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The identification of genes in the human genome remains a challenge, as the actual predictions appear to
disagree tremendously and vary dramatically on the basis of the specific gene-finding methodology used.
Because the pattern of conservation in coding regions is expected to be different from intronic or intergenic
regions, a comparative computational analysis can lead, in principle, to an improved computational
identification of genes in the human genome by using a reference, such as mouse genome. However, this
comparative methodology critically depends on three important factors: (I) the selection of the most
appropriate reference genome. In particular, it is not clear whether the mouse is at the correct evolutionary
distance from the human to provide sufficiently distinctive conservation levels in different genomic regions, (2)
the selection of comparative features that provide the most benefit to gene recognition, and (3) the selection of
evidence integration architecture that effectively interprets the comparative features. We address the first
question by a novel evolutionary analysis that allows us to explicitly correlate the performance of the gene
recognition system with the evolutionary distance (time) between the two genomes. Our simulation results
indicate that there is a wide range of reference genomes at different evolutionary time points that appear to
deliver reasonable comparative prediction of human genes. In particular, the evolutionary time between human
and mouse generally falls in the region of good performance; however, better accuracy might be achieved with
a reference genome further than mouse. To address the second question, we propose several natural
comparative measures of conservation for identifying exons and exon boundaries. Finally, we experiment with

Bayesian networks for the integration of comparative and compositional evidence.

[Software is available on request from the authors.]

Computational gene identification systems have made tre-
mendous progress in the last twenty years and have been
reviewed by M.Q. Zhang and many other authors (Burset and
Guigo 1996; Fickett 1996; Gelfand et al. 1996; Kulp et al.
1996; Claverie 1997, 1998; Krogh 1997; Zhang 1997, 2002;
Birney and Durbin 2000; Parra et al. 2000; Rogic et al. 2001;
http://linkage.rockefeller.edu/wli/gene; http://www.cbc.
umn.edu/ResearchProjects/BIBLIOGRAPHY/gene_finding/
gene_finding.html). However, exact identification of genes in
the human genome remains a challenge, as the estimates on
the number of human genes and their precise boundaries vary
dramatically, depending on the specific gene-finding meth-
odology used (Crollius et al. 2000; Ewing and Green 2000;
Liang et al. 2000). The limited ability to identify human genes
results in substantial disparities in genome annotation, as
documented by the comparison of the human genome anno-
tations predicted by Celera and Ensembl (Hogenesch et al.
2001). In fact, 80% of the novel transcripts were predicted by
only one of the two groups.

The advent of whole-genome sequencing creates a start-
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ing point for cross-species comparative analysis that provides
unprecedented opportunities to identify the evolutionary
roadmap leading to a better understanding and classification
of DNA sequences (Lander et al. 2001; Venter et al. 2001;
Mural et al. 2002). Additionally, genomic comparative analy-
ses can exploit the variable rate of conservation of different
functional regions and provide us with additional evidence
that can assist in genomic annotation and gene identifica-
tion. It is expected that intergenic regions might be charac-
terized by low conservation, whereas protein-coding regions
might exhibit a higher conservation rate that depends on the
specific function of the protein. A comparative gene-
identification system can take advantage of the selective evo-
lutionary pressures that result in different conservation rates
in different genomic regions to produce a more accurate iden-
tification of functional genomic regions, such as protein-
encoding exons. Such regions are expected to have higher
conservation rates (on average) than intergenic regions, and
the pattern of substitutions is expected to obey a synony-
mous/nonsynonymous rate that is not expected in introns or
other noncoding regions.

In anticipation of the full sequencing of the complete
mouse genome sequence (Waterston et al. 2002), several sys-
tems have been built with the goal of identifying genes in the
human genomic sequences using human-mouse comparative
evidence (Batzoglou et al. 2000; Korf et al. 2001; Yeh et al.
2001; Pachter et al. 2002; Parra et al. 2003). Although these
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systems have achieved reasonably good performance, there
are several fundamental questions still open in the compara-
tive identification of human genes. The first key scientific
problem is the choice of the reference genome for human
gene identification. The mouse genome is generally believed
to be a good reference, because most human genes have
mouse counterparts, and the evolutionary time between hu-
man and mouse seems to be appropriate. In this study, we
propose a general computational model to characterize the
correlation of the prediction performance and the evolution-
ary distance between genomes. We then investigate the same
correlation with our comparative gene-prediction system.
Our results show a reasonable range of organisms at different
evolutionary times that, on average, are likely to deliver com-
parable performance for gene identification. This is the first
study that provides a clear link between evolutionary time
and performance of gene recognizers.

The second question to address is the choice of compara-
tive features used to assist in comparative gene recognition.
We introduce the idea of comparative consensus models for
splice sites, translational initiation, and termination sites. In
addition, we describe and analyze a variety of discriminative
comparative features for identifying coding and noncoding
regions and evaluate their performance with a comparative
gene-prediction model.

The final question to address is the choice of the evi-
dence integration model for effective gene recognition. There
are generally four related, but technically different types of
architectures that should provide good performance, for ex-
ample, Bayesian Networks (Pavlovic et al. 2002), Product-
HMMs (Hidden Markov Model) (Walker et al. 2002), Gener-
alized HMMs (Korf et al. 2001; Yeh et al. 2001), and Pair-
HMMs/Generalized Pair-HMMs (Pachter et al. 2002). Here, we
demonstrate the integration of different sources of evidence
with the Bayesian network models. In a subsequent study, we
will describe the application of Product-HMMs to compara-
tive gene recognition.

METHODS

Data Set

Part of the data used in this study is based on Batzoglou's set
of 117 human-mouse orthologs reported in Batzoglou et al.
(2000). A total of 20 of the 117 ortholog pairs containing
ambiguous annotations or particularly short intergenic se-
quences (<100 nucleotides) were discarded. The remaining 97
human sequences are used as our data set for comparative
analysis and model training, and their corresponding mouse
orthologs are deployed as reference sequences. To compare
our prediction system with some available gene finders,
IMOG (15 pairs of single-gene sequences) and BI (3 pairs of
multi-gene sequences) data sets from SGP2 (Parra et al. 2003)
data set were used as the benchmark. One pair of sequences
(MT3) from IMOG data set and one pair of sequences (HOX)
from BI data set are discarded because of ambiguous bases in

the sequences. To document the prediction performance, an-
notations available for the human sequences are contrasted
with our comparative predictions. The annotations of mouse
sequences are generally ignored in our analysis.

