in the associated quaternary struc-
ture. If the interfacial energy and Z-scores are sufficiently fa-
vorable, then the sequences are assigned this quaternary

structure. The details of this method were given previously
(Lu et al. 2002).

Since the original publication of MULTIPROSPECTOR
(Lu et al. 2002), two improvements have been introduced: the
first improvement is the implementation of a new threading
protocol in PROSPECTOR. In the newer version of PROSPEC-
TOR, the query protein sequence is first threaded against the
threading templates in the normal direction; then, the re-
versed query sequence is threaded against the threading tem-
plates again. Instead of using the Z-score of the energy from
the normal sequence threading to indicate the significance of
alignments, the Z-score of the energy difference between the
normal sequence threading and the reversed sequence thread-
ing is used. By doing this, the specificity of the algorithm has
been greatly improved (J. Skolnick, in prep.). The second im-
provement is an expanded multimer template library. Our
current database was updated in February 2002 and is com-
posed of 768 protein complexes, among which 617 are ho-
modimers and 151 are heterodimers (as of December 2002,
the size of our database increased by about 10%). The selec-
tion of the database of protein complexes is described else-
where (Lu et al. 2002). The thresholds of this new version of
MULTIPROSPECTOR are subsequently reset: The medium and
confident Z-scores have been empirically set to be 6.0 and 9.0,
respectively (good Z-scores are positive), instead of the previ-
ously used 2.0 and 5.0. The threshold of interfacial energy E,
has been set at —15.0.

Data Sources

The yeast proteome is obtained from the Web site of the
KEGG database (Kyoto Encyclopedia of Genes and Genomes,
http://www.genome.ad.jp/kegg/; Kanehisa et al. 2002). The
corresponding amino acid sequences and functional annota-
tions of the total 6298 open reading frames (ORFs) are subse-
quently downloaded.

Subcellular localizations of yeast proteins are down-
loaded from the MIPS (Munich Information Center for Pro-
tein Sequences) Comprehensive Yeast Genome Database
(http://mips.gsf.de/proj/yeast/CYGD/db/index.html), the
TRIPLES database (TRansposon-Insertion Phenotypes, Local-
ization, and Expression in Saccharomyces, http://ygac.med.
yale.edu/triples/), and Mark Gerstein’s Lab Web site (http://
bioinfo.mbb.yale.edu). The combined data set has 3810 en-
tries, 830 of which give more than one subcellular localiza-
tion; for the rest, there are 1215 cytoplasmic proteins, 890
nuclear proteins, 475 mitochondria proteins, 136 endoplas-
mic reticulum (ER) proteins, 102 membrane proteins, 42 cy-
toskeleton proteins, 40 Golgi proteins, and 80 others.

We compared our predictions with the data set evaluated
in a recent assessment of large-scale protein—protein interac-
tion analyses (von Mering et al. 2002). The data listed in that
article are from interaction studies employing various meth-
ods: yeast two-hybrid assays, mass spectrometry of purified
complexes such as tandem affinity purification (TAP) and
high-throughput mass spectrometric protein complex identi-
fication (HMS-PCI), correlated mRNA expression (synexpres-
sion), genetic interactions (synthetic lethality), and in silico
predictions through genome analysis (conserved gene neigh-
borhood, co-occurrence of genes, and gene fusion events).
The list of protein-protein interactions predicted by each
method can be obtained from the supplementary information
that accompanies the paper (von Mering et al. 2002). In von
Mering et al. (2002), high confidence interactions are defined
as those supported by two or more of the above-mentioned
methods. An interaction confirmed by only one of those
methods is considered to be of medium or low confidence,
depending of how many times the interaction is found in the
data set. Among the 78,390 interactions listed by those au-
thors, 2455 interactions are high-confidence, 9400 are me-
dium-confidence, and 66,535 are low-confidence.
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Distribution of Predicted Interactions According

to Functional Categories

We assign each of the 6298 yeast ORFs to one of 12 categories
related to broad biological functions (or to the category “un-
characterized”) as in von Mering et al. (2002). Next, based on
the predicted interactions under analysis, we calculate the
protein interaction density for each pairwise combination of
the 13 functional categories. The protein interaction density
(PID) is defined as the ratio of the number of observed protein
interaction pairs to the total number of possible pairwise com-
binations of protein pairs belonging to the corresponding cat-
egories (Ge et al. 2001).

