
Ge n e t i c s
Se lec t ion
Evolut ion

Calus Genetics Selection Evolution 2014, 46:24
http://www.gsejournal.org/content/46/1/24
RESEARCH Open Access
Right-hand-side updating for fast computing of
genomic breeding values
Mario PL Calus
Abstract

Background: Since both the number of SNPs (single nucleotide polymorphisms) used in genomic prediction and
the number of individuals used in training datasets are rapidly increasing, there is an increasing need to improve
the efficiency of genomic prediction models in terms of computing time and memory (RAM) required.

Methods: In this paper, two alternative algorithms for genomic prediction are presented that replace the originally
suggested residual updating algorithm, without affecting the estimates. The first alternative algorithm continues to
use residual updating, but takes advantage of the characteristic that the predictor variables in the model (i.e. the
SNP genotypes) take only three different values, and is therefore termed “improved residual updating”. The second
alternative algorithm, here termed “right-hand-side updating” (RHS-updating), extends the idea of improved residual
updating across multiple SNPs. The alternative algorithms can be implemented for a range of different genomic
predictions models, including random regression BLUP (best linear unbiased prediction) and most Bayesian genomic
prediction models. To test the required computing time and RAM, both alternative algorithms were implemented in a
Bayesian stochastic search variable selection model.

Results: Compared to the original algorithm, the improved residual updating algorithm reduced CPU time by 35.3 to
43.3%, without changing memory requirements. The RHS-updating algorithm reduced CPU time by 74.5 to 93.0% and
memory requirements by 13.1 to 66.4% compared to the original algorithm.

Conclusions: The presented RHS-updating algorithm provides an interesting alternative to reduce both computing
time and memory requirements for a range of genomic prediction models.
Background
Many models have been suggested for genomic prediction
(for a review: see [1]). The computing time required to
estimate SNP (single nucleotide polymorphism) effects
varies considerably between models, e.g. [2]. Computing
time depends both on the number of SNPs used and
the number of animals in the training dataset. The latter is
rapidly increasing, exceeding 15 000 animals in some
cases, e.g. [3]. The number of SNPs used is also increasing
rapidly with the availability of high-density SNP panels
in cattle with 648 874 and 777 962 SNPs [4] and recently,
investigations on the use of whole-genome sequence data
in genomic prediction have been reported [5,6]. These
developments emphasize an increasing need to improve
the efficiency of genomic prediction models in terms of
computing time and memory requirements. To overcome
Correspondence: mario.calus@wur.nl
Animal Breeding and Genomics Centre, Wageningen UR Livestock Research,
6700 AC Wageningen, The Netherlands

© 2014 Calus; licensee BioMed Central Ltd. Th
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
computing limitations, some fast implementations have
been reported for genomic prediction models such as
BayesA [7], BayesB [8,9] and Bayesian Lasso [10]. At the
same time, it has been suggested that variable selection
methods such as BayesB are required to make optimal
use of whole-genome sequence data in genomic predic-
tion [6]. The number of reports that compare the fast
implementation of such variable selection methods to the
Markov chain Monte Carlo (MCMC) based counterparts
has thus far been limited, and all of the aforementioned
studies were based on simulated data with a limited num-
ber of simulated QTL. To enable the comparison of these
fast methods to their MCMC based counterparts in
real datasets with whole-genome sequence data, efficient
implementations of MCMC genomic prediction models
are also required.
Genomic prediction models can be classified into those

that involve implicit estimation of SNP effects (using
genomic relationships), e.g. [11], and those that involve
is is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited.

mailto:mario.calus@wur.nl
http://creativecommons.org/licenses/by/2.0

Calus Genetics Selection Evolution 2014, 46:24 Page 2 of 11
http://www.gsejournal.org/content/46/1/24
explicit estimation of SNP effects [12]. Genomic prediction
models that explicitly estimate SNP effects, commonly
perform regression with SNP genotypes as predictor vari-
ables [1], coded as 0,1,2 or -1,0,1, referring respectively to
the homozygous, heterozygous, and the alternative homo-
zygous genotype. The characteristic that the predictor
variables can take only three possible values provides
an interesting opportunity to reduce the computing time
of algorithms to estimate SNP effects.
The objective of this paper was to describe two efficient

algorithms to estimate SNP effects that take advantage
of the characteristic that each predictor variable (SNP
genotype) can take only three different values. The effi-
ciency of the two algorithms is compared in terms of
memory and computing time requirements to that of a
commonly used algorithm that is based on residual
updating.
Methods
Updating schemes to estimate SNP effects
In general, the efficiency of algorithms to estimate SNP
effects can be improved by avoiding redundant computa-
tions. The general conditional genomic prediction model
to estimate SNP effects for locus j, is:

y�j ¼ 1μþ xjaj þ e;

where y�j is a vector with conditional phenotypes for SNP
j, 1 is a vector of 1’s, μ is the overall mean, xj is a vector
with SNP genotypes at locus j, aj is the allele substitution
effect for locus j, and e is a vector of residuals. Note
that elements of xj could be simply equal to 0, 1, or 2,
or take any other value. I.e., elements of xj could be
scaled and centred, such that they take the following

values:
0−2pjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pj 1−pjð Þp ,

1−2pjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pj 1−pjð Þp or

2−2pjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pj 1−pjð Þp , where pj is the

frequency of the allele at locus j for which the homozygous
genotype is coded as 2. Such scaling of the genotype
coding is reported to have some numerical advantages
when using MCMC methods [13]. Conditional phenotypes