Each of the human and mouse ortholog pairs is aligned
by a global alignment system, GLASS, described in Batzoglou
et al. (2000). We characterize the GLASS alignment using a
Human Comparative Indicator Sequence or HCIS. The HCIS
is, in essence, the output of the global alignment given by a
binary sequence with the same length as that of the corre-
sponding human sequence, as shown in Figure 1. At each
position in the human sequence, a 1 or O in the HCIS indi-
cates a match or a mismatch/gap in the alignment. Our HCIS
is similar to, but different from the conservation sequences in
the TWINSCAN model, in that TWINSCAN treats gaps and
mismatches differently (Korf et al. 2001). The 97 human se-
quences from Batzoglou’s set are also aligned against a mouse
peptide database, downloaded from Ensembl (Hubbard et al.
2002), using BLASTX (Altschul et al. 1997).

Comparative Analysis

Our proposed comparative evidence includes the following
families of comparative models: (1) conservation models for
coding and noncoding regions, (2) translational initiation/
termination models, and (3) splice site models. These models
depend on various comparative statistics obtained from the
alignment of the sequences (both global and local). In fact, to
compute a local comparative score (see below), we first need
to rely on an approximate global alignment. Once such an
alignment is available, we can obtain local comparative scores
by aligning specific local windows in both sequences to ob-
tain more refined information about their alignment.

Human-Mouse Comparative Features

Three comparative local scores were constructed to measure
the degree of conservation between human and mouse as fol-
lows: (1) a base-level score, (2) a TBLASTX-based score, and (3)
a score from BLASTX analysis with mouse peptide matches.
We also introduced additional discrimination between cod-
ing and noncoding regions using mathematical transforma-
tions of the HCIS, a Fourier transform, and a run-length-
encoding representation.

Base Scores

The base-level score measures local conservation in the align-
ment of orthologs, as defined by the HCIS. At each position in
the GLASS alignment, the left base score (LBS) and the right
base score (RBS) measure the number of matches in the left
and right subsequences of specific lengths flanking the posi-
tion. The LBS/RBS scores are computed in windows of length
20-30. Figure 1 demonstrates an example of the base scores
with a window length five.

TBLASTX Scores

Although indicative of different genomic regions, base-level
scores rely on the conservation of individual bases rather than
codons, a method that may be preferential for coding regions.
The second type of score, the TBLASTX comparative score,

Human position i-9 i-8 (=4 i-8 i-5 i-4 i-3 i-2 i~ i i+1 i+2 i+3 i+4 i+5 i+6 i+7 i+8 i+9
Human sequence (¢ A G - A A G G o} G (o] T G A G ‘ G A o] A c =
Mouse sequence A G G A A A |G - C o] [¢] - [o] G G A G G c A
HCIS 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 1
Left_base_score 0 0 1 2 3 4 4 4 3 3 2 2 2 3 3 4 4 3 3
Right_base_score 3 4 4 4 3 3 2 2 2 3 3 4 4 3 3 2 1 1 1

Figure 1

lllustration of the GLASS alignment of human and mouse orthologs, Human Comparative Indicator Sequence (HCIS), and base scores

for local windows of length 5. HCIS is essentially the output of the global alignment system. It is defined as a binary sequence with 1 indicating
a match and 0 a mismatch/gap in the alignment. LBS/RBS at position iis the number of matches in the local window of length k (5 in the example,

20-30 in the study) that ends/starts at position i.
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Figure 2 Integration of various features is done using either A full
Bayes network model or B naive Bayes. LBS, RBS, and GS denote three
pieces of evidence and $ denotes the states in the genomic sequence.
The evidence could be either comparative or traditional genomic
evidence, represented by predictions made by GENSCAN. The ge-
nomic states include exons, introns, or intergenic regions. The distri-
bution defined by the full Bayesian model is Pr(LBS,RBS,GS | S) and
allows no further factorization, whereas the naive Bayes allows de-
composition PCWAM,WAM | S) = P(CWAM | S)Pr(WAM | ).

attempts to alleviate this problem. Two types of TBLASTX
scores, phase-dependent and phase-independent TBLASTX
scores, are defined. At each position in the human sequences,
the left/right subsequence (of specific length) flanking this
position was aligned against the corresponding mouse left/
right subsequence (of the same length) by NCBI TBLASTX®
(Altschul et al. 1997). For instance, with the same alignment
as shown in Figure 1, the left and right subsequences flanking
human position i are GGCGC and CTGAG, by assuming the
window of length 5. Their corresponding mouse subse-
quences in the alignment are AGCCC and CCAGG. A window
of length 60-100 was used in our study and bitscores were
recorded. Bitscores measure the significance of the conserva-
tion on protein level and provide information related to syn-
onymous/nonsynonymous rates in coding regions. Because
each TBLASTX alignment considers six different frame-
orientation combinations, the comparative TBLASTX score
has a potential to depend on the phase (coding frame) as well.
Hence, the phase-independent TBLASTX score is given by the
maximum of the bitscores recorded, whereas the phase-
dependent TBLASTX score with phase j, j € {0,1,2} is the maxi-

SAlthough BLOSUMBSO is expected to better characterize the divergence
between human and mouse protein, we experimented with both
BLOSUM®62 and BLOSUMB80 and found that BLOSUM62 was slightly bet-
ter than, although very similar to, BLOSUMS80 at identifying protein-
coding regions. Hence, we used BLOSUM®62 in our experiments. All other
BLAST parameters are used as defaults.
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mum of HSP (High Scoring Pair) scores with phase j at human
position i.

BLASTX Scores

To demonstrate the capability of the system to integrate a
wide range of evidence, we designed BLASTX scores based on
the BLASTX analysis. Each of the human genomic sequences
was aligned against the mouse peptide database with BLASTX
(default NCBI BLAST parameters used). At those positions in
the human genomic sequences that are not covered by any
HSP in the alignment, the corresponding BLASTX scores are
defined as zeros. If a position is covered by more than one
HSP, the BLASTX score at the position becomes the maximum
of the bitscores of the covering HSPs.