RESULTS

Completion of Protein—Protein Interaction
Predictions by MULTIPROSPECTOR
All of the 6298 unique ORFs encoded by the S. cerevisiae ge-
nome including their amino acid sequences and functional
annotations are downloaded from the KEGG database and
threaded against our structural template library. The current
template library is a representative set of Protein Data Bank
(PDB) structures and contains 3405 protein folds where the
sequence identity between each two folds is less than 35%.
These 3405 templates are composed of 616 chains from ho-
modimers, 255 heterodimers, and 2534 chains from mono-
mers or higher-order multimers. The fold library can be found
on our Web site at http://bioinformatics.buffalo.edu/proint/.
The procedure to predict protein—protein interactions us-
ing MULTIPROSPECTOR is illustrated in Figure 1. There are
1836 (out of 6298) proteins that have at least medium-
confident hits (Z-score > 6.0) to the threading templates after
Phase I threading. Because only when both proteins have hits
in the threading templates can we proceed to Phase II, we
only calculate the pairwise combinations of these 1836 pro-
teins, that is, over one and a half million possible binary in-
teractions in total. Analysis of the calculation results (Z-scores

6298 YEAST PROTEINS

ﬂ

(18236) 1.68 x 10°
POSSIBLE
| 1836 PROTEINS | > | INTERACTIONS

MULTIPROSPECTOR |

%

8072 PREDICTED INTERACTIONS INVOLVING
1350 PROTEINS

DIFFERENT PROTEINS ONLY

7321 PREDICTED INTERACTIONS INVOLVING
1256 PROTEINS

Figure 1 Procedure for genomic-scale prediction of protein—protein
interactions by MULTIPROSPECTOR.

LINTERACTIONS BETWEEN TWOJ

1148 Genome Research
www.genome.org

and interfacial energies) provides 8072 predicted interactions
involving 1350 proteins, among which 7321 are interactions
between two different protein partners. In the following
analyses, only these 7321 interactions involving 1256 unique
proteins are considered. From this point on, when we men-
tion our predicted interactions, we are referring to these 7321
interactions.

Subcellular Localizations of Predicted Interactions
The subcellular localization of the 1256 proteins involved in
the predicted interactions is examined (Fig. 2A). The results
show that our predictions are somewhat biased towards the
cytoplasmic compartment and against unknown locations.
Subcellular localization data also helps us to assess the
quality of our predictions. Two predicted interacting partners
sharing the same subcellular location annotation are more
likely to form a true interaction. Thus, we calculate the colo-
calization index for different protein interaction data and for
all possible yeast protein pairs. The colocalization index is
defined as the ratio of the number of protein pairs in which
both partners have the same subcellular localization (Ng,,.)
over the number of protein pairs where both partners have
any subcellular localization annotation (N,,,), that is,

NS(/IWI(’

Colocalization index = 2)

any
The number of predicted interactions with both proteins hav-
ing known subcellular localizations (not necessarily the same)
is 3603. When both partners are required to be colocalized,
the number of interactions decreases to 2028, and thus the
colocalization index is 0.56. Figure 2B compares the colocal-
ization indexes for high-confidence interactions, interactions
identified by several high-throughput methods, and for all
possible pairs of yeast proteins. We can see that the quality of
our predictions is lower than the high-confidence interac-
tions, but our method ranks third among the compared high-
throughput approaches.

