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Apoptosis (programmed cell death) plays important roles in many facets of normal mammalian physiology.
Host-pathogen interactions have provided evolutionary pressure for apoptosis as a defense mechanism against
viruses and microbes, sometimes linking apoptosis mechanisms with inflammatory responses through NFkB
induction. Proteins involved in apoptosis and NFkB induction commonly contain evolutionarily conserved
domains that can serve as signatures for identification by bioinformatics methods. Using a combination of
public (NCBI) and private (RIKEN) databases, we compared the repertoire of apoptosis and NF«B-inducing genes
in humans and mice from cDNA/EST/genomic data, focusing on the following domain families: (1) Caspase
proteases; (2) Caspase recruitment domains (CARD); (3) Death Domains (DD); (4) Death Effector Domains (DED);
(5) BIR domains of Inhibitor of Apoptosis Proteins (IAPs); (6) Bcl-2 homology (BH) domains of Bcl-2 family
proteins; (7) Tumor Necrosis Factor (TNF)-family ligands; (8) TNF receptors (TNFR); (?) TIR domains; (10)
PAAD (PYRIN; PYD, DAPIN); (11) nucleotide-binding NACHT domains; (12) TRAFs; (13) Hsp70-binding BAG
domains; (14) endonuclease-associated CIDE domains; and (15) miscellaneous additional proteins. After excluding
redundancy due to alternative splice forms, sequencing errors, and other considerations, we identified cDNAs
derived from a total of 227 human genes among these domain families. Orthologous murine genes were found
for 219 (96%); in addition, several unique murine genes were found, which appear not to have human
orthologs. This mismatch may be due to the still fragmentary information about the mouse genome or genuine
differences between mouse and human repertoires of apoptotic genes. With this caveat, we discuss similarities

and differences in human and murine genes from these domain families.

Apoptosis is a form of programmed cell death that plays an
important role in many facets of normal mammalian physi-
ology, including embryological development, tissue homeo-
stasis, and immune cell education (Metzstein et al. 1998). De-
fects in apoptosis regulation are implicated in the pathogen-
esis of multiple diseases, perhaps explaining why the study of
apoptosis has emerged as one of the fastest growing areas of
biomedical research in recent years (Thompson 1995; O'Reilly
and Strasser 1999; Reed 2000).

Apoptosis also represents an important defense mecha-
nism against pathogens. For example, cell suicide can provide
a mechanism for depriving viruses of a host for replication,
thus limiting viral spread (Miller 1997). Also, some of the
families of proteins involved in apoptosis regulation partici-
pate in inflammatory responses to microbial pathogens. For
instance, Caspase-family proteases are critical effectors of the
apoptotic program, but some of these proteases are respon-

“Corresponding author.

E-MAIL jreed@burnham.org; FAX (858) 646-3194.

5Takahiro Arakawa,? Piero Carninci, >3 Jun Kawai,?3 and Yoshi-
hide Hayashizaki.>3

Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.1053803.

1376 Genome Research
www.genome.org

sible for cleavage and activation of pro-inflammatory cyto-
kines such as pro-Interleukin-18 and pro-Interleukin-18
(Thornberry and Lazebnik 1998). Similarly, some proteins in-
volved in Caspase activation can also participate in triggering
induction of NF«kB family transcription factors, which regu-
late expression of numerous genes important for inflamma-
tory responses, as well as innate and acquired immunity (Ka-
rin and Lin 2002). NF«B also regulates the expression of sev-
eral genes involved in apoptosis control, for example,
including expression of anti-apoptotic members of the Bcl-2,
Inhibitor of Apoptosis (IAP), and Death Effector Domain
(DED)-family of proteins (Reed 2002). Thus, the worlds of
apoptosis and inflammation are often closely intertwined.
Proteins involved in apoptosis commonly contain evo-
lutionarily conserved domains that can serve as signatures for
identification, permitting application of bioinformatics tech-
niques to analysis of families of apoptosis-regulatory proteins.
Previously, we used bioinformatics approaches to mine hu-
man genomic and EST databases for the presence of expressed
or putative genes containing signature domains associated
with apoptosis, including the (1) Caspase protease fold; (2)
Caspase-associated recruitment domain (CARD); (3) Death
Domain (DD); (4) DED; (5) BIR domain of IAP proteins; (6)
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Bcl-2 homology (BH) domains of Bcl-2 family proteins; (7)
nucleotide-binding NACHT domains; and (8) CIDE domains
of apoptotic endonucleases, assembling this information into
a database (http://apoptosis-db.org). In addition, several fami-
lies of proteins containing other types of domains implicated
either in the regulation of the core apoptotic machinery or in
control of closely linked inflammatory response pathways
were also organized, including (1) Tumor Necrosis Factor
(TNF)-family ligands; (2) TNF receptors (TNFR); (3) TIR do-
mains; (4) PAAD (Pyrin; PYD, DAPIN); (5) TRAFs; (6) REL
(NFkB) and I«B family proteins; and (7) BAG domains. These
data for human genes thus provided a foundation for per-
forming a comparative analysis with murine genes, including
those identified from cDNA sequences deposited into either
public databases at NCBI or a collection of cDNA sequence
data from the RIKEN mouse transcriptome project (Kawai et
al. 2001; Bono et al. 2002). A comparative analysis of human
and mouse genes that comprise the aforementioned 15 do-
main families is provided here. The findings reveal some in-
teresting and presumably functionally important species-
specific differences among genes devoted to regulation of ap-
optosis and inflammation.