Additional Comparative Features

In addition to these comparative scores, two other compara-
tive features were analyzed that measure characteristics of the
distributions of 1s and Os in the HCIS. One is the run-length
distribution of contiguous 1s in the HCIS, and the other is a
Fourier analysis of the HCIS. The run-length analysis charac-
terizes the distribution of the lengths of matches in different
genomic regions. The Fourier score, on the other hand, mea-
sures the periodicity of matches or mismatches/gaps in the
alignment. Both features attempt to amplify a characteristic
related to the positions of synonymous changes in coding
regions—usually, substitutions of the third base of a codon
are synonymous and occur more frequently.

Analysis of Human-Mouse Comparative Scores

Although most comparative scores would rarely be used in
isolation from other genomic features for gene identification,
their own capacity to distinguish coding from noncoding se-
quences may be a good initial indication of their overall util-
ity. One common way to analyze the prediction performance
of these scores is Receiver Operating Characteristic (ROC)
analysis (Egan 1975). ROC analysis demonstrates the correla-
tion of the sensitivity (SN) and specificity (SP) of the predic-
tions made by each comparative score. We assume that pre-
dictions are made using a likelihood ratio test:

1 Pr(scorej|coding) hreshold
08 Pr(score,.lnoncodimq)>t reshold,

then position i is coding,

in which score; is one of the proposed comparative scores
evaluated at position i in a human sequence. Likelihood dis-
tributions are estimated from our data set of orthologs. The
predictions are then compared with the annotations, and the
SN and SP are evaluated by

P <p TN
" TP+FN’" " TN +FP

SN

in which TP, FN, TN, and FP stand for true positive, false
negative, true negative, and false positive, respectively. As the
threshold changes, the corresponding SN and SP vary and an
ROC curve is generated. Note that for the base scores and
TBLASTX scores, the sum of the left and right log likelihood
scores, LBS; and RBS;, was compared with the thresholds:

Pr(LBS;, RBSj|coding)
8 PR(LBS,, RBSnoncoding)
Pr(LBSj|coding)
08 Pr(LBS;lnoncoding) *

Pr(RBSj|coding)
08 Pr(RBS,|noncoding)’

Because each point on the ROC curve measures the SN and SP,
the area under the curve becomes proportional to the average
precision of each score. Hence, we utilize this quantity as the
ultimate measure of a score’s predictive capacity.



Comparative Gene Prediction

Figure 3 Generalized Hidden Markov Model of genomic sequence structure. Each oval or diamond
represents a unit in the genomic sequence as follows: intergenic; £, k= 0,1,2, three states for initial
single exon genes; E,,, [=0,1,2 k=0,1,2,
internal exons at reading frames /; /,/=0,1,2, introns at reading frames /. Splice signals (donor and
acceptor) and translational initiation and termination signals are subcomponents of exons and are not
shown in the model. Promoters, 5’ and 3’ UTRs, poly(A) signals, and the complementary strand are not
modeled. The length distribution of each coding state is modeled explicitly.

exons; £, k=0,1,2, three states for terminal exons; £,

Comparative Models for Splice Sites and
Translational Initiation/ Termination Sites

Traditional models of exon boundaries, known as splice sites
and translational initiation/termination sites, characterize
compositional consensus patterns at these sites (Burge and
Karlin 1997; Salzberg 1997; Cai et al. 2000). A typical example
is the first-order Markov model, also known as the Weighted
Array Matrix model or WAM (Salzberg 1997), which charac-
terizes the correlation between adjacent bases at the site. Our
comparative analysis shows that (1) different conservations in
coding and noncoding regions lead to a significant change of
the degree of similarity at the coding/noncoding junctions,
and (2) a characteristic comparative pattern occurs at each
kind of site. The simplest model to capture this comparative
consensus pattern would be a 2 X k matrix of probabilities of
Os and 1s in a window of length k at those junctions. For
instance, position i in the junction is conserved if it corre-
sponds to a high probability of 1 in the i-th column of the
matrix. We construct a more complex model, comparative
WAM (CWAM), to capture the conservative characteristics at
those sites.

If{h,y,...,h;...,h; .} denotes the HCIS window of k + [ + 1
bases around position i in the human sequence, CWAM is
defined as the following first order Markov model:

Prihy g, ..oy, hyglS) =
PCWAM( i—l+1|hi—ll Si) Teet PCWAM(hi+k|hi+k—1: Si);

in which §; € {donor, acceptor, start, stop}. Different sites,
much like their counterparts that rely on genomic content,
are characterized by different window spans (k, /) and differ-
ent values of CWAM, Py an(- |+ 9)-

To estimate their parameters, CWAM models need to be
trained on a database of comparative splice, initiation, and
termination sites. We constructed one such database from the
set of 97 human-mouse orthologs, using the HCIS and the
annotations of the human sequences.

CORCHECH Y ECYRCY
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Bayesian Network Model for
Evidence Combination

One fundamental question in gene
finding is how to combine different
sources of evidence, such as ge-
nomic content statistics, compara-
tive evidence, and others. Follow-
ing our previous work (Pavlovic et
al. 2002), we demonstrate Bayesian
network models for the integration
of comparative features with tradi-
tional genomic evidence.

Bayesian networks (Pearl 1998)
are graphical representations of
probabilistic dependencies among
evidence and variables of interest.
Several applications of this frame-
work to molecular biology are de-
scribed in Salzberg et al. (1998). To
combine comparative features with
traditional compositional evidence,
we propose two Bayesian network
models, a naive Bayesian network
and a full Bayesian network. Both
models are depicted in Figure 2. The
naive Bayesian network integrates
different pieces of evidence that are
assumed to be independent of each
other. Consider, for instance, the
case of a comparative feature,
CWAM, and a traditional compositional feature, WAM as
shown in Figure 2. By naive Bayesian network, Pr(CW AM, W
AM | S) = Pr(CW AM|S)Pr(W AM | S). A full Bayesian network,
on the other hand, models the case in which the evidence is
correlated. If such evidence were LBS and RBS, and GS, the
probability Pr(LBS, RBS, GS | S) cannot be factored into sim-
pler terms.