Structural Groups of Predicted Interactions

The 7321 predicted interactions are based on 304 out of 768
templates in our complex database. We plotted the number of
predicted interactions assigned to each one of the top 100
dimer templates that originated the largest number of predic-
tions (Fig. 3).

The top ten of such complexes are: 1KOB (twitchin ki-
nase fragment), 1109 (glycogen synthase kinase-3 beta), 1ADS
(src family tyrosine kinase), 1CKI (casein kinase I delta), 1HCI
(rod domain alpha-actinin), 1CDO (liver class I alcohol dehy-
drogenase), 1QBK (nuclear transport complex karyopherin-
beta2-Ran GppNHp), 1J7D (ubiquitin conjugating enzyme
complex), 1BLX (cyclin-dependent kinase CDK6 / inhibitor
p19INK4D), and 1QOR (quinone oxidoreductase).

Functional Groups of Predicted Interactions

To assess the accuracy of our predicted interactions, we cal-
culate their distribution according to the biological functions
of the interactors. Although proteins from different groups of
biological functions can still interact with each other, it has
been shown that the degree to which interacting proteins are
annotated with the same functional category is a measure of
quality for the predicted interactions (von Mering et al. 2002).
The distribution of our predicted interactions in functional
categories is represented in Figure 4A through a matrix of
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Table 1. The distribution that shows
the highest correlation coefficient
with the distribution of our predicted

45%

interactions is that of the high-

40% O YEAST PROTEOME

B PROTEINS INVOLVED IN OUR PREDICTIONS

confidence interactions (0.739). If we
compare the correlation between the
distribution of high-confidence inter-
actions with the distributions of inter-

35%

actions revealed by all large-scale
methods, ours has the third highest
correlation coefficient.

30%

25%

Comparison With the Existing

20%

Yeast Interaction Data
We next examine the overlap of our
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Figure 2 (Continued on next page)

protein interaction density. This result shows that our predic-
tions cluster fairly well on the diagonal, where the homofunc-
tional interactions are represented. In order to quantify the
extension of this clustering, we calculate the cofunctionality
index. The cofunctionality index is defined as the ratio of the
average protein interaction density for homofunctional inter-
actions (PIDyomorune) OVer the average protein interaction
density for heterofunctional interactions (PIDycterofunc)
that is,

<PIDhomufunc>

3
<P D heteroﬁm(>

Cofunctionality index =

We analyze our predictions as well as large-scale data sets of
protein—protein interactions from other approaches (von Me-
ring et al. 2002). First, we compute the matrices of protein
interaction density associated with the data sets to be com-
pared (data not shown); next we calculate the corresponding
cofunctionality indexes. Figure 4B shows that the cofunction-
ality index for our method is about half of the index for high-
confidence interactions and ranks third among the compared
large-scale approaches.

The distributions of predicted interactions in functional
categories are also compared by calculating the correlation
coefficients between corresponding cells in each pair of ma-
trices of protein interaction density. The results are shown in

NUCLEAR

predicted interactions with the exist-
ing yeast interaction data listed by von
Mering et al. (2002). The overlap of the
7321 predicted interactions with all of
the 78,390 existing yeast interactions
is 374, among which 49 are of high
confidence, 63 are of medium confi-
dence, and 262 are of low confidence.

The overlapping interactions of
different large-scale studies are listed
in Table 2. The percentage of the inter-
actions between our predicted interac-
tions is at the same magnitude as the
overlap between any other two large-
scale studies.

The possible bias towards proteins
of high abundance is also assessed. Be-
cause the protein abundance in yeast is
unavailable, mRNA expression level is
often used as a substitute (Gygi et al.
1999). The number of predicted inter-
actions is plotted against the abun-
dance of the mRNA expression. The re-
sults show that unlike other in silico predictions, ours are not
correlated with the protein abundance (Fig. 5), which makes
our method more capable of revealing the interactions with
low abundance.