RESULTS AND DISCUSSION

After excluding alternative splice forms and adjusting for re-
dundancy due to proteins that contain two or more of the
domains of interest, sequences corresponding to human ap-
optosis and inflammation genes found apparent orthologous
matches in either the public databases or RIKEN collection of
murine cDNAs in 220 of 228 cases (96%), including 10/11
Caspases; 18/23 CARD; 33/33 DD; 11/11 DED; 27/24 Bcl-2;
7/8 IAPs; 5/5 CIDEs; 12/19 PAAD; 16/20 NACHT; 18/14
TRAF-; and TRAF-related proteins (including TRAFs, TEFs, Me-
prins, Siah, and TRAF-binding proteins); 17/18 TNF-family
ligands; 27/29 TNFRs; 14/16 TIR; 5/5 RELs; 7/8 IkBs; 6/6 BAG;
and 33/35 miscellaneous apoptosis-relevant proteins (Table
1). In 21 cases, murine orthologs of human genes that were
absent from the public databases were represented in the
RIKEN collection.

The automated annotation scheme revealed only five
cases of novel murine proteins containing at least one of the
signature domains of interest, which were not recognized pre-
viously. At the same time, few groups of human proteins sys-
tematically lack murine orthologs, implying that most of the
genes of interest arose early in mammalian evolution. The
final evaluation of such cases has to wait for the completion
of the mouse genome. However, some species-specific differ-
ences are apparent between mouse and human that indicate
recent amplification of certain genes. In several cases, these
are represented by tandem extra copies of the relevant genes
on the same chromosomes. A brief description of each of the
domain families follows.

Caspases

Caspases represent a family of intracellular cysteine proteases
that either induce apoptosis or that are required for proteo-
lytic processing of certain pro-inflammatory cytokines (for
review, see Thornberry and Lazebnik 1998). The cysteine pro-
tease fold that comprises the Caspase domain is composed of
~20 kD large and ~10 kD small catalytic subunits that are
generated upon proteolytic cleavage from a proprotein pre-
cursor (Fesik 2000). The Caspases contain amino-terminal
prodomains of variable length, with the upstream initiator

Table 1. Summary of Protein Domain Family Comparisons
for Humans and Mice

Protein domain Human Mouse Only in RIKEN
Caspase 11 10 0
CARD? 23 18 5
DED? 11 11 0
DD 33 33 4
BIR 8 7° 1
Bcl-2 24 27 0
TNF-ligands 18 17 0
TNF-Rs 29 27 1
TIR 14 16 0
TRAF/TEF 14 18 1
PAAD 19 12 6
NACHT 20 16 6
REL 5 5 0
kB 8 7 0
BAG 6 6 3
CIDE 5 5 0
Other 35 33 0
Total 283 265 27
Total (adjusted) (228) (221) (21)

Caspases containing CARDs or DEDs are excluded from the results
(*), but other domain families are not corrected for redundancy. In
addition to caspases, 23 genes create redundancy due to the
presence of more than 1 of the domains listed above. The total
number of apoptosis and inflammation-relevant genes after ad-
justment for redundancy is also provided. Cases in which the data
were available only in the RIKEN database are noted. Other genes
include para-Caspase (MALT), the IAP-binding proteins, Smac
(Diablo), HtrA2 (Omi), XAF, the mitochondrial proteins cyto-
chrome ¢, AlIF, and EndoG, the transcription factors, p53, p65,
and p73, the Bcl-2-binding proteins R-Ras, Rafl, Prp1, ANTI,
ANT2, ANT3, VDACT, VDAC2, VDAC3, Beclin, BI-1, RTNx, Smn,
Aven, Calcineurin-A, Calcineurin-B, Nip1, and Nip2 and the TRAF-
binding proteins, I-TRAF (TANK), Trip, MIP-T3, TTRAP, KRC, TB2P,
and TB2P-like.

Psee Table 6 for details of BIR-domain (IAP) proteins.

proteases generally having larger prodomains than down-
stream effector proteases. The larger prodomains serve as pro-
tein-interaction modules for controlling Caspase activation
via the proposed induced proximity mechanism (Salvesen
and Dixit 1999).