As an initial test of whether and how the comparative
evidence helps the compositional model identify the splice
sites, we simplify the correlation between WAM and CWAM
by assuming that they are independent and use the naive
Bayesian network to integrate them together:

Py ansrow am@icty o0 Xip o ooy Xiggy Yicpy -+ o Yip oo o, YigdSi) =
Py apdXicpalXiy S - - o Poy andXiilXia1, S0 -
Pew AM(Yi—I+1|Yi—h Si) oo Pow AM(Yi+k|Yi+k—1r Si) (1)
Here, {x;,...,.X;...,.X; . ¢} is @ window of k + [ + 1 nucleotides

around position i in the human sequence—y; is the nucleo-
tide at position i. Similarly, {Y;,...,Y;...,Y;, ,} is the window
of HCIS around the same position. §; takes on values such as
S; € {donor site, not a donor site}. Each Pqy, am(- |+, kK)and
Py am(: | -, k) are, as described in earlier sections, columns of
their corresponding CWAM and WAM matrices.

The full Bayesian network is used to combine compara-
tive scores in coding and noncoding regions with GENSCAN
predictions:

Pr(LBS;, RBS;, GS/|S;)

LBS; and RBS; are, as before, the comparative scores at position
i in the sequence. GENSCAN'’s prediction, GS, is taken to be
either O (noncoding) or 1 (coding). S; denotes one of the pos-
sible coding or noncoding regions i, §; = {initial exon, internal
exon at reading frame O, intron at reading frame O,...}.

In both cases, probabilities that characterize various de-
pendencies can be obtained from data using maximum-
likelihood estimation. The combined probabilities are then
integrated with a model of a genomic sequence.

Genome Research 1193
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Figure 4 Differences in distributions of comparative scores in coding and noncoding regions indicate their potential utility. Shown are (A)
distributions of RBS and LBS Pr(RBS,LBS | coding) and Pr(RBS,LBS | noncoding); (B) distributions of phase-independent TBLASTX scores; and (C)
distributions of BLASTX scores.

Model of Genomic Sequence Structure 1997). In this context, the work is similar to TWINSCAN (Korf
The genomic sequence structure is modeled with a general- et al. 2001) and GENOMESCAN (Yeh et al. 2001) that include
ized Hidden Markov Model (Rabiner 1989; Burge and Karlin explicit duration models of exons. The main difference is the
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Figure 5 ROC analysis of ability of the base scores, phase-
independent TBLASTX scores, and BLASTX scores to identify protein-
encoding regions. Average accuracies of methods that use these
scores are base scores, 0.93; phase-independent TBLASTX scores,
0.97; BLASTX scores, 0.89.

number of comparative features we incorporated in the model
as well as a substantial capability to incorporate additional
evidence using Bayesian Network principles.

The model is shown in Figure 3. For simplicity, promot-
ers, UTRs, poly(A), and the complementary strand are not
accounted for in our model. In other genomic structures (ex-
ons, introns, etc.), comparative and traditional genomic
scores were integrated using one of the above Bayesian meth-
ods. For instance, when LBS, RBS, and GENSCAN (GS) predic-
tions are used, an exon in frame one of length N between
positions i and i + N —1 is scored as:

PR(ULBS}, {RBS}, {GS}, {x}, {W}|E, from ito i+ N—1)=

comparative score
N

. length score
i+N-1 —_—

11 PiLBs, RBS, GSJE,) - P,(NIE,) -
j=i

W AM+CW AM acceptor score

AN
4 A

Py anteow adXi—Lay « « ) Xy Mgy - - - i Jacceptor) -
W AM+CW AM donor score

Py amrew amincary - - Xincrsky Pienoang - -+

hi+N—1+Kd|d0nor)/

with { - } denoting the sequences of proposed features or DNA
bases. Similar scoring methods are used for other functional
elements, with the exception of introns, whose length distri-
bution is exponential, and the score is simply, for instance,
PALBS;, RBS;, GS;|I, at position i). Other combinations of
comparative and genomic features were scored in the same
fashion.

Evolutionary Analysis of Comparative
Gene Prediction

Here, we address the problem of how the performance of a
comparative gene finder depends on the evolutionary dis-
tance between the target and the reference organism. An an-
swer to this problem may help one select the best pair of
organisms for comparative genomic analysis and improve the
quality of annotation. We were able recently to show (V. Pav-
lovic, L. Zhang, and S. Kasif, in prep.) (in a simplified setting)
an exact formal relationship between the performance of a
comparative gene finder and the evolutionary distance be-
tween genomes. Furthermore, we showed that there exists a
distance in which the performance reaches a maximum. Simi-
lar conclusions are drawn in this work from a simulation
study using synthetic human-reference homologs and a com-
plex comparative gene finder. Moreover, our results here sug-
gest that a mouse may not, on average, be the optimal refer-
ence for comparative analysis of the human genome.
Performance of any gene finder depends primarily on
several key factors, including the distinctive signatures of dif-
ferent genomic regions. Because many of the top gene finders
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Figure 6 (A) The run-length distributions of continuous 1s in HCIS
in exon, intron, and intergenic sequences. (B) Fourier power spectrum
of HCIS at coding (solid line) and noncoding (broken-dot line) re-
gions. The peak corresponding to zero frequency has been omitted.
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Figure 7 Conservative patterns at the splice sites of introns in dif-
ferent phases. The Pr(identity) on y-axis stands for probability of iden-
tity at each position on the alignment. Positions 26 and 27 in the
donor site correspond to GT, the terminal residues of the intron at the
5’ splice site, and positions 25 and 26 in the acceptor site correspond
to AG, the terminal residues of the intron at the 3’ splice site. It can
be seen that exonic regions not only are more conserved than intronic
regions, but also display phase-dependent conservative patterns,
which agree well with the preferred substitution in the third codon
positions in the coding regions.

use probabilistic models to characterize genomic regions, one
reasonable predictor of how well the gene finder will perform
is the distance between the coding and noncoding probability
distributions. One natural way to measure this distance is the
relative entropy or Kullback-Liebler divergence’. We recently
showed (V. Pavlovic, L. Zhang, and S. Kasif, in prep.) formally
that the KL divergence, and, hence, the performance of a
comparative gene finder, depends on evolutionary distance
between genomic sequences used for comparative analysis.

