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A general overview of the protein sequence set for the mouse transcriptome produced during the FANTOM2
sequencing project is presented here. We applied different algorithms to characterize protein sequences derived
from a nonredundant representative protein set (RPS) and a variant protein set (VPS) of the mouse
transcriptome. The functional characterization and assignment of Gene Ontology terms was done by analysis of
the proteome using InterPro. The Superfamily database analyses gave a detailed structural classification
according to SCOP and provide additional evidence for the functional characterization of the proteome data.
The MDS database analysis revealed new domains which are not presented in existing protein domain databases.
Thus the transcriptome gives us a unique source of data for the detection of new functional groups. The data
obtained for the RPS and VPS sets facilitated the comparison of different patterns of protein expression. A
comparison of other existing mouse and human protein sequence sets (e.g., the International Protein Index)
demonstrates the common patterns in mammalian proteomes. The analysis of the membrane organization within
the transcriptome of multiple eukaryotes provides valuable statistics about the distribution of secretory and
transmembrane proteins

The Mouse Gene Encyclopedia project (FANTOM Consortium
2002) provides a unique opportunity for researchers to inves-
tigate a mammalian proteome from its functional perspective.
The data provide a snapshot of proteins present in the living
cell and can therefore be used for functional analysis and
classification.

The following paper summarizes a general analysis of the
mouse proteome sets deduced from the transcriptome DNA
sequences based on various algorithms and approaches. We
used protein domain databases, namely InterPro (Apweiler et
al. 2001) and Superfamily (Gough and Chothia 2002), to carry
out initial functional annotation of the protein sequences and
to classify these sequences according to existing biological
resources, such as Gene Ontology (GO). The general coverage
of proteins in the representative proteins set is about 92% for
both InterPro and Superfamily, and this provides a compre-
hensive overview of the proteome. InterPro analysis has also
been used for comparison of the different proteomes pro-
duced; this analysis highlights interesting differences between

various mouse sequencing projects. New domains which are
not included in existing resources have been detected using
algorithms implemented in the MDS database (Kawaji et al.
2002), and seven new domain candidates have been discov-
ered. Determination of the membrane organization within
the secretory pathway, namely whether a protein is secreted
into the extracellular media, a membrane-spanning protein
(transmembrane protein), or a nonsecretory protein, is essen-
tial for understanding its function. This information comple-
ments other computational annotation projects, as it provides
the context by determining the membrane topography of pre-
dicted functional protein units and is essential for the predic-
tion of subcellular localization, which depends on the class of
protein.

RESULTS AND DISCUSSION
Two protein sets have been produced as a result of the
FANTOM2 sequencing project. The representative proteins set
(RPS) is derived from the representative set of transcriptional
units. The variant-based proteins set (VPS) combines RPS and
complete protein sequences representing splice variants not
included in RPS. The VPS includes variant forms of known
genes identified by sequencing of the FANTOM2 clones. We
summarized the characterization of the sets in the main
FANTOM2 paper (FANTOM Consortium 2002). We describe
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here the different characteristics of the variants and provide
comparisons with other available sequence data for mouse
and human.

InterPro Matches Statistics
The major goal of the domain/site/motif composition analy-
sis was to obtain a general functional overview of the pro-
teome and to use these results for initial functional assign-
ments. We used InterPro as a standard tool to determine the
domain/site/motif composition of different mouse protein se-
quence data sets. In addition to the RPS and VPS described
earlier, we also analyzed a mouse sequence data set of hypo-
thetical proteins computationally predicted by Celera and the
nonredundant mouse protein set produced as part of the In-
ternational Protein Index (IPI) (http://www.ebi.ac.uk/IPI).
The human protein set provided by IPI was also analyzed.