UKNOWN

CYTOPLASMIC

Biological Significance of the Predicted Interactions

Our predictions are significant in part because they promote
some of the low-confidence interactions to high-confidence
interactions. Benchmarks against a set of trusted interactions
have shown that high-confidence interactions, that is, those
identified by at least two high-throughput methods, are more
accurate than low-confidence interactions (von Mering et al.
2002). Our predictions have 262 common interactions with
the low-confidence interactions and thus promote them to
high-confidence interactions. This is shown in the following
two examples, where the biological functions of the two in-
teracting proteins make the predictions even more convincing.

Msh5p [YDLI54W] and Hsl7p [YBRI33C]

MshSp is a member of the MutS family of proteins able to
recognize specific DNA structures associated with recombina-
tion intermediates. The role of MshS5p in S. cerevisiae is to
facilitate the crossover between homologous chromosomes,
ensuring that they segregate at the first meiotic division (Holl-
ingsworth et al. 1995). The points of crossover maintain the
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production of ribosomal RNA,
whether marking individual
nucleotides for modification or as-

1.0

HC: high confidence interactions HMS: HMS-PCI complexes sisting the cleavage of pre-rRNA
0.9 SYN: synthetic lethality SIL: other in silico methods H  (Terns and Terns 2002). U3 snoRNA
TAP: TAP complexes RNA:correlated mRNA expression interacts with at least eight proteins
0.8 +0-86_MTA: multimeric threading Y2H: yeast two-hybrid Ul that have not been found in other
algorithm (our method) ~ ALL: all possible protein pairs snoRNP complexes, Mpp10p being

one of them (Dunbar et al. 1997).

071 o
0.6 +- — —0.64

Unlike other U3 snoRNP compo-
nents, sequences in the 3’ domain

o5 4 L 1 [Joss

are not sufficient for Mpp10p asso-
ciation. Instead, a conserved se-

0.50| |0.49

COLOCALIZATION INDEX

3H H H H H H F

04 H H H H H H

quence element in the U3 snoRNA
0.48| |0.47 hinge region is required, placing
Mpp10p near the 5’ domain that
0.37 carries out the pre-rRNA base-
pairing interactions (Wormsley
et al. 2001). Although various pro-
=1 == M tein components of the U3 snoRNP,
including Mpp10p and LcpSp,
— — H have been found in the same
protein complex (Gavin et al.

0-0 T L] T T T T

2§ ¥ £ ¢ 3
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Figure 2 Subcellular localization of yeast proteins. (A) Distribution of subcellular localization of yeast

T r 2002), it is not known whether

< T _l these proteins interact directly with
2 oN - one another (Terns and Terns
(14 > < 2002). The prediction made by our

method increases the confidence

proteome compared with proteins involved in our predicted interactions. (8) Comparison of coiocal-  level of interactions not only by
ization index, which is defined as the ratio of the number of protein pairs in which both partners have  confirming a previous result as in
the same subcellular localization to the number of protein pairs where both partners have any sub-  the first example, but also by pro-

cellular localization annotation.

two homologous dyads together until the attachment of the
spindle fibers and the migration of the chromatids to opposite
poles of the cell. Hsl7p is a component of the budding yeast
spindle, present in a protein complex that is functionally re-
lated to the chromosome segrega-

posing a physical contact between
two proteins within the same com-
plex.

The following two examples show that our method is
able to identify interactions whose veracity is beyond any
reasonable doubt, but are missed by all other high-
throughput analyses.

tion (Wigge and Kilmartin 2001).
The interaction between MshS5p
and Hslp7 has only been shown in
a two-hybrid large-scale experiment

1000

1000

(Uetz et al. 2000). Our result in- 800 {r

creases the confidence of this inter-
action that links two clearly corre-

800 ]
600

INTERACTIONS

lated biological processes: resolu-
tion of crossovers and chromosome
segregation.