(y�;lþ1
j) for SNP j in iteration l + 1 are defined as pheno-

types corrected for estimated effects at all other SNP loci,
as [14]:

y�;lþ1
j ¼ y−X1:j−1âlþ1

1:j−1−Xjþ1:nâljþ1:n−μ; ð1Þ

where n is the number of SNPs included in the model and
X is a matrix that stores all genotypes. The conditional
mean of the allele substitution effect (âlþ1

j) for locus j
in iteration l + 1 is obtained as follows:
âlþ1
j ¼

x
0
j y−X1:j−1âlþ1

1:j−1−Xjþ1:nâljþ1:n−μ
� �

x0
jxj þ λj

¼ x
0
jy

�;lþ1
j

x0
jxj þ λj

; ð2Þ

where λj ¼ σ2e
σ2aj
, σ2e is the residual variance, and σ2aj is the

variance associated with locus j. Note that σ2aj in equation

(2) can be estimated in several ways, as done in well-
known models such as BayesA and BayesB [12], BayesC
[15] or Bayesian Stochastic Search Variable Selection
[16,17], or can be assumed to be known as in RR-BLUP
[12,18]. Note that equation (2) gives the value required
in a Gauss-Seidel algorithm to compute BLUP estimates
for the allele substitution effects, while it gives the mean
of the conditional posterior density if a Bayesian model is
used to estimate the allele substitution effects.
Using residual updating, the conditional phenotypes in

equation (1) in iteration l + 1, y�;lþ1
j , can be more efficiently

computed as [14]:

y�;lþ1
j ¼ elþ1

j þ xjâlj; ð3Þ

where elþ1
j contains the current residuals, i.e.:

elþ1
j ¼ y−X1:jâlþ1

1:j −Xjþ1:nâljþ1:n−μ:

Using residual updating, the conditional mean of the
allele substitution effect (âlþ1

j) in iteration l + 1 can then

be obtained per locus as follows [14]:

âlþ1
j ¼ x

0
je

lþ1
j þ x

0
jxjâ

l
j

x0
jxj þ λj

: ð4Þ

Considering that, in each iteration, allele substitution
effects must be estimated for n loci, using phenotypes of
m individuals, computing all conditional phenotypes
using equation (1) requires mn(n-1) multiplications and
mn(n-1) subtractions, whereas equation (3) requires only
mn multiplications and mn summations. After calculating
âlþ1
j , the residual updating step is finalized by updating

all residuals such that they can be used to compute condi-
tional phenotypes for SNP j + 1 [14]:

elþ1
jþ1 ¼ elþ1

j − xj âlþ1
j − âl

j

� �
: ð5Þ

Hereafter, the algorithm that uses equations (3), (4) and
(5) will be referred to as “original residual updating”. In
the original residual updating algorithm, updating of the
residuals and obtaining the sum of cross-products of the
residuals and genotypes of each individual are the most
time-consuming steps [15]. As indicated by Legarra and
Misztal [14], x

0
jxj can be calculated once and stored in

Calus Genetics Selection Evolution 2014, 46:24 Page 3 of 11
http://www.gsejournal.org/content/46/1/24
memory. As a result, to compute âlþ1
j using equation (4),

m + 1 multiplications are required. The number of multi-
plications can be reduced by first summing residuals (elþ1

j)

across animals with the same genotypes, and then multiply-
ing each of those three sums by the appropriate genotype.
Considering this, equation (4) can be rewritten as:

âlþ1
j ¼ γ

0
jf
lþ1
j þ n

0
jγ

2
j â

l
j

x0
jxj þ λj

; ð6Þ

where the γj γ2j

� �
is a vector that contains the (squared)

centred and scaled values of the three genotypes that are
present at locus j, f lþ1

j is a 3 × 1 vector that contains the
sum of the residuals for each genotype i at locus j, i.e.

f lþ1
j ¼

X
i
elþ1
i;j , and vector nj contains the number of

animals for each genotype at locus j. It should be noted
here that n

0
jγ

2
j ¼ x

0
jxj, but the notation n

0
jγ

2
j is introduced

here to clarify implementation in the newly proposed
algorithm, as will be shown later. Equation (6) involves
only four multiplications and, thus, requires m-3 fewer
multiplications than equation (4) (noting that all values
for n

0
jγ

2
j can be computed once and stored). Those m-3

multiplications are replaced by m-3 summations that are
computationally less demanding than multiplications using
standard Fortran functions. Hereafter, the algorithm that
uses equations (5) and (6) will be referred to as “improved
residual updating”.
Further reduction of the number of required computa-

tions is possible in the update for locus j + 1 by using
the residual information that was already calculated in
the update of locus j:

f lþ1
k;jþ1 ¼ hlþ1

k; jþ1−N
0
jþ1; jγj âlþ1

j −âl
j

� �
; ð7Þ

where f lþ1
k; jþ1 ¼

X
k
elþ1
k; jþ1, i.e. a 3 × 1 vector that contains

the sums of the residuals before updating locus j + 1 for
each genotype k at locus j + 1 in iteration l + 1, and N

0
jþ1;j

is a 3 × 3 matrix that contains the number of animals that
have any of the nine combinations of genotypes at loci j
and j + 1. Note that N

0
jþ1;jγj can be computed once and

stored. The term hlþ1
k;jþ1 is a vector that contains the sum

of the residuals for each of the three genotypes k at
locus j + 1. Each of these sums is computed from the
sums of residuals (before updating) for each of the
three genotypes i at locus j that were computed within
groups of animals having genotype k at locus j + 1, i.e.

hlþ1
k; jþ1 ¼

X
k; jþ1

X
i
elþ1
i; jjk; jþ1. Thus, for locus j, first 3 ×

3 = 9 sums of residuals are calculated, one for each
unique combination of genotypes at loci j and j + 1. These
sums include the residuals before âlþ1

j is used to update
them. The update at locus j is accounted for by the term

N
0
jþ1; jγj âlþ1

j −âl
j

� �
.