The general number of proteins for both FANTOM2 pro-
teome sets having matches for InterPro entries is about 72%
(92% for combined InterPro and Superfamily databases). This
amount is quite similar to other existing proteomes analyzed
in the Proteome Analysis Database (http://www.ebi.ac.uk/
proteome); about 60%–75% for complete proteomes in the
database. This provides some evidence of the high quality of
the FANTOM2 data. We also analyzed amino-acid frequency
distribution for the mouse protein sequences (data not
shown). The difference in the frequencies between the differ-
ent mouse datasets is only about 0.3%, which is far less than
the difference between various eukaryotic proteomes (about
3%).

Comparative Proteomics
The algorithms implemented in the Proteome Analysis Data-
base also include several InterPro-based statistical analyses,
including a list of the top 20 InterPro entries. Table 1 presents
statistics for the described mouse proteome data and also in-
cludes human IPI statistics. The analyses suggest that the gen-
eral domain/site/motif composition is similar for all four
mouse proteome sets. The statistics of the InterPro entries can
be used to infer some functional information about the pro-
teome. The most commonly represented functional groups
are nucleic acid binding proteins and proteins belonging to
the immunoglobulin family. The other major group of Inter-
Pro entries includes serine/threonine and tyrosine protein ki-
nase domains. The RPS and VPS proteome sets have similar
statistics for InterPro entry composition, which describes the
protein sets from the point of view of functional domains/
sites/motifs. This can be considered evidence of the relative
stability of the functional potential of the transcriptome,
which maintains a constant ratio of proteins of different func-
tions despite the presence of splice variants. The InterPro en-
try-matches distribution is very similar for the human and
mouse proteomes at the level of the top entries and can,
therefore, provide valuable information about conserved
functional domains/sites/motifs across different mammalian
species.

Functional Classification and Assignment
InterPro analysis also provides a basis for the functional as-
signment of proteins to standard biological classification re-
sources, such as Gene Ontology (GO). We used the existing
curated mapping of InterPro entries to GO terms to classify
the mouse and human proteome sets described above. A
modified version of GO called “GO Slim” which is imple-

mented in the Proteome Analysis Database was used to com-
pare the functional composition of the proteomes. GO Slim
comprises a selection of high-level terms from each of the
three GO sections (molecular function, biological process,
and cellular component), which were chosen to cover most
aspects of the three ontologies without overlapping in the GO
hierarchy. The molecular function terms of GO Slim were
used here to provide an overview of the functional composi-
tion of the proteomes. The results are presented in Figure 1.
The diagram shows that FANTOM sets are similar to each
other rather than to other sequence data. They differ mainly
in quantitative order, but not in the “pattern” of proteins
synthesized. There is also a great degree of similarity between
two genome sequence data sets—Celera and IPI—they show
more similarity to each other rather than to FANTOM2 data.
The number of G-protein coupled receptor (GPCR) proteins
was higher for the Celera set, possibly indicating the lacking
annotation of pseudogenes, abundant for this class of pro-
teins. At the time of publication, Celera, through the process
of expert curation, retired 20% of their gene predictions and
annotated 6% as pseudogenes (Release R13d).

We also compared the GO Slim statistics for the mouse
and human proteome sets with other less closely related eu-
karyotes, namely Drosophila melanogaster and Arabidopsis
thaliana. The resulting diagram is presented in Figure 2. The
general functional overview for the different eukaryotic pro-
teomes is quite similar despite some obvious differences be-
tween the mammalian proteomes and those of the plant and
insect species, which were used for comparison across a wider
range of species. The statistics provide an insight into the
conserved functional groups common to all eukaryotic ge-
nomes.

Superfamily Domain Analysis
The SUPERFAMILY hidden Markov model library (Gough and
Chothia 2002), representing all proteins of known structure,
was run against the complete FANTOM2 mouse cDNA collec-
tion (FANTOM Consortium 2002). The results in this section
correspond to the VPS set of sequences, because this is the
closest available representation of the actual mouse pro-
teome. Detailed results are available at the SUPERFAMILY web
site (http://supfam.org/SUPERFAMILY/cgi-bin/gen_list.
cgi?genome=mr).