LepSp [YERI2Z7W] and

600

400 —
200

NUMBER OF PREDICTED

3

400
MpplOp [Y]JROOZW]

LcpSp was first identified in a
screen for synthetic lethal muta-

200 1

1KOB
1109
1AD5
1CKI
1HCI
1BLX
1QBK
1CDO
1J7D
1QOR

TOP 10 DIMER TEMPLATES

tions with a temperature-sensitive
allele of poly(A) polymerase
(Wiederkehr et al. 1998). Consis-
tent with its role in precursor ribo- 0

NUMBER OF PREDICTED INTERACTIONS

T O OO I

somal RNA (pre-rRNA) processing, 1'(') 20
LepSp is located in the nucleolus
and is associated with the yeast ho-
molog of the small nucleolar RNA

30 40 50 60 70 80 90 100
TOP 100 DIMER TEMPLATES

Figure 3 Structural groups of predicted interactions: the number of predictions assigned to the

U3, or U3 snoRNA. The small  protein complexes in our dimer database. The 100 most populous complexes are shown. The inset is
nucleolar RNAs are essential for an enlargement for the top 10 complexes.
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Figure 4 Functional group predicted interaction. (A) Distribution of our predicted interactions in
functional categories. Each axis on the matrix of protein density represents the yeast proteome, which
has been subdivided into 13 functional categories. The width and the height of each cell, except for
the “Uncharacterized,” which is too large to be shown in scale, is proportional to the number of
proteins in the corresponding categories. (B) Comparison of cofunctionality index, which is defined as
the ratio of the average protein interaction density for homofunctional interactions (diagonal of the
matrix in A) to the average protein interaction density for heterofunctional interactions.

Gerlp [YPLO75W] and Raplp [YNL216W]

Gcerlp is a transcriptional activator
of glycolytic genes, and Raplp is a
transcriptional regulator that can
play a role in either repression or
activation, depending upon the
context of its binding site. Both
DNA binding proteins can be co-
immunoprecipitated from whole-
cell extracts, suggesting that they
form a complex in vivo (Tornow et
al. 1993).

Sdc25p [YLLOI6W] and
Rasip [YORIOIW]
Sdc25p is a GDP/GTP exchange fac-
tor (GEF) and Raslp is a GTP-
binding protein that activates ad-
enylate cyclase in the presence of
guanine nucleotides. The Sdc25p
carboxyl-terminal domain has been
shown to directly interact with
Ras1p, acting as a GDP dissociation
stimulator that enhances the regen-
eration of the active form of the
protein (Crechet et al. 1990).
Most significantly, our
method predicts interactions that
have not been identified anywhere
but have interesting biological im-
plications. In the existing yeast in-
teraction data generated by other
high-throughput methods, 5321
yeast proteins participate in at least
one interaction; meanwhile the re-
maining 977 yeast proteins have
not yet been assigned to any pro-
tein—protein interaction. In the
present study, in addition to reveal-
ing more combinations among
some of the 5321 proteins, we pre-
dict 230 new interactions involving
125 of the above mentioned 977
yeast proteins. The next example is
a novel prediction that was selected
from these 230 predicted interac-
tions, and still needs to be con-
firmed by experiments.

Dotlp [YDR440W] and
Yku70p [YMR284W]

DOT1 was identified in a genetic
screening for genes whose overex-
pression disrupts telomeric silenc-
ing (Singer et al. 1998). Telomeric
silencing or telomere-position ef-
fect is a phenomenon in which a
normally active gene is repressed
because of its chromosomal loca-
tion near the telomeres (protein-
DNA structures at the ends of eu-
karyotic chromosomes). In an inde-
pendent screening, DOT1 was also
identified as a silencing factor that

Genome Research 1151
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Table 1. Comparison of Distributions of Predicted
Interactions in Functional Categories for Large-Scale Studies

MTA® TAP® HMS® Y2H? RNA® SILf  SYN9

TAP  0.170

HMS 0.461 0.346

Y2H 0.436 0.518 0.325

RNA 0.701 0.087 0.384 0.060

SIL 0.556 0.350 0.474 0.023 0.740

SYN 0.578 0.332 0.107 0.677 0.016 0.005

HC" 0.739 0.488 0.542 0.318 0.869 0.799 0.248

#Our Multimeric Threading Algorithm.