Implementing equation (7) in (6) yields:

âlþ1
jþ1 ¼

γ
0
jþ1 hlþ1

k; jþ1− N
0
jþ1; jγj âlþ1

j −âl
j

� �� �� �
þ n

0
jþ1γ

2
jþ1â

l
jþ1

x0
jþ1xjþ1 þ λjþ1

:

ð8Þ

The alternative proposed updating scheme to compute
âlþ1
jþ1 involves applying equation (8) instead of (4) or (6)

for locus j + 1. This updating scheme is hereafter referred
to as “right-hand-side updating” (RHS-updating), since it
essentially involves direct updating of the right-hand-sides
of the model to estimate the SNP effects, without having
to explicitly update the residuals every time a SNP effect is
estimated.
Instead of explicitly updating residuals after computing

the allele substitution effect, the change of the residuals
is stored for each possible combination of genotypes at
loci j and j + 1 as:

Δelþ1
jþ1; j ¼ γjþ11

0
âlþ1
jþ1−â

l
jþ1

� �
þ 1γ

0
j âlþ1

j −âl
j

� �
; ð9Þ

where Δelþ1
jþ1;j is a 3 × 3 matrix that contains updates to

the residuals for each combination of genotypes at loci
j and j + 1 after computing the allele substitution effects
for those loci, and 1 is a vector of 1’s, such that both
γj + 11′ and 1γ

0
j are 3 × 3 matrices. After computing

âlþ1
j and âlþ1

jþ1 , residuals for each combination of geno-
types at loci j and j + 1 can be updated as:

elþ1; jþ2
k; jþ1; i; j ¼ elþ1;j

k; jþ1; i; j −Δelþ1
k; jþ1; i; j; ð10Þ

where Δelþ1
k; jþ1; i; j is the element in Δelþ1

jþ1; j that corresponds
to genotype k at locus j + 1 and genotype i at locus j.
Applying equations (9) and (10) for locus j and j + 1,
finalizes the RHS-updating step, just like equation (5)
finalizes the residual updating step.
A set of SNPs that is consecutively analysed using

RHS-updating, is hereafter referred to as a “RHS-block”.
It should be noted that for the first locus within an RHS-
block, here referred to as locus j, there is no dependency
on the previously evaluated locus and therefore equation
(8) reduces to:

âlþ1
j ¼ γjf

lþ1
i;j þ n

0
jγ

2
j â

l
j

x0
jxj þ λj

: ð11Þ

This can be interpreted as the initialization step where,
first, the sums of residuals for all nine RHS-group are

computed as
X

i
elþ1
i; jjk; jþ1 and, second, the sum of

residuals for each genotype at locus j is computed as:

= 2

= 2

= 1

1. RHS(0,0)

2. RHS(1,0)

3. RHS(2,0)

4. RHS(0,1)

5. RHS(1,1)

6. RHS(2,1)

7. RHS(0,2)

8. RHS(1,2)

9. RHS(2,2)

= 1

= 0

= 0

Figure 1 Schematic overview of the groups defined within an
RHS-block that includes two SNPs, in the RHS-updating scheme.
Groups are coded 1 to 9; RHS(a,b) represents the group within an
RHS-block that combines individuals with genotype a at locus j and
genotype b at locus j + 1.

Table 1 Formulas to predict RAM requirement for original
and improved residual updating, and for RHS-updating

Algorithm Predicted RAM requirements (Gb)1

Original residual updating nm × 10−9

Improved residual updating nm × 10−9

RHS-updating 2 nm × 10−9/s
1n = number of loci; m = number of animals; s = number of loci included
per RHS-block.

Calus Genetics Selection Evolution 2014, 46:24 Page 4 of 11
http://www.gsejournal.org/content/46/1/24
f lþ1
i; j ¼

X
i

X
i
elþ1
i; jjk; jþ1 . Thus, the RHS-updating scheme

for “RHS-blocks” of two loci involves the following steps:

1. Apply equation (11) for locus j,
2. Apply equation (8) for locus j + 1,
3. Apply equation (9) for locus j and j + 1, and
4. Apply equation (10) to update the residuals.

This implies that the number of operations for locus
j is similar for the residual updating and RHS-updating
algorithms. However, for locus j + 1, applying equation
(8) requires only 20 summations and subtractions and
11 multiplications, compared to m-3 summations and
4 multiplications that are required when applying (6).
This indicates that the total number of operations is
drastically reduced by the RHS-updating algorithm.
Consider that for each pair of loci, groups of animals

can be identified that have the same combination of
genotypes at those two loci. With regard to the RHS-
updating scheme, two important points should be noted.
First, the groups within RHS-blocks can be coded such
that each group code always contains the same genotypes
on the first and second SNP. E.g., considering that there
are 32 groups. At locus j + 1, groups 1-3 contain genotype
0, groups 4-6 contain genotype 1, and groups 7-9 contain
genotype 2. At locus j, groups 1, 4 and 7 contain genotype
0, groups 2, 5 and 8 contain genotype 1, and groups 3, 6
and 9 contain genotype 2. A schematic representation of
this group coding within RHS-blocks is in Figure 1. Using
such unique coding for the groups within RHS-blocks
implies that genotypes do not need to be stored explicitly
in memory, since they are stored implicitly through the
group numbers. In the RHS-updating algorithm, the array
that stores the group codes was stored as integer(2). In
the residual updating algorithms, similarly, per locus
and individual, the “codes” of the genotypes were stored in
an integer(1) array while for each locus the actual values
of the three genotypes were stored separately. In fact,
the array storing the genotypes for the residual updating
algorithm or the group codes for the RHS-updating
algorithm are the largest arrays used in those algorithms,
and therefore largely determine the total amount of RAM
used. For residual updating, this array is of size m × n and
was stored as integer(1) and the amount of RAM used
is therefore expected to be proportional to mn. For RHS-
updating, this array is of sizem × n/s, where s is the number
of SNPs per RHS-block and was stored as integer(2). The
amount of RAM used with RHS-updating is therefore
expected to be proportional to 2mn/s. These simple
formulas, adjusted to predict RAM use in Gb (Table 1),
will be compared to empirically measured RAM use.
The second point that should be noted, is that within the