The SUPERFAMILY analysis is used to detect and classify
evolutionarily related groups of domains for which there is a
known structural representative. All assigned domains are
classified at the superfamily level. An accurate superfamily
level of classification is obtained by a detailed hand analysis
by an expert of structural, sequence, and functional evidence
of a common evolutionary ancestor (Murzin et al. 1995). The
superfamily classification used is that defined by the SCOP
database.

Functional Annotation
These assignments provide information which has been used
as part of the MATRICS, annotation of the FANTOM2 mouse
cDNA sequences. Because proteins with the same structure
usually have the same or a related function, the structural
domain assignments are a useful component of the informa-
tion used in the functional annotation. Furthermore, the
SUPERFAMILY analysis provides assignments for many se-
quences where there is little or no other significant informa-
tion. At least one domain was assigned to 59% of the se-
quences, and the domains cover 42% of all residues. This is
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close to the coverage of other eukaryote proteomes. The rest
of the analysis shown in this section pertains to the subset of
sequences and domains which were detected. The top 12 su-
perfamilies are shown in Table 2. This is very similar to that
which is observed in the human proteome based on gene
predictions from the genomic sequence (Hubbard et al.
2002).

Structural Genomics
There are implications for experimental structural genomics
projects (Gough 2002), most notably the discovery of novel
domain combinations. Using strict criteria, pairwise structural
domain combinations were enumerated, and compared to the
already solved combinations in the Protein Data Bank (PDB)
(Berman et al. 2000). Here, 335 structurally novel pairs were
identified, 29 of which had not previously been found in any
other proteome. These are listed at http://supfam.org/
FANTOM2/domcombs.html). Although three-dimensional
structures of the individual domains exist in the PDB, struc-
tures of these combinations of domains adjacent to each
other on the polypeptide chain have not yet been solved. As
well as being unique recombination events in evolution,
these domain pairs provide targets for structural genomics
projects which are assured to be novel. Solving the structures
of novel domain-pair combinations will probably yield new
3D interfaces, which could be essential to or play an active
role in the function of the protein as a whole.

Evolutionary Overview
The evolutionary relationships can give us a meaningful over-
view of a large proportion of the genome. The ancestral do-
main from each superfamily represents a genetic building
block. These building blocks have been duplicated, recom-
bined, and mutated to create the proteins which are currently
observed in the genome. The assigned domain architecture
for each sequence (available at the URL at the beginning of
this section) shows the recombination of ancestral domains
which has taken place during evolution. It can be seen that a
small number of domains have been duplicated a very large
number of times (see Fig. 3), and that a large number of do-
mains have been duplicated very few times (see Fig. 4). In fact,
98% of the identified domains have been produced by dupli-
cation from 716 ancestral domains. This is very close to the
pattern observed in the human proteome.

Novel Domains
We applied the MDS motif discovery method (Kawaji et al.
2002) to the FANTOM2 cDNA sequence set and identified
seven newmotif candidates that were deposited into the MDS
database (http://motif.ics.es.osaka-u.ac.jp/fantom2/). Two
candidate motifs (MDS00150, MDS00155) were found among
hypothetical proteins, and five new motif candidates have
been identified among proteins related to SCML2
(MDS00151), VPARP (MDS00152 and MDS00153), IAN4
(MDS00154), and ADMP (MDS00156). MDS00154 is a new