To analyze how gene-finding performance depends on
evolutionary distance, we consider a simplified model of a
genomic sequence with only two regions, noncoding and
coding. We assume that each region is homogeneous and is
characterized by its own substitution rate matrix Q (Nei 2000).
The substitution rate matrix could describe the substitution of
bases (4 * 4 matrix) (Jukes and Cantor 1969; Kimura 1980),
amino acids (20 * 20 matrix) (Jones et al. 1992), or codons
(64 * 64 matrix) (Goldman and Yang 1994; Yang 1996]. For
simplicity (Krogh et al. 1994), we assume that the noncoding
and coding regions are characterized by base substitution ma-
trices, Q,, and Q. respectively. Markov models of genomic
evolution relate this rate to the probability of base substitu-
tion in the two regions:

P.(t) = e¥!, and 2)
P(t) = e, 3)

with, for instance, P.(t) = [P.(i | j, )]4 x 4 a probability substi-
tution matrix whose entries are P.(i |}, t) = Pr(base j substi-
tuted by base i at evolutionary time f).

7Kullback-Leibler or KL divergence (Cover and Thomas 1991). For two
distributions, p and g KL divergence is defined as

KL(Al 9) = X p(x) log p(x)/q(x).
It can be shown that one type of annotation error depends on the KL

divergence as error ~ exp(— KL). See V. Pavlovic, L. Zhang, and S. Kasif (in
prep.) for more details.
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In V. Pavlovic, L. Zhang, and S. Kasif (in prep.) we show
that the gene-finding performance reaches a peak at some
specific evolutionary distance, suggesting the pair of genomic
sequences are best suited for comparative analysis. For the
simplified gene-finding model, we can estimate the evolu-
tionary distance exactly.

We characterized the substitutions in each of the coding
and noncoding regions with a Jukes-Cantor (J-C) substitution
model and computed the KL-divergence as a function of the
evolutionary time, t.

Performance-Distance Analysis By Simulation

The explicit analysis of performance may be infeasible for
most comparative gene-finding systems. As an alternative, we
propose a simulation method to analyze the performance-
distance correlation with a real comparative gene-prediction
system. For each human sequence in our data set, we synthe-
size an orthologous sequence at different times t using an
established evolutionary model. A comparative gene finder is
then evaluated on each pair of human-synthetic orthologs
and its performance is recorded.

Taking into account the preferred synonymous substitu-
tion and transition of the coding sequence through evolu-
tion, the coding regions are characterized by Yang’s codon
substitution model (64 * 64 matrix) (Yang et al. 2000). Yang's
codon substitution model explicitly characterizes the synony-
mous/nonsynonymous ratios and transition/transversion ra-
tios. Evolution in the noncoding regions is still characterized
by a J-C substitution model (4 * 4 matrix). Given an align-
ment of two genomic sequences, a number of methods can be
used to estimate the corresponding substitution probabilities,
and in turn, the substitution rates (Nei 2000). Parameters in
these two models were estimated on the human/mouse or-
tholog data set using the PAML (Phylogenetic analysis by
maximum likelihood) package (Yang 1997). PAML outputs
parameters that completely define substitution matrices, Q,,
and Q. for both noncoding and coding regions. Synthetic
orthologs were generated at different evolutionary times
t={t;=0,..., t;=1,...,20} by sampling from the models in
equations (2) and (3). The evolutionary time of f;=1 corre-
sponds to the distance between human and mouse®.

RESULTS AND DISCUSSION

Analysis of Comparative Features

The distribution of comparative scores, displayed in Figure 4,
shows that all three comparative scores, as expected, tend to
be high in coding regions and low in noncoding regions. Fur-
thermore, results of a more subtle analysis of their predictive
capacity using the ROC method, shown in Figure 5, confirm
the utility of these features. In Figure 5, phase-independent
TBLASTX scores, with a precision of 0.97 are superior to the
base scores (0.93) and the BLASTX scores (0.89). Although not
shown, the ROC curve of the phase-dependent TBLASTX
scores is very similar to that of its phase-independent coun-
terpart.

Difference in performance between the base scores and
the TBLASTX scores is primarily due to the amino-acid nature
of TBLASTX scores—TBLASTX scores measure similarity on
amino acid level, whereas the base scores compare DNA se-

8Stated more precisely, results of maximum likelihood estimation are not
the substitution matrices Q themselves, but rather the estimates of prod-
ucts Q' = Q- t’, in which t' is the distance between human and mouse.
Hence, substituting Q" and t =1 in, for instance, (2) yields the exponent
Q- -t=Q -1=Q-t-1=Q-t,and, thus, the probability of substitutions
at the evolutionary distance between human and mouse.
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Figure 8 Comparison of the performance of CWAM, WAM, and WAM + CWAM models on detecting the splice sites and translational initiation
and termination sites with an ROC analysis. The performance is evaluated by leave-one-out cross-validation, i.e., the model is trained on all but
one sequence and then evaluated on the remaining sequence. Performance is finally averaged over all such possible partitions. (A) Donor site, the
area under each ROC curve is WAM, 0.93; CWAM, 0.85; WAM + CWAM, 0.94. (B) Acceptor site, the area under each ROC curve is WAM, 0.95;
CWAM, 0.84; WAM + CWAM, 0.96. (C) Translational initiation site, the area under each ROC curve is WAM, 0.87; CWAM, 0.85; WAM + CWAM,
0.90. (D) Translational termination site, the area under each ROC curve is WAM, 0.68; CWAM, 0.82; WAM + CWAM, 0.86.

quences. Although most coding regions remain conserved on
the DNA level, conservation also occurs extensively in non-
coding sequences. However, in the conserved noncoding re-
gions, similarity of translated amino acid sequences may not
be significant because of different selective restrictions. On
the other hand, although the conservation on DNA level is
only moderate in synonymous substitution-rich coding re-
gions, the amino acid conservations stay high. Therefore,
TBLASTX scores have more significant correlation to coding
regions than the base scores. The performance of phase-
dependent TBLASTX scores is not noticeably better than that
of phase-independent, because the window length (60-100
nucleotides) is short, and only in few cases can an out-of-
phase TBLASTX bitscore be greater than the in-phase one. In
other words, in most cases, the phase-independent TBLASTX
scores is just the in-phase phase-dependent TBLASTX score.
We also observed a relatively inferior performance of the

BLASTX scores. One possible explanation is that strong
BLASTX scores tend to be internal to exons and fail to accu-
rately identify exonic boundaries. Windowed versions of
BLASTX scores, such as those used in GENOMESCAN (Yeh et
al. 2001), are therefore helpful in improving the performance.