We found cDNAs representing 10 members of the
Caspase family of cysteine proteases in mice, compared with
11 in humans (Table 2). Most striking is the absence of
Caspase-10 in mice, this gene is also absent from all public
databases. This member of the Caspase family is a close ho-
molog of Caspase-8, containing two tandem copies of the
DED in its amino-terminal prodomain, upstream of the car-
boxy-terminal catalytic domain that defines membership in
this protease family. In humans, the Caspase-8 and Caspase-
10 genes are located adjacent to each other on chromosome 2,
implying a recent gene duplication event. Other notable dif-
ferences between human and mouse are found in Caspase-4
and Caspase-5 of man, which both appear to be orthologs of
murine Caspase-11 on the basis of phylogeny analysis. In hu-
mans, a predicted gene is found on chromosome 11 with
striking nucleic acid sequence similarity to murine Caspase-
12, but the predicted ORF contains a termination codon prior
to the region encoding the catalytic domain (Fischer et al.
2002). All of the Caspases of mouse and human were depos-
ited previously in the NCBI database.
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Table 2. Comparison of Caspases of Mice and Humans

Protein Human Mouse NCBI gi RIKEN
Caspase-1 + + 266322 N/A
Caspase-2 + + 2506262  A630056A17
Caspase-3 + + 6753284 3110059017
A830040C14
Caspase-4 + = Not present  Not present
Caspase-5 + = Not present  Not present
Caspase-6 + + 6753286  2610037G10
Caspase-7 + + 6680850 C130071HO8
Caspase-8 + + 20847456 N/A
Caspase-9 + + 7656963  D430036C13
Caspase-10 + = Not present  Not present
Caspase-11 = + 6671682 903008106
Caspase-12 = + 6753278  5031429D02
Caspase-14 + + 6753280 C130060A16
Para-Caspase + + Not present D430033E09

The Caspases of humans and mice are compared. The murnine
cDNAs found exclusively in the RIKEN database are indicated.
(N/A) Not applicable, indicating the gene was already present at
NCBI or that mice lack this gene. Note that Caspase-13 was sub-
sequently recognized to represent a bovine cDNA that contami-
nated a human library. The human ortholog of murine Caspase-
12 is non-functional (Fischer et al. 2002). Representative genes are
indicated by NCBI gi number corresponding to the protein record
or RIKEN cDNA clone identification numbers. Minus sign indicates
that a murine ortholog was not found.

Mouse cDNAs corresponding to a single para-Caspase
(MALT) were also identified, suggesting that both mice and
humans possess a single para-Caspase gene. The murine para-
Caspase sequence was found in the RIKEN, but not the NCBI
database. This protein is implicated in NF«B regulation (Uren
et al. 2000).

CARD:s

The CARD is a protein interaction module, generally com-
prised of a bundle of six a-helices (Hofmann et al. 1997; Fesik
2000). This domain is commonly implicated in regulation of
Caspases that contain CARDs in their amino-terminal prodo-
mains (mouse Caspases 1, 2, 9, 11, and 12; human Caspases 1,
2,4, 5, and 9), or in regulation of NFkB activation.

In contrast to the 23 human genes encoding CARD-
carrying proteins (excluding CARD-carrying Caspases), cDNAs
representing only 18 of these were identified for mice in ei-
ther the NCBI or RIKEN databases (Table 3). Present in both
human and mouse were Apafl; Arc (Nop30); ASC (TMS-1;
PyCARD); Bcl-10 (CIPER, CARMEN, mE10, cE10, CLAP);
Bimp1l (CARD10, Carma3); Bimp2 (CARD14, Carma2); Car-
diak (RIP2, RICK); CARD6; CARP; cIAP1 (HIAP1, MIHB); cIAP2
(HIAP2, MIHC); Helicard (MdaS5); NAC (NALP1, DEFCAP,
CARD7); Nodl (CARD4); Nod2 (CARD1S); and RAIDD
(CRADD). In addition, partial cDNAs were found that likely
represent the murine orthologs of Bimp3 (CARD11; Carmal),
and CLAN (Ipaf; CARD12), but the CARD-encoding region
was missing from the sequences, and thus, caution must be
exercised in ascribing these proteins to the CARD family.
Missing from the available transcriptome of mice were
CARD9, COP (Pseudo-ICE), COP2 (predicted genomic frag-
ment), Iceberg, and TUCAN (Cardinal, CARDS8, NDPP, Dakar).
Five of the murine CARD-family members were found in the
RIKEN, but not NCBI databases, for example, ARC (Nop30),
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Table 3. Comparison of CARD-Family Proteins of Humans
and Mice

Protein Human Mouse NCBI gi RIKEN
Apafl + + 6857754 9530067N01
Arc + + Not found A230035L1
ASC + + 12963604 2310046K21
Bcl-10 + + 6753165 2700094G04
Bimp1 + + 14326095 9930017C23
Bimp2 + + 14326097 D930010)19
Bimp3 + + Not found A130067P1
Cardiak + + 20336736 2210420D18
CARD6 + + Not found D730008L1
CARD9 + — Not found Not found
CARP + + Not found 2310047013
clAP1 + + 2497239 Not found
clAP2 + + 6680696 Not found
CLAN + + 20901567 9530011P19
COoP + — Not found Not found
COP2 + — Not found Not found
Helicard + + 18698980 A430105A0
Iceberg + = Not found Not found
NAC + + 20346355 Not found
Nod1 + + Not found F830007N1
Nod2 + + 22003911 F830032C23
RAIDD + + 3608360 D33023M1
TUCAN + = Not found Not found
Total 23 18 = 5