Figure 1 Comparative diagram of the GO Slim categories for different mouse and human proteomes. The y-axis indicates the number of
proteins; the x-axis indicates the following GO categories: GO:0003676 nucleic_acid_binding; GO:0003754 chaperone; GO:0003774 motor;
GO:0003793 defense/immunity_protein; GO:0003824 enzyme; GO:0004871 signal_transducer; GO:0005198 structural_molecule; GO:0005215
transporter; GO:0005488 binding; GO:0005554 molecular_function_unknown; GO:0015070 toxin; GO:0030234 enzyme_regulator; GO:
0030528 transcription_regulator.
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structural GTPase submotif that is specific for proteins of the
immune associate nucleotide family (IAN), which is con-
served in mammals and plants (Poirier et al. 1999). Inter-
estingly, our motif appears to be restricted to mammals
(FANTOM Consortium 2002). MDS00151 is a nuclear-
localization signal containing a repeat motif for the transcrip-
tional repressor gene sex-comb onmidleg-like-2 (Scml2; Mon-
tini et al. 1999) and its homologs (AK016533, 6030439N15).
The motif spans 24 amino acids and has two to six copies.
Closer analysis of the flanking regions revealed that
MDS00151 contains the NLS (nuclear localization signal)

[KR]{3,5} and is flanked by the NLS KKPx{6,9}KxKR. The flank-
ing NLS region and MDS00151 were not found in any other
mammalian, suggesting an insertion/duplication event in the
mouse lineage and a specific role for the nuclear import of
mouse Scml2.

In addition, we performed, with the MDS motifs that
were extracted from the FANTOM1 sequence set (Kawaji et al.
2002), Hidden Markov Model (HMM) searches against the
FANTOM2 protein sequences and SWISS-PROT/TrEMBL
nonredundant database (SWISS-PROT Release 40.27 of
30-Aug-2002, TrEMBL Release 21.12 of 13-Sep-2002, and
TrEMBL_new of 13-Sep-2002). As a result, we obtained several
new members with the FANTOM1 MDS motifs (see http://
motif.ics.es.osaka-u.ac.jp/fantom2/). Proacrosin binding pro-
tein (E130112G13; AK053586) was detected as a new member
of motif MDS00105.2 (the ING1-homolog subfamily motif)-
containing proteins. The multiple alignment of the subfamily
members (see http://motif.ics.es.osaka-u.ac.jp/fantom2/)
shows that the clone is identical to a newly found splicing
variant (mINGh-L, ING1-like protein long form; TrEMBL
AAK63168) of the mouse ING1-homolog proteins (Ha et al.
2002).

Molecules interacting with CasL (MICALs; Suzuki et al.
2002; Terman et al. 2002) derived from human (TrEMBL
Q8TDZ2), fruitfly (TrEMBL AAM55242, AAM55243,
AAM55244, and MICAL-like protein, TrEMBL AAM55245),
and mouse (TrEMBL AAH34682) were detected as new mem-
bers of the leucine zipper-like motif MDS00113-containing
proteins. Terman and coworkers (2002) showed that the fruit-
fly MICAL interacts with neuronal plexin A (PlexA) receptor
in its C-terminal region including the MDS00113 motif, con-

Table 2. The Top 12 Most Commonly Occurring
Superfamily Domains

Rank Domains Proteins Superfamily

1 3500 685 C2H2 and C2HC zinc fingers
2 2490 1201 Immunoglobulin
3 1550 1286 P-loop containing nucleotide

triphosphate hydrolases
4 1449 307 EGF/Laminin
5 1235 182 Cadherin
6 912 893 Protein kinase-like (PK-like)
7 907 882 Membrane all-alpha
8 868 295 Fibronectin type III
9 791 449 RNA-binding domain, RBD
10 551 480 PH domain-like
11 509 421 Homeodomain-like
12 482 410 EF-hand

Figure 2 Comparative diagram of the GO Slim categories for different eukaryotic proteomes. The y-axis shows the number of proteins; the x-axis
shows GO categories (see Fig. 1).
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firming our previous prediction that this motif may act as a
novel protein–protein interaction site.

Motif MDS00146, which previously comprised only hy-
pothetical proteins, was expanded to the human Cdc42-
activating protein zizimin1 (TrEMBL AAM90306; Meller et al.
2002). Zizimin1 contains a new domain named CDM (CED-5,
DOCK180, MyoBlast city) zizimin homology domain 2
(CZH2) that mediates direct interaction with the Cdc42 Rho
GTPase. Motif MDS00146 is in-
cluded within the CZH2 domain
and appears to be a submotif of
CZH2 that is specific for two of the
four CZH2 domain-containing pro-
tein subfamilies, namely zizimin,
K I AA1 3 9 5 , DOCK18 0 , a n d
KIAA0299. Our HMM search with
motif MDS00146 detected only
members of the zizimin and
KIAA1395 subfamilies.