PTAP complexes.

‘HMS-PCI complexes.

dYeast two-hybrid.

¢Correlated mRNA expression.

fOther in silico methods.

9Synthetic lethality.

PHigh confidence interactions, i.e., the interactions determined by
at least two different large-scale methods.

affects meiotic checkpoint control, ensuring proper chromo-
some segregation by preventing meiotic progression when re-
combination and chromosome synapsis are defective (San-
Segundo and Roeder 2000). A recent report confirmed that
Dotlp methylates Lys79 of histone H3, a conserved residue
located at the surface of the histone octamer, where methyl-
ation could affect the interaction with other proteins (Ng et
al. 2002). The intrinsic histone H3 methyltransferase activity
of Dotlp is specific to nucleosomal substrates and is a key
aspect of its function in telomeric silencing, probably by
modulating chromatin structure (Lacoste et al. 2002).

Yku70p was first shown to promote accurate repair of
double-strand breaks with cohesive ends (Boulton and Jack-
son 1996). The Yku70p/Yku80p heterodimer, the yeast homo-
log of mammalian Ku70p/Ku80p that binds to the ends of
double-stranded DNA with high affinity (Mimori and Hardin
1986), is also present at the telomeres, and it is required for
the integrity of telomeric heterochromatin (Laroche et al.
1998; Mishra and Shore 1999). Moreover, it has been shown
that the Yku heterodimer participates in telomeric silencing,
likely through the recruitment or activation of silent infor-
mation regulators, or SIR proteins (Mishra and Shore 1999).
Thus, the likelihood of the physical interaction between
Yku70p and Dot1p predicted in our study is reinforced by the
fact that both proteins bind to the same highly specific chro-
mosomal regions and share similar functional roles in telo-
meric silencing.

DISCUSSION
In the present work, we applied our recently developed mul-
timeric threading algorithm, MULTIPROSPECTOR, to ge-
nomic-scale predictions of the protein—protein interactions in
S. cerevisiae. This approach predicts 7321 interactions between
pairs of different proteins. The accuracy of our predictions was
assessed and compared with other large-scale interaction data
sets generated by various methods (von Mering et al. 2002). A
few interesting predictions have also been discussed.
Although several high-throughput methods have been
designed to identify protein—protein interactions in yeast, the
connection between these interactions with three-
dimensional structures is rarely studied (Aloy and Russell
2002). Our approach is strongly based on structures of exist-
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ing protein-protein complexes. Furthermore, our method is
fast enough for genomic-scale interaction prediction, where
millions of possible interacting protein pairs need to be evalu-
ated. Because this approach is based on a different principle
from those existing methods, the prediction results are a use-
ful complement.

A significant portion of our predicted interactions is
based on structures of kinase complexes. This is due to the
relatively large number of proteins in the yeast genome that
are classified as kinases (Hunter and Plowman 1997) and the
very high connectivity that they exhibit in the yeast interac-
tome (Wuchty 2002). Moreover, because of the richness of
kinases in the PDB, fruit of their biological significance and
diversity, kinases are also well represented in our complex
database.

One limitation that affects the coverage of our approach
is the reduced number of solved protein complexes in the
PDB. However, as the size of the PDB grows (Sussman et al.
1998), the number of solved complex structures also greatly
increases. As our multimeric database expands, our method
will be able to make more predictions.