The CARD-family proteins of humans and mice are compared. The
murine cDNAs found exclusively in the RIKEN database are indi-
cated. (N/A) Not applicable, indicating the cDNA was already
present at NCBI. Representative genes are indicated by NCBI gi or
RIKEN clone identification numbers. The following proteins have
alternative names: Arc (Nop30), ASC (TMS-1; PYCARD), Bcl-10
(CIPER, CARMEN, mE10, cE10, CLAP), Bimp1 (CARD10, Carma3),
Bimp2 (CARD14, Carma2), Bimp3 (CARD11, Carmal), Cardiak
(RICK, RIP2), clAP1 (HIAP2, MIHB), clAP2 (HIAP1, MIHC), CLAN
(Ipaf, CARD12), COP (Pseudo-ICE), NAC (NALP1, DEFCAP,
CARD7), Nod1 (CARD4), Nod2 (CARD15), RAIDD (CRADD),
TUCAN (Cardinal, CARD8, NDPP, Dakar). The number of cases in
which cDNAs were found uniquely in the RIKEN database is indi-
cated (n = 5). A minus sign (—) appears if a murine ortholog was
not found.

Bimp3, CARD6, CARP, and Nodl. Although some reports
have suggested the presence of a CARD in the protein CIITA
(Nickerson et al. 2001), our analysis using various structure-
prediction programs such as FFAS, RPS-BLAST, CDART, and
SMART failed to confirm this hypothesis, thus, it was not
included here (Table 3).

The absence of Iceberg, COP, and COP2 in the available
mouse cDNA and genomic collections, if true, suggests that
humans have evolved additional mechanisms for controlling
activation of Caspase-1. These proteins are comprised essen-
tially of just a CARD with strong sequence similarity to the
CARD found in pro-Caspase-1, and they have been shown in
the cases of Iceberg and COP (Pseudo-Caspase) to bind and
inhibit activation of pro-Caspase-1 (Humke et al. 2000;
Druilhe et al. 2001; Lee et al. 2001). Similarly, the absence of
TUCAN in mice suggests an additional level of complexity to
regulating Caspase-9 in humans, as this CARD-containing
protein reportedly binds and suppresses activation of
Caspase-9 (Pathan et al. 2001). Species-specific differences in
Caspase-9 regulation have been reported previously (Reed et
al. 2000; Rodriguez et al. 2000).
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DEDs

DED is a protein-interaction module similar to the CARD,
which is generally comprised of a 6 a-helical bundle (Eber-
stadt et al. 1998). DED-containing proteins have been impli-
cated in apoptosis regulation via interactions with DED-
containing Caspases (Caspase-8 and Caspase-10 in human;
Caspase-8 in mouse). Excluding DED-containing Caspases,
cDNAs representative of 11 DED-family genes were identified
in humans and orthologous sequences were found in all 11 of
these in mice (Table 4). The DED-containing proteins listed in
Table 4 comprise proteins with classical DEDs, as well as pro-
teins with DED-like domains.

DDs

The DD is another protein-interaction module belonging to
the same superfamily that includes the CARD, DED and PAAD
(PYRIN, PYD, DAP; Fesik 2000). This domain is commonly
implicated in either NF«kB induction or Caspase activation,
typically involving interactions with members of the TNF-
family of cytokine receptors (Ashkenazi and Dixit 1998). Of
the 33 DD-containing proteins recognized in human, 32 or-
thologs and one novel DD-containing protein were repre-
sented in the cDNA sequence data available at NCBI and
RIKEN (Table 5). At the time of our analysis, only four of the
DD-family proteins were found uniquely in the RIKEN data-
base (Ankyrin-2, IRAK2, MALT, and TRADD).

Absent from the available mouse data was DR4, one of
the receptors for TRAIL (Apo2L), an apoptosis-inducing mem-
ber of the TNF family. In humans, DR4 and DRS are highly
homologous proteins encoded by tandem genes on chromo-
some 8p21, both of which bind TRAIL and activate Caspases
involved in apoptosis. Thus, it appears that a recent gene du-
plication event in humans has increased the complexity of
the DD-containing TRAIL receptors.

Mouse ESTs encoding a predicted 228 amino-acid pro-
tein containing a DD were identified in both the NCBI
(GenBank AV149215) and RIKEN (2610311B09) databases.
The DD of this protein shares 36% amino-acid sequence iden-
tity (55% sequence similarity) with the DD of p75-NTR, and is

Table 4. Comparison of DED Family Proteins of Humans
and Mice

Protein Human Mouse NCBI gi RIKEN
Caspase 8 + + 3193167 N/A

Caspase 10 + = Not found  Not found
DEDD + + 6755835  1700056K21
DEDD2 + + 20126796  2410050E11
FADD + + 6753812  6030422N02
FLIP + + 2253683  N/A

PEA-15 + + 2498751  E430038103
BAP31? + + 12805281  2610021E10
BAR? + + 12851406  3010001A0
DAP-3? + + 18043506  6430514F02
FLASH? + + 4754905  2610104C23
HIP-12 + + 17028404  E230016G06
HIPPI? + + 20127155  B930036N12
Total 13 12 — 0

2DED-like domains (Pseudo-DEDs).