RHS-updating scheme, the initialization step described in
equation (10) is the most time-consuming and is recurrent
every two loci. By applying the same principles, the RHS-
updating scheme can be also applied to more than two loci
consecutively. Increasing the number of loci per RHS-block
may decrease the relative cost of the initialization step
(10), but this will be eventually off-set by the exponential
increase in the number of groups that is defined per
RHS-block, which is equal to 3s, where s is the number
of SNPs per RHS-block. When the number of loci per
RHS-block increases, then at some stage the equivalent
expression of equation (7) becomes computationally more
demanding. The optimal value to be used for s likely
depends on the number of individuals in the training
data (m) and will be empirically derived in this study.

Calus Genetics Selection Evolution 2014, 46:24 Page 5 of 11
http://www.gsejournal.org/content/46/1/24
The three algorithms described above, are mathematic-
ally equivalent, in the sense that they estimate SNP effects
using the same information. Thus, all three algorithms are
expected to give the same results.

Implementation of RHS-updating in Bayesian stochastic
search variable selection
Model
The above updating schemes to estimate SNP effects were
implemented for a model that is commonly referred to as
Bayes SSVS (Stochastic Search Variable Selection) [16,17]
that is solved using Gibbs sampling and implemented in a
computer program written in Fortran 95. The genomic
model is generally described as:

y ¼ 1μþ Xαþ e;

where y contains phenotypic records, μ is the overall mean,
1 is a vector of 1’s, X is an m × n matrix that contains
the scaled and centered genotypes of all individuals, α
contains the (random) allele substitution effects for all
loci, and e contains the random residuals. The specific
parameterization of the genomic model that results in
the Bayes SSVS model is described below.

Prior densities
The likelihood of the Bayes SSVS model conditional on
all unknowns is assumed to be normal:

p yijμ;α; σ2e
� � ¼ N yi − μ− x

0
iα; σ

2
e

� �
;

where xi denotes the SNP genotypes of animal i. Definitions
of the unknowns and their prior distributions are described
hereafter.
The prior for μ was a constant. The residual variance σ2e

has a prior distribution of p σ2
e

� � ¼ χ−2 −2; 0ð Þ; which yields
a flat prior.
The prior for αj depends on the variance σ2α and the

QTL indicator Ij = 1:

αjjπ; σ2α ¼ eN 0;
σ2α
100

� �
when Ij ¼ 0

eN 0; σ2α
� �

when Ij ¼ 1
:

8<:
The prior distribution for the indicator variable Ij is:

p Ij
� � ¼ Bernoulli 1−πð Þ;

where π was assigned a value of 0.999, and σ2α has the
following prior distribution:

p σ2α
� � ¼ χ−2 να; S

2
α

� �
;

where να is the degrees of freedom, set to 4.2 according
to [12,15], and the scale parameter S2α is calculated as

S2α ¼ ~σ2
α να−2ð Þ
να

where ~σ2
α is computed as [1]:
~σ2
α ¼

100
100þ π 1−100ð Þ
� �

σ2a
n
;

where n is the number of loci.

Conditional posterior densities
The conditional posterior density of αj is:

N α̂j;
ωjσ̂ 2

e

x0
jxj þ λj

 !
;

where α̂j is the conditional mean of the allele substitu-
tion effect at locus j, whose computation was explained

previously, λj ¼ ωjσ̂2
e

σ̂2
α
, and

ωj ¼ 1 if I j ¼ 1

ωj ¼ 100 if I j ¼ 0:

The conditional posterior density of σ2α is an inverse-χ2

distribution:

σ2α αeχ−2 να þ n; S2α þ ω
0
α̂2

� �
;

			
where α̂2 is a vector with squares of the current estimates
of the allele substitution effects of all loci, weighted by
vector ω, which contains values of 1 or 100 for each locus.
Finally, the conditional posterior distribution of the QTL-

indicator Ij was (following the notation in [19]):

Pr I j ¼ 1
� � ¼ f

�
rjjI j ¼ 1Þ 1−πð Þ

f rj Ij ¼ 0Þπ þ f rj Ij ¼ 1Þ 1−πð Þ;		�		�
where 1 − π (π) is the prior probability that Ij = 1 (Ij = 0),
rj ¼ x

0
jy

� þ x
0
jxjα̂ j , where y* contains the conditional

phenotypes as defined previously, and f(rj|Ij = δ), where

δ is either 0 or 1, and is proportional to 1ffiffi
v

p e−
r2
j
2v , where

v ¼ x
0
jxj

� �2 σ2αj
ωj
þ x

0
jxjσ

2
e . It should be noted that v depends

on Ij through its dependence on ωj, i.e. if Ij = 0 (Ij = 1) then
ωj = 100 (ωj = 1).
Finally, the conditional posterior density of σ2e is an

inverse-χ2 distribution:

σ2e je e χ−2 m−2; e
0
e

� �
;

where m is the number of animals with records and e is
a vector with the current residuals.

Derivation of the optimal number of SNPs included per
RHS-block
Simulated data - CPU time
To investigate to what extent the CPU time of the newly
developed algorithms depended on the number of indi-
viduals included in the analysis, a dataset of 420 SNPs

Calus Genetics Selection Evolution 2014, 46:24 Page 6 of 11
http://www.gsejournal.org/content/46/1/24
was simulated. The number of SNPs was limited to 420, to
reduce total computation time, and this limited number of
SNPs was sufficient to compare the relative computation
time of the different algorithms because total CPU time
scales linearly with the number of SNPs. Further details
of the simulation are not included here because the aim
of the subsequent analysis was only to compare CPU
time. The size of the dataset was increased with steps
of 500 individuals from 500 to 100 000 individuals and
each dataset was analysed 11 times. The newly developed
RHS-updating algorithm was used in nine of those ana-
lyses, using one to nine SNPs per RHS-block. The tenth
analysis was an implementation using original residual
updating. The eleventh analysis implemented improved
residual updating. Each analysis was run for 900 iterations,
and the CPU time for these 900 iterations was recorded.