Additional results of HCIS analysis, depicted in Figure 6,
emphasize one important feature in coding sequences, the
preferred synonymous substitutions at the third codon posi-
tion. A prime example of this is the result of the run-length
analysis, shown in Figure 6A. In noncoding regions (both in-
tergenic and intronic), the run-length distributions are geo-
metric, implying a random distribution of substitutions/gaps.
However, in coding regions, the length distribution peaks at
each 3n+ 2, n=0, 1,.... This implies preferred occurrence of
0Os, or mismatch/gap, at every third position. The second fea-
ture, a Fourier analysis of HCIS is shown in Figure 6B. Strong
peaks in the Fourier power spectrum of the coding sequence
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Comparative Analysis of Splice

Table 1. Prediction Performance With Different Pieces of Evidence A .
Sites and Translational
Number  Correct Approx. Tt H : H
of exons  exons exons bSN bSP eSN eSP ME WE Iniciation /Terml,natlon Sites
Consensus genomic sequences that
AN 386 signal the start and termination of
GS 417 272 286 096 091 0.63 0.61 0.03 0.08 translation and boundaries be-
AS 838 95 137 0.87 066 0.17 0.10 0.04 0.47 tween exons and introns are known
s Tes 32 42 045 o068 o016 o018 os1 034 O Tepresent good descriptors of
GS + AS 446 284 3117 098 092 071 066 002 o012  ‘ranslational initiation/termina-
GS + TS 413 282 306 098 094 070 068 003 008 tionsitesand splice sites. Our com-
GS + TPS 417 278 304 098 094 070 0.67 0.03 0.10  parative analysis shows that there is
GS + BS 429 278 304 098 092 0.69 066 0.03 0.11 a significant change of similarity at
GS + TS + BS 415 281 306 098 095 0.70 0.68 0.03 0.08

the coding/noncoding junctions,

Performance comparison of gene identification with GS(GENSCAN), AS (base score), TS (phase-
independent TBLASTX score), BS (BLASTX score), GS + AS (GENSCAN and base score), GS + TS
(GENSCAN and phase-independent TBLASTX score), GS + TPS (GENSCAN and phase-dependent
TBLASTX score), GS + BS (GENSCAN and BLASTX score), and GS + TS + BS (GENSCAN and
phase-independent TBLASTX score and BLASTX score). The performance is evaluated by leave-
one-out cross-validation. The model is trained on all but one sequence and then evaluated on the
remaining sequence. Performance is finally averaged over all such possible partitions. (AN) Anno-
tation. (Correct exons) Predicted exons whose both boundaries are correctly predicted. (Approx
exons) Predicted exons with both boundaries close to the boundaries of annotated exons (<10 nts).
(bSN) base sensitivity, (bSP) base specificity, (eSN) exon sensitivity, (eSP) exon specificity, (ME)
missing exons, and (WE) wrong exons are estimated following Burset and Guigo (1996).

correspond to a period of 3, confirming again a preferred oc-
currence of 0s. Thus, both the run-length distribution and
Fourier analysis provide a good characterization of different
selective pressures (enrichment of synonymous substitutions)
in coding and noncoding sequences. However, our analysis
also shows that, at present, the HCIS scores are weaker indi-
cators than the comparative scores. A number of causes may
explain this performance; although synonymous substitu-
tion-rich regions tend to be coding, coding regions can be
strongly conserved, allowing few substitutions. Moreover,
whereas most synonymous substitutions occur at the third
codon position, not all third position substitutions are syn-
onymous. This immediately suggests that one may be able to
use some estimates of synonymous/nonsynonymous substi-
tution ratios as scoring features. Unfortunately, these esti-
mates rely heavily on the knowledge of base pair phases in
both homologous sequences, a piece of information unavail-
able to this type of comparative gene finder. If one were to use
a different gene-finder structure that maintains information
about both phases, such as that of a product HMM (XHMM)
(Walker et al. 2002), the synonymous/nonsynonymous ratio
could be added as another comparative feature.

and each kind of site displays a
characteristic comparative consen-
sus pattern as in Figure 7. This, in
turn, implies that reasonable mod-
els of these comparative consensus
patterns (for example, our CWAM
model) may be useful in identifying
such sites. Results of ROC analysis,
shown in Figure 8, confirm this
conjecture. Figure 8 illustrates the
ROC performance of WAM,
CWAM, and WAM + CWAM mod-
els for detecting donor, acceptor,
translational initiation, and termination sites. As individual
detectors of donor, acceptor, and translational initiation sites,
CWAM models reveal performance inferior to the WAM.
However, combined CWAM + WAM models achieved signifi-
cantly better performance than traditional WAM models.
More importantly, for detecting translational termination
sites, CWAM alone outperformed the WAM, whereas the
combined WAM + CWAM model remains superior to both
simpler models. The improved performance of
WAM + CWAM over WAM clearly implies that the detection
of comparative features positively complements the tradi-
tional compositional models. The improved performance of
the combined model, CWAM + WAM, also confirmed that
the Bayesian network provides a reasonable model to com-
bine different pieces of evidence together.