The DED-family proteins of humans and mice are compared.
(N/A) Not applicable or that mice lack that gene. Minus sign
indicates that a murine ortholog was not found.

Table 5. Comparison of DD Family Proteins of Humans
and Mice

Protein Human Mouse NCBI gi RIKEN
Ankyrin-1 + + 1168457 N/A
Ankyrin-2 + + Not found ~ A930028N13
Ankyrin-3 + + 11276933  9530086C08
DAP-Kinase + + 18204817  2310039H24
DR3 + + 14719438  N/A

DR4 + = Not found  Not found
DR5 + + 5815401  A530056N19
DR6 + + 16741137  A830037A05
EDAR + + 6753714  1200003K04
EDARADD + + 19526479  A630089021
FADD + + 6753812  6030422N02
Fas + + 6679751  0610012D23
IRAK-1 + + 15214058 B230327C20
IRAK-2 + + Not found ~ 4732448K15
IRAK-4 + + 20219012 4732460109
IRAK-M + + 12852834  4833428C11
MADD + + 13096910  9630059K23
MALT-1 + + Not found  D430033E09
MyD88 + + 6754772  G430132D13
NF-kB-1 + + 6679044  F830007L24
NF-kB-2 + + 9506921  N/A

NGFR + + 15082265  A030014A01
NMP-84 + + 19353206  6430411N16
NRDD = + 20895338  1810013K01
Pidd + + 12083587  1200011D09
RAIDD + + 6753516  D330023M19
RIP + + 6677753 5830469012
TNFR1 + + 135960 N/A

Tradd + + Not found ~ 9130005N23
UNC5H1a + + 23346571  N/A
UNC5H1b + + 23346571 N/A
UNC5H2 + + 12857776  6330415E02
UNC5H3 + + 6678505  6030473H24
UNC5H4 + + 23346575 NJ/A

Total 33 33 — 4

The DD-family proteins of humans and mice are compared. Mu-
rine cDNAs found uniquely in the RIKEN database are indicated.
(N/A) Not applicable, indicating the data was already present at
NCBI. Minus sign indicates murine gene not found.

preceded by a predicted transmembrane (TM) domain, indica-
tive of an integral membrane protein. Homologous ESTs were
found in humans (GenBank Al688486; BE839192), but the
predicted ORFs contained a termination codon preceding the
DD-encoding region, indicating that the predicted human
protein lacks a DD. We have tentatively termed the predicted
mouse protein, NRDD, for NTR-related death domain.

IAPs

The IAP-family proteins function as apoptosis suppressors
(Deveraux and Reed 1999). All members of this family contain
at least one copy of a zinc-binding fold, termed the BIR do-
main (Miller 1999). Several IAPs have been reported to di-
rectly bind and suppress Caspase-family proteases (Deveraux
and Reed 1999). Humans have genes encoding IAP-family
proteins, including Naip, cIAP1, cIAP2, XIAP, Survivin, Apol-
lon (BRUCE), ML-IAP (Livin; K-IAP), and ILP2 (TsIAP). Murine
cDNAs corresponding to seven of these IAP-family proteins
were identified in either the NCBI or RIKEN databases (Table
6), with ILP2 missing from the available mouse transcriptome
data. Sequence information for ML-IAP was uniquely found
in the RIKEN database at the time of analysis, whereas the
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Table 6. Comparison of IAP and IAP-Related-Family
Proteins of Humans and Mice

Protein Human Mouse NCBI RIKEN
NAIP (BIRCT) + + 6679007 N/A

clAP1 (BIRC2) + + 6680695 E130019N06
clAP2 (BIRC3) + + 6680697 N/A

XIAP (BIRC4) + + 20983625 N/A

Survivin (BIRC5) + + 6753089 5830459C16
Apollon (BIRC6) + + 20985107 B230120J06
ML-IAP (BIRC7) + + Not found E130019N06
ILP2 (BIRC8) + = Not found N/A

Smac (DIABLO) + + 8953909 4933428M04
HtrA2 + + 5739487 2610024)09
XAF + + Not found B530033B21

The IAPs and IAP-agonists (Smac; HtrA2; XAF) of humans and
mice are compared. The murine cDNAs found exclusively in the
RIKEN database are indicated. (N/A) Not applicable, indicating
the data was already present at NCBI. In mice, approximately six
NAIP genes have been identified in a cluster on chromosome 13.
At least three of these are transcriptionally active and likely to
encode functional proteins (Huang et al. 1999; Endrizzi et al.
2000).

other IAPs were found in NCBI. Interestingly, multiple tan-
dem copies of naip-related genes have been found on mouse
chromosome 13 (Endrizzi et al. 2000). In contrast to humans
that express only one NAIP gene (Roy et al. 1995; La Casse et
al. 1998), mice appear to express at least three versions of the
NAIP protein from distinct genes (see legend to Table 6 for
details).