Membrane Organization
In an attempt to annotate the
membrane organization of entire
proteomes from a range of species,
we developed a computational
strategy. Based on the prediction of
two features, endoplasmic reticu-
lum signal peptides (used for trans-
location into the secretory path-
way) and membrane-spanning do-
mains (transmembrane domains),
the membrane organization of pro-
teins can be classified. We have an-
notated 10 proteome databases
from a range of species (see Table
3). Determination of the membrane

organization of an individual pro-
tein is dependent on knowing the
full-length protein open reading
frame (ORF) and cannot be applied
to partial protein ORFs. For each
proteome dataset, we removed any
readily identifiable partial protein
sequences (see Table 3). As expected
in both the human and mouse
ENSEMBL proteome databases, sig-
nificant numbers of partial ORFs
were present (37% and 44% respec-
tively.) This highlights the high
level of partial protein sequences
generated from predicted genes.
These partial sequences would re-
sult in inaccurate predictions of
their membrane organization if re-
tained. Surprisingly, the M. muscu-
lus IPI proteome contained similar
levels of partial sequences (45%),
whereas the other proteomes ana-
lyzed contained less than 10%.

Prediction of Endoplasmic
Reticulum Signal Peptides
We used two independent methods
to predict endoplasmic reticulum

signal peptides, Neural Networks (NN) and hidden Markov
Models (HMM) methods from SignalP V2 (Nielsen and Krogh
1998). These methods were selected because they have low
levels of false-negative predictions (1.0% and 1.1% respec-
tively; Menne et al. 2000). A consensus approach was
adopted. Where the two methods agreed, we annotated the
protein as containing a signal peptide. When the two meth-
ods conflicted, we used a third independent signal peptide

Figure 4 Observed evolutionary domains. The distribution sizes of superfamilies with less than 100
members.

Figure 3 Observed evolutionary domains. The ordered sizes of superfamilies with greater than 100
members.
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prediction method, SPScan (von Heijne 1987) to resolve the
conflict. We considered this method suitable because of its
lower false-positive rate compared to the other two methods
(Menne et al. 2000). Typically less than 6% of the total number
of annotated signal peptides required resolution using SPScan.

The results of this analysis using the various proteome
datasets are presented in Table 3. The proportion of proteins
predicted to contain signal peptides within the RIKEN RPS
was 21.1%. Similar levels were annotated in the other higher
eukaryotic proteomes (human and mouse). Lower propor-
tions of signal peptides were annotated in the D. melanogaster
(18.4%), C. elegans (19.3%), A. thaliana (14.6%), and S. cerevi-
siae (8.5%) proteome databases.

Prediction of the Membrane-Spanning Regions
or Transmembrane Domains
Next we annotated the transmembrane domains for each pro-
tein. Although a consensus approach has been proposed (Nils-
son et al. 2000), its application to entire genomes was not
practical. To analyze all proteins, we selected two prediction

methods that could be readily applied to large datasets.
TMHMM 2.0, which was clearly the best performer in a recent
comparative evaluation (Moller et al. 2001), was selected first.
Secondly, SVMtm, a new transmembrane prediction method
using a support vector machine (Z. Yuan and R. Teasdale,
unpubl., http://microarray.imb.uq.edu.au/predictors/) was se-
lected. When SVMtm was compared to TMHMM 2.0 it
showed comparable accuracy levels (specificity 94.0% vs.
95.2% and sensitivity 91.8% vs. 90.8%, respectively).