Comparative Human Gene Prediction

First, we investigate the ability of each comparative feature
alone as the detector of protein-coding regions within a gene-
prediction system. Then, we analyze whether these compara-
tive features can complement a compositional gene finder

Table 2. Evaluation of Prediction Performance

Number Correct Approx.

of exons exons exons bSN bSP eSN eSP ME WE

IMOG/BI IMOG/BI IMOG/BI IMOG/BI IMOG/BI IMOG/BI IMOG/BI IMOG/BI IMOG/BI
AN 70/86
GS + TS 71/102 61/34 62/60 0.97/0.95 0.98/0.84 0.85/0.38 0.84/0.30 0.03/0.07 0.05/0.20
GS 68/92 59/42 60/75 0.97/0.97 0.94/0.69 0.71/0.46 0.74/0.30 0.03/0.04 0.04/0.25
TWS 49/79 31/36 34/57 0.79/0.73 0.85/0.82 0.62/0.40 0.63/0.37 0.25/0.31 0.04/0.19
SLM 63/77 52/35 55/69 0.89/0.88 0.97/0.87 0.81/0.39 0.82/0.36 0.08/0.10 0.01/0.11

Comparison of our prediction system (GS + TS) with GENSCAN (GS), TWINSCAN (TWS), and SLAM (SLM) on the IMOG and Bl data set of SGP2
data set. Performance is estimated on each sequence and averaged over all sequences in the corresponding data set.
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Figure 9 (A) Precision (KL-divergence in the figure) as a function of divergence time. Through
evolution, coding and noncoding regions are characterized with Jukes-Cantor substitution
models with parameters a_and «,, respectively. We set o = 0.1and the ratio of a,/a_is sampled
from 1-10. Larger differences between parameters imply shorter optimal time t" required for
minimal prediction error. Similarly, the more different the conservation rates of the two regions
are, the higher the precision is. (B) Performance of human gene prediction was evaluated on
synthetic orthologs at different evolutionary distances. The evolutionary distance of 1 corre-
sponds to the distance between human and mouse. In all cases, comparative gene finder
outperforms GENSCAN (indicated by broken lines) on the plateau between the distances of 0.5
and 6. Performance degrades significantly for very low and very high distances.

(e.g., GENSCAN) by using the prediction
of GENSCAN as additional evidence and
integrating it with the comparative evi-
dence. The prediction performance is
evaluated on the 97 sequences in Batzo-
glou’s data set by leave-one-out cross-
validation, as summarized in Table 1.
With only comparative evidence, the
phase-independent TBLASTX scores
yielded performance superior to other
comparative features. Although this fol-
lows the conclusions of the independent
ROC analysis, it should be noted that the
performance achieved with only com-
parative evidence significantly lags be-
hind the predictive abilities of GENSCAN.
In general, gene-identification perfor-
mance with comparative evidence alone is
inferior to GENSCAN, showing lower sen-
sitivity and specificity measured on both
the base and the exon levels. This can be
explained by the simplicity of compara-
tive features as well as the integrator and
genomic structure models that do not uti-
lize positional dependency of comparative
scores.

By combining comparative evidence
with GENSCAN predictions, we achieved
a noticeable improvement over the origi-
nal GENSCAN performance. Both the sen-
sitivity and specificity, as well as the num-
ber of correctly predicted exons, increased
by including the comparative features.
On the other hand, the combination of
GENSCAN, phase-independent TBLASTX
scores, and BLASTX scores (GS + TS + BS)
did not lead to noticeably improved
performance over the combination of
GENSCAN and the phase-independent
TBLASTX scores (GS + TS). Detailed study
implies that careful selection of genomic
features is needed and blind inclusion of
additional noisy and contradicting fea-
tures can sometimes lead to inferior per-
formance. Our results confirmed that the
comparative evidence could complement
the GENSCAN by using the simple binary
predictions (coding/noncoding) of
GENSCAN. Improved performance may
be expected by an alternative utilization
of GENSCAN results. For instance, the
exon probability might be more informa-
tive than the coding/noncoding predic-
tions.

We also compare our system
(GS + TS) with TWINSCAN (Korf et al.
2001), SLAM (Pachter et al. 2002), as well
as GENSCAN (Burge and Karlin 1997) on
SGP2 data set (Parra et al. 2003), which
contains both single-gene sequences
(IMOG data set) and multi-gene sequences
(BI data set). Our system is trained on the
97 sequences in Batzoglou’s data set (se-
quences that are homologous to the test-
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ing sequences have been removed out of the training data
set). As summarized in Table 2, our system outperforms others
on the IMOG data set. However, the performance is inferior to
that of the other systems on the BI data set. Detailed study
reveals that BI data set contains genes on the complementary
strand, which our current model does not account for.

It is noted that whereas we used a global alignment
(GLASS) in our system, global alignments will not, in general,
be able to account for duplications and inversions in the ge-
nome. We believe that, in general, both local and global align-
ments should be experimented with and applied as appropri-
ate. In fact, our full system is based on a combination of both
local and global alignments. First, long orthologous regions
are identified using local alignment strategies (e.g., BLAST).
Then, these orthologous regions are aligned by either local or
global alignment, depending on which might give the better
results, to show the conservative features in different genomic
regions. We believe that a proper combination of local and
global alignments may generate the best results. For instance,
local alignment usually induces significant hits around the
centers of exonic regions, whereas the alignment in the exon
boundaries tends to be poor. Nevertheless, our study shows
that the comparative features at the exon boundaries can sig-
nificantly enhance the identification of splice sites.

Evolutionary Analysis of Comparative

Gene Prediction

Evolutionary analysis of comparative gene finding, outlined
above, reveals two important results.

1. We show that, using a simplified gene-finding model, the
performance of comparative gene analysis depends on evo-
lutionary distance between genomes and conservation
properties of different genomic regions. Furthermore,
there exists a distance in which the performance reaches a
maximum.

2. Simulation study using synthetic human-reference ho-
mologs and a complex comparative gene finder reaffirms
the performance-distance dependency suggested by the
simple model. Moreover, it reveals that mouse may not, on
average, be the optimal reference for comparative analysis
of the human genome.