Several IAP antagonists have been identified in humans,
including SMAC (Diablo), Omi (HtrA2), and XAF. ESTs or
cDNAs corresponding to all of these were observed in mice,
with XAF sequence data uniquely found in the RIKEN data-
bases.

Bcl-2

Proteins of the Bcl-2 family are critical regulators of apoptosis,
whose functions included governing mitochondria-
dependent steps in cell death pathways (Green and Reed
1998; Kroemer and Reed 2000). EST and ¢cDNA data corre-
sponding to 24 human and 27 mouse Bcl-2 family genes were
identified (Table 7). These included (1) the multidomain
members of the family, which contain Bcl-2 Homology (BH)
domains, BH1, BH2, BH3, and (sometimes) BH4 (Bcl-2, BclX,
Mcll, Bcl-W, Bf11 [A1], Bcl-B, Diva [Boo], Bax, Bak, Bok
[Mtd]), which have been documented or predicted to share
structural similarity with the a-helical pore-forming domains
of certain bacterial toxins (Fesik 2000); (2) Bcl-G,, which pos-
sess BH2 and BH3 domains (Guo et al. 2001); (3) several BH3-
only proteins (Bad, Bid, Bim [Bod], Bmf, Bik [BIk], Noxa [APR],
Puma, Hrk [Dp35], [Huang and Strasser 2000]) (4) proteins with
BH3-like domain (Nip3 [Bnip3], Nix [Nip3L], Mapl, p193;
Chen et al. 1999), and (5) a protein containing a putative BH2
domain (Bcl2L12; Scorilas et al. 2001). The human ortholog of
mouse Diva (Boo) appears to be Bcl-B, on the basis of phylog-
eny analysis (data not shown). Interestingly, four copies of
the Al gene of mice (known as Bfll in humans) have been
identified. Three of these Al genes (Ala, Bid) are closely
linked on chromosome 9, (NCBI Locus 1D12044, ID12045,
and ID12047), indicating a recent gene-amplification event in
mice (Orlofsky et al. 2002). Bcl-2 family genes are well known
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Table 7. Comparison of Bcl-2-Family Proteins of Humans

and Mice

Protein Human Mouse NCBI gi RIKEN
Bcl-2 + + 231633  C430015F12
Bcl-x + + 2493277 N/A

Mcl-1 + + 6678824  N/A

Bcl-w + + 2493279  4930488D08
Bcl-B/Boo/

Diva + + 7304927 N/A
Ala/Bfl-1 + + 729772  N/A
Alb = + 20934613  N/A
Alc — + 20962531 N/A
Ald - + 20958972  N/A
Bax + + 728946  2810443M09
Bak + + 2493276  F630041)23
Bok/Mtd + + 7949082 N/A
Mil-1/

Bcl-Rambo + + 20342196 E430016C20
Bcl-G + + 20834553 2210008009
Bik + + 13277643  N/A
Hrk/Dp5 + + 2498468  N/A
Bim/Bod + + 18202064  C230069E03
Bad + + 2493288 N/A
Bid + + 2493286  5730509E14
Puma + + 20820326 N/A
Bmf + + 15545991 D330026D15
Noxa + + 10946832  A830041017
Nip3/Bnip3 + + 6093508  2410015N02
Nix/Nip3L + + 7227912  9130410L09
Bcl-L12 + + 20336330  5430429M05
MAP-1 + + 11139671 2610209C10
p193 + + gil209620141 2510004L20
Total 24 27 — 0

(N/A) Not applicable because cDNA clone was already found at
NCBI. Minus sign indicates that additional human orthologs were
not found.

for production of splice variants that produce proteins, some-
times having opposing functions (e.g., Bcl-X, vs Bcl-Xs) (Boise
et al. 1993; Reed 1999). Humans and mice appeared to share
many of these splicing variants (data not shown).

In humans, 18 putative Bcl-2-binding proteins have been
described that lack sequence similarity with Bcl-2 and its rela-
tives, including R-Ras, Rafl, Prpl, BAG1, Flip, ANT1, ANT2,
ANT3, VDAC1, VDAC2, BAR, BI-1, RTN-x, Smn, Apafl, Aven,
Nip1, and Nip2. ESTs or cDNAs corresponding to 16 of these
18 proteins were identified for mice. Only Adenine Nucleo-
tide Translocator-3 (ANT3) and RTN-x were absent from the
available murine data (data not shown).