Simulated data - RAM use
To investigate to what extent the required amount of
RAM of the newly developed algorithm depended on
the number of individuals in the analysis, a dataset of 50
000 SNPs was simulated. The number of individuals was
increased in steps of 5000 individuals from 500 to 95
500 individuals. This number of SNPs and animals yielded
a range of datasets with dimensions that corresponded
to the size of currently used practical datasets and each
dataset was analysed 11 times. These analyses involved
the same models and settings as used to evaluate CPU
time. Each analysis was run until the iterations started,
i.e. when the maximum RAM requirement was reached,
at which point the used RAM was recorded and the
process was aborted. The maximum RAM requirement
was measured by retrieving the process ID and then
storing the RAM use for that process. Details of this
procedure are provided in the Appendix 1.
All comparisons were run on a Windows XP-64 desktop

pc with an Intel(R) Xeon(R) 64-bit CPU E5420 with a
clock speed of 2.50 GHz. Comparisons on CPU time were
also run on a Linux platform with an AMD Opteron 8431
64-bit CPU with a clock speed of 2.39 GHz running
Ubuntu 12.04.3. The programs were compiled with the
Intel® Fortran Compiler 11.0.075 for Windows and the
Intel® Fortran Compiler 13.0.079 for Linux.

Results
CPU time
The required CPU time on the Windows workstation
for the RHS-updating algorithm depended strongly on
the number of SNPs included per RHS-block (Figure 2).
In all cases, including more than six SNPs per RHS-
block resulted in a longer CPU time. Conversely, including
less than four or five SNPs per RHS-block also resulted in
a longer CPU time, especially when the number of individ-
uals was large. The solid line in Figure 2 shows that the
optimal number of SNPs included per RHS-block that
results in the lowest CPU time, changed with the number
of individuals in the analysis. This is further illustrated
in Figure 3, where the actual number of SNPs that gave
the minimum CPU time is plotted against the number
of individuals in the analysis. Although there was a
clear trend, across the number of individuals, especially
with a larger number of individuals, there was no exact
threshold when either five or six SNPs were included
per RHS-block, which indicates that there was very little
difference in CPU time when five or six SNPs were used.
Similar trends in CPU time were observed when running
the analysis on the Linux server, for which slightly longer
CPU times were generally observed (Figure 4). Neverthe-
less, with our implementation of RHS-updating, it appears
to be appropriate to include two SNPs when the number
of individuals is less than 1000, three SNPs when it is
between 1000 and 2500, four SNPs when it is between
2500 and 11 000, five SNPs when it is between 11 000
and 50 000, and six SNPs when it is between 50 000
and 100 000.
The CPU time for the Gibbs chain using the optimal

number of SNPs per RHS-block was compared to the
CPU time of the original and improved residual updating
schemes across the different numbers of animals included
in the analysis (Figure 5). Compared to original residual
updating, improved residual updating reduced CPU time
on the Windows workstation by 35.3 to 43.3%, and RHS-
updating reduced CPU time by 74.5 to 93.0%. Improve-
ments in terms of CPU time were similar for the Linux
server (results not shown). The required CPU time for
pre-processing the data was slightly larger for the RHS-
updating versus the residual updating algorithm. On
the Windows workstation, for the dataset with 95 500
animals and 50 000 SNPs, the time to transform the
SNP data into the (integer) coding, required 954 s and
1217 s, respectively, for the residual updating and the RHS-
updating algorithm. These results show that, although most
of the reduction in CPU time achieved by RHS-updating
originated from evaluating SNPs within RHS-blocks rather
than individually, at the same time, the first step to im-
plement improved residual updating already makes an
important contribution to the reduction in CPU time.

RAM use
The required amount of RAM for the RHS-updating al-
gorithm also depended on the number of SNPs included
per RHS-block (Figure 6). In nearly all cases, including
more than six SNPs per RHS-block resulted in more
RAM used. Conversely, including less than three to six
SNPs per RHS-block also resulted in more RAM used,
especially when the number of individuals was large.
The pattern in RAM use (Figure 6), changed with the
number of individuals in the dataset, in a pattern that

Figure 2 CPU time on a Windows workstation for RHS-updating using different numbers of SNPs per RHS-block. The reported time is for
Gibbs chains of 900 iterations; the algorithm used one to nine SNPs per RHS-block, and the data contained 420 SNPs and an increasing number
of individuals (500 to 100 000); the black line is the fitted curve through the number of SNPs that gave the minimum CPU time.