To qualitatively illustrate how gene-finding performance de-
pends on evolutionary distance, we first consider a simplified
model of a genomic sequence described in the Methods sec-
tion. Both regions are homogeneous and are characterized by
J-C (Jukes and Cantor 1969) substitution models. Each substi-
tution matrix Q in the J-C model is characterized by a param-
eter «; conservation rates (main diagonal of Q) are —3q,
whereas all substitution rates (all other entries of Q) are a. We
have assumed that noncoding and coding regions are, there-
fore, characterized by parameters «,, and «,, respectively. Us-
ing the methodology presented in V. Pavlovic, L. Zhang, and
S. Kasif (in prep.) and in the simplified model, we show that
KL divergence and, hence, the error and the precision® of
annotation now become a relatively simple function of the
evolutionary distance t. This is depicted in Figure 9A. Optimal
divergence times t’, for which the KL divergence (precision) is
maximized and the error is minimized, vary with differences
in the substitution models of the two regions. As expected,
larger differences in base substitution models (signified by the

2Error = exp(— KL[P||P,]). Precision = 1 — error.
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ratio a./a,,) cause shorter optimal divergence times t". More-
over, the shorter optimal times are also related to higher val-
ues of the maximal KL divergence, implying smaller errors.
Hence, if the two regions show significant differences in con-
servation rates, the optimal pairs of species need to be less
diverged, and consequently, the error in comparative ge-
nomic prediction is expected to decrease.

The J-C model represents one of the simplest models of
molecular evolution. For example, it does not account for the
existence of conserved noncoding regions that was confirmed
recently by cross-species comparison of orthologous se-
quences (Wasserman and Fickett 1998; Levy et al. 2001;
Waterston et al. 2002). The functions of these regions are
typically unknown and cannot be explained by classical evo-
lutionary models. Nevertheless, for an initial analysis of the
performance versus divergence relationship, the J-C model
yields a first-of-a-kind analytical answer, as well as a fair char-
acterization of a majority of coding and noncoding regions
(homogeneous assumption). As a follow-up to our initial
analysis, more realistic and complex models are possible. For
instance, each region (coding or noncoding) can be described
as having several subregions with different rates, similar to
heterogeneous models of Yang (1996) and Yang and Nielsen
(2002).

Explicit formal analysis of performance may be infeasible
for most comparative gene finders. As an alternative, we used
a simulation method to access the same performance-distance
trends with a real gene-prediction system. For each target se-
quence in the data set, we synthesize an orthologous refer-
ence sequence at different times t. A comparative gene finder
can then be evaluated on each pair of human-synthetic or-
thologs and its performance recorded.

Our simulation study revealed a correlation of perfor-
mance and evolutionary distance (Fig. 9B). Similar to the
simple model, the performance of the complex gene finder
degraded at very low (<1) and very high (>6) evolutionary
distances. Unlike the KL-divergence analysis, the analysis on
simulated orthologs displayed a wider plateau of good perfor-
mance, above GENSCAN alone, covering a region of distances
from 0.5-6. This may be a consequence of a number of factors
that play roles in the complex comparative gene finder but are
absent from the simple computational model. For instance,
the real gene prediction is generated by Viterbi decoding and
is a complex function of the splice sites, the gene structure
model, the frame consistency, and many other factors, as well
as the evolutionary time. Another interesting result is re-
vealed by the simulation analysis. Although mouse (at evolu-
tionary distance 1) lies in the plateau region, results also in-
dicate that improved performance may occur with a genome
at about twice the evolutionary distance of the mouse (dis-
tance 1.8 in Fig. 9B). For instance, the data set of orthologs at
distance 1.8 displays a total of 359 recovered exons, whereas
in the original human-mouse data set, only 323 exons are
correctly predicted. This result reaffirms the need for careful
selection of genomic sequences at evolutionary distances ap-
propriate for comparative analysis. With the rapid pace of
sequencing of orthologous sequences in different species, a
similar test on real sequences is becoming possible and will be
discussed in a separate study.

Summary
Novel gene discovery in large eukaryotic genomes remains a
significant scientific challenge. Recent comparison of the Cel-
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era and Ensembl-predicted human gene sets reveals that
nearly 80% of the novel transcripts were predicted by one of
the annotation teams and not the other (Hogenesch et al.
2001). Furthermore, the exact number of human genes and
their precise locations vary dramatically with different predic-
tion systems (Crollius et al. 2000; Ewing and Green 2000;
Liang et al. 2000). The sequencing of model genomes provides
an unprecedented opportunity to analyze gene structures in
the human genome from a comparative perspective, and pos-
sibly substantially improve the quality of human genome an-
notation. Consequently, several pioneering systems have
been developed to identify human genes using the mouse
genome as reference (Batzoglou et al. 2000; Korf et al. 2001;
Yeh et al. 2001; Meyer and Durbin 2002; Pachter et al. 2002;
Parra et al. 2003).

The first question addressed in this work is whether the
mouse provides an ideal reference for human gene identifica-
tion. Our preliminary simulation study provides a positive
answer. We proposed a simplified computational model to
explicitly represent the performance of gene prediction as a
function of evolutionary distance. The evolutionary analysis
predicts the existence of an evolutionary distance that pro-
vides an optimal accuracy in comparative gene prediction. To
investigate the correlation of evolutionary time and gene pre-
diction accuracy with a realistic gene finder, we used syn-
thetic sequences as the reference for human gene prediction.
Synthetic sequences over a wide range of evolutionary dis-
tances are shown to deliver reasonable performance. Al-
though the mouse sequence falls in the high-accuracy range,
better performance is predicted at an evolutionary distance
beyond that of human and mouse.

The second question we address is what comparative fea-
tures can most improve the accuracy of gene prediction. Our
analysis of the exon boundaries shows a characteristic com-
parative pattern at each of the donor, acceptor, translational
initiation, and termination sites. A first-order comparative
Markov model (CWAM) is proposed to characterize these
comparative patterns. ROC and other analyses confirm that
these comparative features positively complement more fre-
quently used compositional models. Additionally, a variety of
comparative features are introduced and studied in terms of
their potential to distinguish coding from noncoding se-
quences. Our results (using both ROC analysis and compara-
tive gene prediction) suggest that local TBLASTX scores,
which measure the conservation of translated amino acid se-
quences, perform best for identifying the protein-coding re-
gions.

Finally, we investigated the integration of different
sources of evidence for effective gene prediction. We experi-
mented with a simple Bayesian network combiner that
complements a GENSCAN style generalized HMM gene
model. The resulting architecture combines comparative evi-
dence, predictions made by GENSCAN, comparative and
compositional models of splice sites, translational initiation/
termination sites, and a variety of other features. Compared
with TWINSCAN, SLAM, and GENSCAN, our system shows
comparable or better performance. Our results suggest that
Bayesian networks provide a flexible and convenient meth-
odology for evidence integration.
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