TNF-Family Ligands

Many TNF-family cytokines regulate pathways implicated in
either suppression or induction of apoptosis (Baud and Karin
2001; Locksley et al. 2001). Humans have 18 genes encoding
proteins that contain a conserved carboxy-terminal domain
spanning ~150 amino acids, which is termed the TNF homol-
ogy domain (THD). This domain is involved in ligand tri-
merization and receptor binding. Most family members
contain predicted TM domains and are trimeric Type II trans-
membrane proteins, in which the carboxyl terminus is pre-
dicted to be oriented toward the outside of the cell and the
amino terminus toward the cell interior. Some TNF-family
ligands are released from the cell surface by proteolysis. ESTs
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or cDNAs corresponding to all of these TNF-family ligands,
except AITRL, were identified in the mouse databases (Table
8). Thus, this family of proteins is highly conserved between
humans and mice.

TNF-Family Receptors

The receptors for TNF-family ligands contain a conserved cys-
teine-rich domain (CRD) present in one to four copies, typi-
cally preceded by a hydrophobic leader peptide sequence and
followed by a TM domain, indicative of Type I transmem-
brane proteins that are sorted to the cell surface (Locksley et
al. 2001). Some of these receptors lack a membrane-anchoring
TM domain and are secreted from cells, whereas others are
released from the cell surface by proteolysis. Humans contain
29 genes encoding TNF-family receptors, including 8 that
contain a DD in their cytosolic tails. Sequence data from the
NCBI and RIKEN databases demonstrated the presence of 25
mouse TNF-family receptors with orthologs in humans, as
well as 2 additional receptors (SOBa and SOBb) found only in
mice (Table 9). Missing from the mouse databases were the
TRAIL receptor DR4 (as mentioned above), as well as two
TRAIL decoy receptors DcR1 (TNFRsF10c) and DcR2
(TNFRsF10d), and the FasL decoy receptor DcR3 (TNFRsF6b)
that possess the extracellular ligand-binding domain but lack
signaling-transducing cytosolic domains. Thus, humans may
have evolved a greater diversity of signaling transducing (DR4
and DRS) and decoy (DcR1 and DcR2; vs. only OPG in mouse)
receptors for TRAIL, allowing greater fine tuning of responses
to this TNF-family ligand. Analogously, no mouse ESTs or
cDNAs were found that encode the decoy receptor, DcR3,
which competes for binding to FasL (TNESF6; Roth et al.
2001), LIGHT (TNESF14; Yu et al. 1999), and TL1A (TNFSF15;
Migone et al. 2002).

Interestingly, although the ligand was not present for
mouse, ESTs encoding the mouse homolog of the TNF-family
receptor AITR were identified, suggesting either that eventu-
ally the corresponding murine ligand will be identified or that

Table 8. Comparison of TNF-Superfamily of Humans and Mice

another member of the TNF family can bind this receptor,
analogous to some TNF-family ligand/receptor combinations
in which more than one ligand competes for a given receptor
(Kovacsovics et al. 2002).

TIRs

Toll-like receptors (TLRs) play important roles in innate im-
munity (Aderem and Ulevitch 2000). These Type I transmem-
brane receptors contain Leucine Rich Repeat (LRR) domains
in their extracellular region, which bind various molecules
made by microbial pathogens, as well as certain endogenous
proteins such as heat-shock proteins when released by cell
lysis (Wagner 2001; Vabulas et al. 2002). The TIR domain
represents a ~130 amino acid fold related to flavodoxin con-
sisting of a 5-strand parallel B-sheet surrounded by two layers
of parallel a-helices (Xu et al. 2000). The TIR domain is found
in the cytosolic (intracellular) tails of TLRs, as well as in cer-
tain intracellular adapter proteins that interact with TLRs in
the context of transducing signals important for innate im-
munity, including activation of NFkB (Silverman and Mani-
atis 2001). Of the 14 TIR-containing proteins identified pre-
viously in humans (IL-1R, TLR1, TLR2, TLR3, TLR4, TLRS,
TLR6, TLR7, TLR8, TLR9, TLR10, MyD88, and Mal [TIRAP]),
orthologous sequences were found for 13 in mice, the sole
exception being TLR10 (Table 10).

TRAFs/TEFs

TRAFs constitute a family of adapter proteins that share an
~180 amino acid fold, the TRAF domain, which is comprised
of a bundle of eight B-strands, preceded by an «-helical seg-
ment that forms coiled-coil interactions, stabilizing these do-
mains into trimers (Chung et al. 2002). TRAFs bind the cyto-
solic (intracellular) regions of TNF-Rs, certain adapter proteins
involved in TNF-R signaling (Tradd), and some IAP-family
members. They link these proteins to downstream protein
kinases involved in induction of NF«kB and Jun amino-
terminal kinase (JNKs), among other signaling proteins and
pathways (Arch et al. 1998; Bradley and Pober
2001; Chung et al. 2002). Six TRAFs have been
identified in humans, with clear orthologs found
for all of these in mice (Table 11). Although lack-