Each protein within the different proteome databases
was analyzed with both TMHMM2.0 and SVMtm. Transmem-
brane domains were annotated when both methods posi-
tively predicted a membrane-spanning domain. Sequences
containing conflicting predictions were further analyzed us-
ing three additional transmembrane prediction tools (SOSUI,
HMMTOP, and MEMSAT). Only membrane-spanning regions
that were positively predicted by more than two of these ad-
ditional methods were annotated as transmembrane do-
mains. Between 14% and 20% of the total number of trans-
membrane domains annotated were assigned by this method.
In addition, an initial prediction was considered a false-

Table 3. Predicted Signal Peptides and Transmembrane Domains in Eukaryotic Proteomes

Feature Annotation

S. cerevisciae A. thaliana D. melanogaster C. elegans Riken RPS

Number % Number % Number % Number % Number %

Signal
Peptide
predictions

Consensus
annotation

481 8.0 3549 13.7 2417 17.5 3657 18.4 3461 20.1

Non-
consensus

28 0.5 234 0.9 124 0.9 178 0.9 174 1.0

Total
assigned

509 8.5 3783 14.6 2541 18.4 3835 19.3 3635 21.1

Trans-
membrane
predictions

Consensus
annotation

1164 19.5 4789 18.5 2479 18.0 5591 28.1 3617 21.0

Non-
consensus

221 3.7 1181 4.6 497 3.6 680 3.4 676 3.9

Total
assigned

1385 23.1 5970 23.0 2976 21.6 6271 31.5 4293 24.9

Total number of proteins 6230 26,131 13,967 19,918 18,768
Total full-length ORFs 5984 25,901 13,791 19,886 17,209

Feature Annotation

Riken VPS
M. musculus

(IPI)

Mouse
genome
(Ensembl)

H. sapiens
(IPI)

Human
genome
(Ensembl)

Number % Number % Number % Number % Number %

Signal
Peptide
predictions

Consensus
annotation

6630 20.4 4024 20.5 3199 20.2 4716 19.1 3494 20.4

Non-
consensus

300 0.9 177 0.9 137 0.9 253 1.0 175 1.0

Total
assigned

6930 21.4 4201 21.4 3336 21.1 4969 20.1 3669 21.5

Trans-
membrane
predictions

Consensus
annotation

6766 20.9 4641 23.6 4641 23.5 4813 19.5 3437 20.1

Non-
consensus

1263 3.9 585 3.0 585 3.0 969 3.9 548 3.2

Total
assigned

8029 24.8 5226 26.6 5226 26.4 5782 23.4 3985 23.3

Total number of proteins 34,286 30,171 28,097 25,636 27,049
Total full-length ORFs 32,437 19,655 15,832 24,701 17,103

Total number of predictions of signal peptides and transmembrane domains predicted across 10 proteomes: S. cerevisciae, A. thaliana,
D. melanogaster, C. elegans, Riken RPS, Riken VPS, M. musculus (IPI), Ensembl mouse genome, H. sapiens (IPI), and Ensembl human genome.
Percentages for feature predictions are given as a percentage of the total full-length sequences. Prediction data available from
http://microarray.imb.uq.edu.au/predictors/proteome/.
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positive prediction when not supported by any of the other
transmembrane prediction methods. This approach is similar
to the “majority vote” consensus method recently used by
others (Nilsson et al. 2000; Ikeda et al. 2002).

Transmembrane domain prediction methods are known
to incorrectly predict signal peptides as transmembrane do-
mains. Therefore we adopted a filter for predicted N-terminal
transmembrane segments: If the predicted transmembrane
domain’s starting point was within the first 15 residues of the
ORF and a signal peptide was predicted, then this region was
regarded as a signal peptide instead of a transmembrane
domain. This filtering procedure was applied to the results of
all transmembrane prediction tools. The results from this
analysis using the various proteome datasets are presented in
Table 3.