Calus Genetics Selection Evolution 2014, 46:24 Page 7 of 11
http://www.gsejournal.org/content/46/1/24
was quite similar to that of the CPU time. This implies
that choosing an optimal number of SNPs per RHS-
block based on required CPU time, yields an algorithm
that is also close to optimal in terms of RAM use.
In Figure 7, the amount of RAM used is plotted for all

three algorithms, for datasets with 50 000 SNPs and 500
to 95 500 individuals. Note that both residual updating
algorithms required about the same amount of RAM,
therefore only one curve was plotted for residual updating.
In the case of RHS-updating, for each number of individ-
uals, either the number of SNPs per RHS-block that gave
the minimum CPU time or the number that gave the
minimum amount of required RAM was used. Both
sets of numbers of SNPs per RHS-block gave very similar
answers. Compared to the residual updating schemes, the
reduction in required RAM for RHS-updating ranged
from 13.1 to 66.4%.
0

1

2

3

4

5

6

7

0 10,000 20,000 30,000 40,000 50,0

#S
N

P
 p

er
 R

H
S

-b
lo

ck
 (

th
at

 g
av

e
m

in
in

u
m

 C
P

U
 t

im
e)

Number of

Figure 3 The number of SNPs included per RHS-block in RHS-updating,
time was evaluated for an increasing number of individuals (500 to 100 000).
As shown in Figure 7, for a fixed number of SNPs, the
RAM use of the residual updating and the RHS-updating
algorithms were linearly related to the number of animals
included. This agrees with the derived formulas for ex-
pected RAM use in Table 1. The ability of those equations
to predict measured RAM use, was investigated by regres-
sing measured RAM use on predicted RAM use for each
method, based on datasets containing 50 000 SNPs and
500 to 95 500 animals. The results of those regressions
are presented in Table 2 and show that the equations
predicted RAM use with an R2 value of 1.0 in all cases.
The intercepts of the regression generally had a positive
value, indicating that the prediction equation missed
only a small proportion of the used RAM. This value
became substantial for the RHS-updating algorithm
when the number of SNPs per RHS-block was equal to
7 or more because, e.g., the relative size of the array that
00 60,000 70,000 80,000 90,000 100,000
 individuals

that yielded the minimum computing time. Minimum computing

Figure 4 CPU time on a Linux server for RHS-updating using different numbers of SNPs per RHS-block. The reported time is for Gibbs
chains of 900 iterations; the algorithm used one to nine SNPs per RHS-block, and the data contained 420 SNPs and an increasing number of
individuals (500 to 100 000); the black line is the fitted curve through the number of SNP that gave the minimum CPU time.

Calus Genetics Selection Evolution 2014, 46:24 Page 8 of 11
http://www.gsejournal.org/content/46/1/24
stores the number of individuals for each RHS-group
increases considerably when the number of RHS-blocks
increases.

Discussion
Two alternative algorithms were presented that can be
implemented in various genomic prediction models for
fast computing of SNP effects. The algorithms replace
the originally suggested residual updating algorithm [14],
without affecting the results obtained. Differences in
results between algorithms were similar to those within
algorithms when using different random seeds and cor-
relations between different sets of results were greater
than 0.99 (results not shown). Both algorithms use the
characteristic that only three different genotypes are
observed for each SNP. Both algorithms can accommodate
loci with more than three genotypes, but this may reduce
0

200

400

600

800

1000

1200

0 10,000 20,000 30,000 40,000 50

C
P

U
 t

im
e

p
er

 9
00

 it
er

at
io

n
s

(f
o

r
42

0
S

N
P

)

Number of in

Original residual updating

Improved residual updating

RHS-updating

Figure 5 CPU time on a Windows workstation using two residual upd
900 iterations was evaluated for 420 SNPs and an increasing number of ind
scheme is the minimum computing time of nine analyses that include one
or eliminate their benefit in terms of computing time over
original residual updating schemes. The limitation on
the number of genotypes per locus implies that imputed
genotypes defined as gene contents cannot be used for
individuals in the training data in the algorithm. Never-
theless, a simple transformation of gene contents to the
most likely genotype overcomes this problem. This trans-
formation could for instance be (on a 0-2 scale): geno-
types ≤ 0.5 are set to 0, genotypes ≥ 1.5 are set to 2, and all
other genotypes are set to 1. Such transformations for
imputed genotypes in the training data are expected to have
a minor impact on the estimated SNP effects, provided
that the genotypes are imputed with reasonable accuracy.
Using gene contents for selection candidates, i.e. individuals
whose genetic merit is predicted using SNP effects esti-
mated from the training data, is not inhibited by the
proposed algorithms, because their predicted genetic
,000 60,000 70,000 80,000 90,000 100,000

dividuals included

ating schemes and RHS-updating. CPU time for a Gibbs chain of
ividuals (500 to 100 000); the reported CPU time for the RHS-updating
to nine SNPs per RHS-block, for each number of individuals.

Figure 6 RAM use (Gb) for RHS-updating with one to nine SNPs per RHS-block. RAM use was evaluated for 50 000 SNPs and an increasing
number of individuals (500 to 95 500).

Calus Genetics Selection Evolution 2014, 46:24 Page 9 of 11
http://www.gsejournal.org/content/46/1/24
merit can simply be obtained outside the algorithm by
multiplying their gene contents with allele substitution
effects that are estimated in the algorithm. The literature
shows that for selection candidates, predictions differ when
gene contents or the most likely genotypes are used [20].
The residual updating algorithms were implemented

using standard (e.g. dot_product) Fortran functions.
Computer-specific optimized libraries are available [21,22]
that can considerably reduce the CPU time required for,
e.g., vector and matrix multiplications [23]. Using such
libraries may have a larger impact on CPU time for the
residual updating algorithms than for the RHS-updating
algorithm, since the former involves many more multi-
plications. However, even when using such optimized
libraries, the RHS-updating algorithm is still expected
0

1

2

3

4

5

0 10,000 20,000 30,000 40,000 50,0

M
em

o
ry

 u
se

 (
G

b
)

Number of

Figure 7 RAM use (Gb) for residual updating versus RHS-updating. Fo
number that gave either the minimum computing time (min. time) or the
Windows workstation for a dataset with 50 000 SNPs and for an increasing
plotted for residual updating, because both residual updating algorithms re
to be considerably more efficient, because it drastically
reduces the total number of required operations.
It should be noted that the RHS-updating scheme

requires slightly more overhead in terms of computing
time than the residual updating scheme, for instance to
define the RHS-blocks and the group coding within
those blocks. Once RHS-blocks and group coding are
defined, they can be used in each iteration of the Gibbs
chain. This may limit flexibility in the algorithm. For
instance, one way to improve mixing of the Gibbs chains,
may be to permute the order of evaluation of SNP effects
between iterations. With the RHS-updating scheme, the
order of evaluation of SNP effects within RHS-blocks must
be the same throughout the Gibbs chain, such that group
coding within RHS-blocks needs to be defined only once.
00 60,000 70,000 80,000 90,000 100,000

individuals

Residual updating

RHS-updating (min. time)

RHS-updating (min. memory)

r RHS-updating, the number of SNPs per RHS-block was set to the
minimum RAM requirement (min. RAM); RAM use was evaluated on a
number of individuals (500 to 95 500); note that only one curve is
quire practically the same amount of RAM.