The performance of this approach also depends on the
accuracy of the single-chain threading, PROSPECTOR, the
first step of multimeric threading. However, PROSPECTOR
has been shown to do comparatively better than alternative
threading approaches developed previously (Skolnick and
Kihara 2001). In addition, PROSPECTOR-based multimeric
threading has been tested on a benchmark set comprised of 40
homodimers, 15 heterodimers, and 69 monomers, and
achieves a relatively low error rate (Lu et al. 2002).

Another possible error source is the accuracy and speci-
ficity of the interfacial energies that have been used in MUL-
TIPROSPECTOR to differentiate multimers from monomers.
These statistical interfacial potentials are derived from a high-
quality dimer database that consists of 271 homodimers and
69 heterodimers (Lu et al. 2002). Although the potentials de-
rived from homodimers only and those from heterodimers
only show a high correlation coefficient of 0.92 (Lu et al.
2003), more detailed classification of the protein interfaces
will probably be able to improve our potentials.

Table 2. Overlap of Interactions Between
Large-Scale Studies

MTA® TAP® HMS< Y2H?Y RNA® SILf SYN9

MTA 7321"
TAP 103" 18027
HMS 166 1728 33013

Y2H 57 156 146 5125

RNA 44 192 124 8 16496

SIL 21 124 57 7 98 7446

SYN 37 55 37 17 2 5 886

2Our Multimeric Threading Algorithm.

°TAP complexes.

‘HMS-PCI complexes.

dYeast two-hybrid.

¢Correlated mRNA expression.

fOther in silico methods.

9Synthetic lethality.

"Number of interactions determined by the corresponding large-
scale study.

Number of overlapping interactions between the corresponding
large-scale studies.
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method to study the protein—protein in-
teractions on a genomic scale. Compared
with large-scale interaction data from vari-
ous other approaches, our method
achieved fairly good accuracy. Thus, it can
be one of the useful tools in proteomics
studies.
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Figure 5 Correlation between predicted interactions and mRNA abundance. The yeast pro-
teome is divided into ten groups of equal size according to their mRNA expression levels and
is arranged in an increasing abundance order from 1-10. The results from five high-throughput

studies as well as ours are compared.

The results of other in silico methods were similar (see
the correlation with high-confidence interactions in Table 1,
the number of predicted interactions in Table 2, and the co-
localization index in Fig. 2B) if not better (cofunctionality
index in Fig. 4B) than the ones obtained by MULTIPROSPEC-
TOR. However, our approach has an important advantage
over other sequence-based in silico methods. Analyses of test
cases (Lu et al. 2002) show that MULTIPROSPECTOR can pre-
dict 68% and 74% of the true interfacial residues in homo-
and heterodimers, respectively (L. Lu, in prep.). Thus, besides
predicting interactions between proteins, our method also
identifies the residues of each protein that participate directly
in the interaction.

A common problem for various high-throughput ap-
proaches is generating a significant fraction of false positive
predictions. At this stage, it is still impossible to accurately
assess the false-positive rate because the complete interaction
network is not yet available in yeast. However, the correctness
can be implicitly assessed by subcellular localization and
functional group analysis, as shown in Figures 2B and 4B.
These analyses strongly suggest that the quality of our ap-
proach is better than the average of existing high-throughput
methods. We also realize that more stringent criteria than
mere functional analyses are necessary to fully evaluate the
quality of the predictions made by our method, because it
predicts the quaternary structure of the complexes as well as
whether or not two proteins interact. To perform such an
evaluation would require a large set of proteins whose pro-
tein—protein interactions are completely characterized by bio-
physical methods that determine both the structures and the
thermodynamics of the complexes. At this stage, it is imprac-
tical to prepare such a large-scale benchmark; nevertheless,
such a benchmark would greatly assist with the validation of
any protein—protein interaction prediction method.

Regardless of its limitations, MULTIPROSPECTOR is one
of the first attempts to employ a structure-based threading

dance with 18 USC section 1734 solely to
indicate this fact.
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