In contrast to the signal peptide analysis, the proportion
of proteins with predicted transmembrane domains varied
little between proteomes, (21.6%–26.6%), with the exception
of the C. elegans proteome, where the proportion was higher
(31.5%). These results are consistent with the similar attempts
to annotate membrane-spanning domains in eukaryotes
(Wallin and von Heijne 1998; Krogh et al. 2001; Liu and Rost
2001; Ward 2001). For example, using an earlier version of
TMHMM, Krogh and others predicted transmembrane do-
mains for S. ceresiviae, D. melanogaster, and C. elegans, at
20.7%, 20.1%, and 30.3% respectively.

Classification of Proteins Into Distinct Classes Based
on Their Predicted Membrane Organization

Here we propose an alternative broad classification scheme
for protein classes based on their predicted membrane orga-
nization. This approach utilizes the combined annotation
within individual full-length protein ORFs of both signal pep-
tides and transmembrane domains (see Table 4). Transmem-
brane-negative soluble proteins are classified as intracellular
or extracellular based on the signal peptide predictions. Trans-
membrane-positive proteins are classified into three groups.
The topology of single membrane-spanning proteins, Type I
(Nout/Cin), or Type II (Nin/Cout), is assigned based on the
presence or absence of a signal peptide. Proteins with more
than one membrane-spanning domain are classified as multi-
span membrane proteins. Based on the above annotation of
signal peptides andmembrane-spanning regions, we obtained
six groups of proteins (see Table 4).

In contrast to simply comparing the total proportion of
transmembrane domains, which do not vary significantly
across eukaryotic genomes, our classification scheme high-
lighted variation in the membrane organization of the pro-
teome datasets analyzed. Overall, comparison of the results
from the predicted membrane organization across the 10 pro-
teome databases revealed that higher eukaryotes have a
greater proportion of soluble secreted proteins and Type I

Table 4. Membrane Organization of Protein Classes Assigned Based on the Prediction of Signal Peptides and
Transmembrane Domains

Class Description

S. cerevisciae A. thaliana D. melanogaster C. elegans Riken RPS

Number % Number % Number % Number % Number %

A Soluble nonsecreted proteins 4107 68.6 16,467 63.6 8474 61.4 10,672 53.7 10,161 59.0
B Soluble secreted proteins 252 4.2 2354 9.1 1815 13.2 2469 12.4 2040 11.9
C Type I membrane proteins (single

span, secreted)
117 2.0 777 3.0 335 2.4 636 3.2 935 5.4

D Type II membrane proteins (single
span, nonsecreted)

300 5.0 1542 6.0 651 4.7 1072 5.4 804 4.7

E Multimembrane spanning proteins 820 13.7 2810 10.8 1676 12.2 3816 19.2 2096 12.2
F Membrane organization not

annotated
388 6.5 1951 7.5 840 6.1 1221 6.1 1173 6.8

Total full-length ORFs 5984 25,901 13,791 19,886 17,209

Class Description

Riken VPS
M. musculus

(IPI)
Mouse genome

(EnsembI)
H. sapiens

(IPI)
Human genome

(EnsembI)

Number % Number % Number % Number % Number %

A Soluble nonsecreted proteins 19,267 59.4 11,288 57.4 9117 57.6 15,057 61.0 10,336 60.4
B Soluble secreted proteins 3862 11.9 2378 12.1 1908 12.1 2776 11.2 2119 12.4
C Type I membrane proteins (single

span, secreted)
1843 5.7 977 5.0 751 4.7 1361 5.5 864 5.1

D Type II membrane proteins (single
span, nonsecreted)