Table 2 Coefficients of the regression of measured on
predicted RAM requirements for original and improved
residual updating, and for RHS-updating

Algorithm Intercept Slope R2

Original residual updating 0.014 0.983 1.000

Improved residual updating 0.014 0.983 1.000

RHS-updating (1)1 0.015 0.981 1.000

RHS-updating (2) 0.015 0.983 1.000

RHS-updating (3) 0.016 0.985 1.000

RHS-updating (4) 0.024 0.981 1.000

RHS-updating (5) 0.035 0.983 0.999

RHS-updating (6) 0.065 0.977 0.996

RHS-updating (7) 0.229 0.989 1.000

RHS-updating (8) 0.659 0.990 1.000

RHS-updating (9) 1.948 0.992 1.000
1The number between brackets indicates the number of SNPs per RHS-block.

Calus Genetics Selection Evolution 2014, 46:24 Page 10 of 11
http://www.gsejournal.org/content/46/1/24
Nevertheless, the order of evaluation of the RHS-blocks
can still be permuted. Furthermore, to avoid that neigh-
bouring SNPs are always evaluated in the same order, SNPs
can be allocated to RHS-blocks at random.
The RHS-updating scheme not only considerably re-

duced computing time, by up to 93%, but also resulted
in a reduction of the amount of RAM used of up to
66%. Due to the nature of the RHS-updating algorithm,
computing time and RAM use are linearly related with
the number of SNPs considered, similar to the residual
updating algorithm. This implies that the relative benefit
of using the RHS-updating algorithm compared to the
residual updating algorithm is not affected by the number
of SNPs included. In our implementation, which is written
in Fortran 95, group codes within RHS-blocks were stored
as an integer(2) variable, while the genotypes in the
original implementation with residual updating were
stored as an integer(1) variable. It should be noted that
storing group codes as integer(1) would lead to a further
reduction in RAM requirements of almost 50%, because
the array that stores the group codes uses close to 100% of
the RAM used by the algorithm. Storing group codes as
integer(1), implies that the number of SNPs included
per RHS-block should be equal to four or less, i.e. the
maximum value an integer(1) variable can take is equal
to 127, and including 4 (5) SNPs per RHS-block yields
34 = 81 (35 = 243) groups; the maximum value an integer
(2) variable can take, is equal to 32 767. This means that a
maximum of nine SNPs can be included per RHS-block,
otherwise the group code must be stored as integer(4), i.e.
including 9 (10) SNPs per RHS-block yields 39 = 19 683
(310 = 59 049) groups. Our results show that with the
largest number of individuals considered (100 000), the
optimal number of SNPs included per RHS-block was
equal to six. This suggests that it is unlikely that a number
of individuals in the data that justifies including more than
nine SNPs per RHS-block, and therefore requires storing
group codes as integer(4), is reached in the near future.
In our implementation of RHS-updating, each RHS-

block containing s SNPs is assumed to contain all 3s

possible groups, which is most likely not always the case.
Moreover, clever grouping of SNPs within RHS-block
can reduce the observed number of groups within each
RHS-block. Such redundancy could be used to further
reduce computing time, but would also likely result in
a more complicated algorithm.

Conclusions
Two algorithms are presented to estimate SNP effects
that can be implemented in a range of different genomic
prediction models, as an alternative to the original residual
updating scheme. The first alternative algorithm uses
residual updating, here termed improved residual updating,
and takes advantage of the characteristic that the predictor
variables in the model (i.e. SNP genotypes) have only three
possible values. The second alternative algorithm, here
termed “RHS-updating”, extends the idea of improved
residual updating across multiple SNPs. The improved
residual updating algorithm achieved a reduction in
computing time of 35.3 to 43.3%, but did not change the
amount of RAM used, compared to the original residual
updating scheme. The RHS-updating algorithm achieved
a reduction in computing time of 74.5 to 93.0% and a
reduction in RAM use of 13.1 to 66.4%, compared to the
original residual updating scheme. Thus, the RHS-updating
algorithm provides an interesting alternative to reduce both
computing time and memory requirements.

Appendix 1. Pseudo-code to measure maximum
RAM requirement
The maximum RAM requirement was measured by re-
trieving the process ID and then storing the RAM use for
this particular process. On the Windows OS, this was
done using the following Fortran code:
PROGRAM GIBBS
USE DFPORT !Module that contains function “GETPID”
IMPLICIT NONE
INTEGER :: PROC_ID
CHARACTER(LEN = 47) :: SYS_CALL
…
PROC_ID =GET_PID() !Retrieve process ID of the
current process
!Use DOS command “tasklist” to write RAM use to file
“tasklist.txt”
SYS_CALL = "tasklist /fi ""PID eq "" > tasklist.txt"
WRITE(SYS_CALL(23:29),'(i7)')PROC_ID
CALL SYSTEM(SYS_CALL)
…
END PROGRAM GIBBS

Calus Genetics Selection Evolution 2014, 46:24 Page 11 of 11
http://www.gsejournal.org/content/46/1/24
Competing interests
The author declares that he has no competing interests.
Authors’ contributions
MPLC has invented and developed the idea of RHS-block updating,
implemented it in an algorithm, designed and performed the analyses and
drafted the manuscript. The author read and approved the final manuscript.
Acknowledgements
Two anonymous reviewers are thanked for their very valuable comments on
the manuscript that helped to improve it. The author acknowledges financial
support of CRV BV (Arnhem, the Netherlands).

Received: 6 July 2013 Accepted: 26 February 2014
Published: 3 April 2014
References
1. de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL:

Whole-genome regression and prediction methods applied to plant and
animal breeding. Genetics 2013, 193:327–345.

2. Daetwyler HD, Calus MPL, Pong-Wong R, de los Campos G, Hickey JM:
Genomic prediction in animals and plants: simulation of data, validation,
reporting, and benchmarking. Genetics 2013, 193:347–365.

3. Lund M, de Roos S, de Vries A, Druet T, Ducrocq V, Fritz S, Guillaume F,
Guldbrandtsen B, Liu Z, Reents R, Schrooten C, Seefried F, Su G: A common
reference population from four European Holstein populations increases
reliability of genomic predictions. Genet Sel Evol 2011, 43:43.

4. Rincon G, Weber KL, Van Eenennaam AL, Golden BL, Medrano JF: Hot topic:
performance of bovine high-density genotyping platforms in Holsteins
and Jerseys. J Dairy Sci 2011, 94:6116–6121.

5. Hayes B, Anderson C, Daetwyler HD, Fries R, Guldbrandtsen B, Lund M,
Boichard D, Stothard P, Veerkamp RF, Hulsegge I, Rocha D, Van Tassel CP,
Coote D, Goddard M: Towards genomic prediction from genome
sequence data and the 1000 bull genomes project. In Book of Abstracts of
the 4th International Conference on Quantitative Genetics: 17-22 June 2012;
Edinburgh.; 2012:55.

6. Meuwissen THE, Goddard ME: Accurate prediction of genetic value for
complex traits by whole-genome resequencing. Genetics 2010, 185:623–631.

7. Hayashi T, Iwata H: EM algorithm for Bayesian estimation of genomic
breeding values. BMC Genet 2010, 11:3.

8. Shepherd RK, Meuwissen THE, Woolliams JA: Genomic selection and
complex trait prediction using a fast EM algorithm applied to
genome-wide markers. BMC Bioinformatics 2010, 11:529.

9. Meuwissen THE, Solberg TR, Shepherd R, Woolliams JA: A fast algorithm for
BayesB type of prediction of genome-wide estimates of genetic value.
Genet Sel Evol 2009, 41:2.

10. Cai X, Huang A, Xu S: Fast empirical Bayesian LASSO for multiple
quantitative trait locus mapping. BMC Bioinformatics 2011, 12:211.

11. VanRaden PM: Efficient methods to compute genomic predictions. J Dairy
Sci 2008, 91:4414–4423.

12. Meuwissen THE, Hayes BJ, Goddard ME: Prediction of total genetic value
using genome-wide dense marker maps. Genetics 2001, 157:1819–1829.

13. Stranden I, Christensen OF: Allele coding in genomic evaluation. Genet Sel
Evol 2011, 43:25.

14. Legarra A, Misztal I: Computing strategies in genome-wide selection. J Dairy
Sci 2008, 91:360–366.

15. Habier D, Fernando R, Kizilkaya K, Garrick D: Extension of the Bayesian
alphabet for genomic selection. BMC Bioinformatics 2011, 12:186.

16. Calus MPL, Meuwissen THE, De Roos APW, Veerkamp RF: Accuracy of
genomic selection using different methods to define haplotypes.
Genetics 2008, 178:553–561.

17. Verbyla KL, Hayes BJ, Bowman PJ, Goddard ME: Accuracy of genomic
selection using stochastic search variable selection in Australian Holstein
Friesian dairy cattle. Genet Res 2009, 91:307–311.

18. Habier D, Fernando R, Dekkers J: The impact of genetic relationship
information on genome-assisted breeding values. Genetics 2007,
177:2389–2397.

19. Jia Y, Jannink J-L: Multiple-trait genomic selection methods increase
genetic value prediction accuracy. Genetics 2012, 192:1513–1522.
20. Mulder HA, Calus MPL, Druet T, Schrooten C: Imputation of genotypes
with low-density chips and its effect on reliability of direct genomic
values in Dutch Holstein cattle. J Dairy Sci 2012, 95:876–889.

21. Whaley RC, Dongarra JJ: Automatically tuned linear algebra software.
In Proceedings of the 1998 ACM/IEEE conference on Supercomputing: 7-13
November 1998: Orlando. (CDROM). Washington, DC, USA: IEEE Computer
Society; 1998:1–27.

22. Dongarra JJ, Du Croz J, Hammarling S, Duff IS: A set of level 3 basic linear
algebra subprograms. ACM TOMS 1990, 16:1–17.

23. Aguilar I, Misztal I, Legarra A, Tsuruta S: Efficient computation of the
genomic relationship matrix and other matrices used in single-step
evaluation. J Anim Breed Genet 2011, 128:422–428.

doi:10.1186/1297-9686-46-24
Cite this article as: Calus: Right-hand-side updating for fast computing
of genomic breeding values. Genetics Selection Evolution 2014 46:24.
Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Updating schemes to estimate SNP effects
	Implementation of RHS-updating in Bayesian stochastic search variable selection
	Model
	Prior densities
	Conditional posterior densities

	Derivation of the optimal number of SNPs included per RHS-block
	Simulated data - CPU time
	Simulated data - RAM use

	Results
	CPU time
	RAM use

	Discussion
	Conclusions
	Appendix 1. Pseudo-code to measure maximum RAM requirement
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 793.440]
>> setpagedevice