1497 4.6 779 4.0 598 3.8 953 3.9 655 3.8

E Multimembrane spanning proteins 3839 11.8 3017 15.3 2478 15.7 2843 11.5 2030 11.9
F Membrane organization not

annotated
2129 6.6 1216 6.2 980 6.2 1711 6.9 1099 6.4

Total full-length ORFs 32,437 19,655 15,832 24,701 17,103

Protein classes are determined by the following annotations: Class A, signal peptide (SP)-negative, transmembrane domain (TD)-negative; Class
B, SP-positive, TD-negative; Class C, SP-positive, single TD-positive; Class D, SP-negative, single TD-positive; Class E, SP-positive or negative,
transmembrane domains multiple positives per protein; Class F, no consensus in SP and/or TD predictions. Percentages are given
as a percentage of the total full-length ORFs. Results used to compile Table 4 are available from http://microarray.imb.uq.edu.
au/predictors/proteome/.
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membrane proteins, whereas the proportions of Type II mem-
brane and multi-span membrane proteins remained similar.
For example, Riken RPS compared to S. cerevisiae had 2.8- and
2.7-fold increases in soluble secreted proteins and Type I
membrane proteins, respectively, whereas the other classes of
membrane proteins remained essentially unchanged. Com-
parison of the RPS and VPS proteomes revealed no difference
in the degree of alternative splicing among the different mem-
brane organization classes. The other result of note from this
comparison, as previously observed (Krogh et al. 2001), is
the higher proportion of multi-span membrane proteins in
C. elegans.

METHODS

Databases
We analyzed the following proteome databases available from
EBI on June 15th 2002 (http://www.ebi.ac.uk/proteome/; Ap-
weiler et al. 2001): Arabidopsis thaliana, Caenorhabditis elegans,
Drosophila melanogaster, Homo sapiens (International Protein
Index, IPI), Mus musculus (IPI), and Saccharomyces cerevisiae. In
addition, we analyzed the RIKEN Mouse Representative Tran-
script and Protein Sets (Riken RPS; http://genome.gsc.riken.
go.jp/), RIKEN Mouse Variable Protein Set (Riken VPS; http://
genome.gsc.riken.go.jp/), and the predicted protein ORFs
from the ENSMBL human genome database (Human Build 29)
and mouse genome database (MGSC Mouse Assembly 3;
http://www.ensembl.org/; Hubbard et al. 2002). The se-
quences were filtered so that partial ORFs that did not contain
a methionine at position 1 or were clearly annotated as partial
or fragments were removed.

The set of predicted proteins produced by Celera (Release
R13b, April 2002, http://www.celeradiscoverysystem.com/)
was used as one of the whole-genome sets of computational
predictions. The Celera sequencing, assembly, and transcript
prediction methods are described (Mural et al. 2002). The
complete Celera protein set contained 47,256 transcripts and
protein sequences, corresponding to 46,941 gene predictions.
Of this set, 14,994 weak-confidence predictions were ex-
cluded for compatibility with the analyses of the Ensembl set
and of the Chr.16 (Mural et al. 2002). The remaining 32,262
high- to medium-confidence protein predictions were used in
this study; 15,548 of these hypothetical proteins had BLAST
hits to the publicly available protein sequences, 7085 were in
common with the RefSeq (Pruitt and Maglott 2001) mouse
protein set, and 19,089 had InterPro assignments.

InterPro version 5.1 (May 2002) and InterProScan ver-
sion 3.1 (Zdobnov and Apweiler 2001) were used for the func-
tional sites and domains composition analysis.

Prediction Methods
Signal P V2 (NN and HMM; Nielsen and Krogh 1998), SPScan
(von Heijne 1987), TMHMM 2.0 (Krogh et al. 2001), SVMtm
(Z. Yuan and R. Teasdale, in prep.; http://microarray.imb.uq.
edu.au/predictors/), MEMSAT 1.5 (Jones et al. 1994), HMMTOP
(Tusnady and Simon 2001), and SOSUI (Hirokawa et al. 1998)
were applied using their default values except for selection of
organism group. SPScan analysis was performed using the Ge-
netics Computer Group (GCG) Wisconsin Package (version 8.1)
located at the Australian National Genomic Information Service
(ANGIS). SOSUI analysis was performed using its Web interface
(http://sosui.proteome.bio.tuat.ac.jp/∼sosui/proteome/
welcomeE.html).
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