Standard Common Human  Mouse NCBI gi RIKEN ing the TRAF-domain, six TRAF-binding proteins
have also been described in humans, including
TNFSF1 LT + + 387407 A630048P10 I-TRAF (TANK) (Cheng and Baltimore 1996;
TNFSF2 TNF + + 7305585  N/A Rothe et al. 1996), Trip (Lee et al. 1997), MIP-T3
m;gﬁ (L)T)& oL N N gg;gzgg wﬁ (Ling and Goeddel 2000), TTRAP (Pype et al.
TNESE5 CD40L n H 15011846 N/A 2000), KRC (Oukka et al. 2002), TB2P (Kanamori
TNFSF6 FASL + + 6753818  A430069F14 et al. 2002), and TB2P-like (J. Zapata, J.C. Reed,
TNFSF7 CD27L + + 6755839 N/A unpubl.). Murine orthologs for all of these are
TNFSF8 CD30L + + 6678387 5830454L09 evident in murine databases, with partial clones
TNFSF9 4-1BBL + + 6678389  N/A of MIP-T3 (3930402D05) and T2BP-like
mgm ka N N g%ggg; wﬁ (9830144P17) found exclusively in the RIKEN
TNFSF12  TWEAK & & 2707221  A930010H24  database.
TNFSF13 APRIL + + 12844355  2310026N09 The B-strand region of the TRAF domain
TNFSF13b BAFF + + 13124571 9330158D20 (so-called, C-TRAF domain) shares documented
TNFSF14 LIGHT + + 9507195 N/A or predicted structural similarity with a variety of
$EE§E}§ Eﬁ] I?L : i ﬁoﬁgagg Hé ? found other types of protgins, inc.luding Meprins (Ure.n
N/A EDA-AT/A2 + 4 6753712 N/A and Vaux 1996), Siah-family proteins (Tartaglia
5734458 et al. 1991; Reed 2002), and the TEF (TRAF-
Total 16 — . Encompassing Factors) TEF1 (Ubiquitin-Specific

(N/A) Not applicable because cDNA was already found at NCBI. Minus sign indicates

that a murine ortholog could not be found.

Protease-7 [USP7]), TEF2 (SPOP), and TEF3 (Mu-
librey Nanism [MUL]; Zapata et al. 2001). A total
of eight human proteins have been identified
that contain these TRAF-like folds, including Me-
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Table 9. Comparison of TNF-Receptors Superfamily of Humans and Mice

PAADs/PYRINSs
The PAAD domain (also known as PYRIN, PYD,

Standard Common Human Mouse NCBI gi RIKEN DAPIN) is comprised of a bundle of five or six
a-helices (Martinou and Green 2001; Pawlowski
TNFRSFTA TNFR1 o W 13435460 N/A et al. 2001; Staub et al. 2001; Bertin and
TNFRSF1B TNFR2 + + 135963 1300002A12 : e : .
TNFRSF3 LTBR N N 1729988 9030221D21 DiStefano 2000; Espejo et al. 2002), and repre-
TNFRSF4 OX40 o - 1352652  N/A sen_ts anothe'r branch of the DD superfamily,
TNFRSF5 CD40 + + 6755829  F830034E13 which contains DDs, DEDs, and CARDs. Al-
TNFRSF6 Fas + + 119834 0610012D23 though the functions of PAAD-containing pro-
TNFRSF6B DcR3 + - Not found  Not found teins are still being elucidated, recent data sug-
NS R L NA et thoy opente s homotypic protein.
TNFRSF9 4-1BB + + 112795 5031438N10 1n.teract101.1 IIl.OtlfS tha.t med.late. 1ntere_1ct10ns
TNFRSF10A  DR4 + _ Not found  Not found with proteins involved in activation of inflam-
TNFRSF10B  DR5 + + 11990627  A530056N19 matory Caspases (e.g., Caspase-1) and NF«kB
TNFRSF10C DcR1 + — Not found Not found (Fiorentino et al. 2002; Manji et al. 2002; Perfet-
TNFRSF10D  DcR2 + - Not found  Not found tini et al. 2002; Srinivasula et al. 2002; Wang et
IEEEEEHQ g’?)'\GJK : : gg;g?gl Efﬁ al. 2002). Hereditary mutations in some genes
TNERSE12 DR3 + + 14719438 N/A eqcoding PAAD-family proteins h.ave been im-
TNERSE13 TACI + + 10946668 N/A plicated in autoimmune and hyperinflammatory
TNFRSF14 HVEM + + 18381074 N/A syndromes, further supporting a role for these
$EEE§E? Eg\;RA : : 12(7)§§§g§ égggg} gﬁ«?; proteins in regulating inflammatory responses
Consortium 1997; Hoffman et al. 2001).
TNFRSF18 AITR + + 13878819 A430104A12 ( In humans, 19 candidate PAAD)-famil
TNFRSF19 TROY + + 14389429 2310021M07 ' e . . Y
N/A EDAR " a 6753714 1200003K04 genes have been identified, including ASC (Py-
N/A XEDAR + + Not found  C330006C18 CARD), NAC (NALP1, PYPAF1, DEFCAP,
N/A BAFF-R + + 19070549 N/A CARD7), Cryopyrin (PYPAF1, NALP3), Pyrin
N/A TWEAK-R + + 7305059 1600012005 (Marenostrin), AIM2, IFP16, POP1 (ASC2), POP2,
wﬁ Egl_él' + + 12‘5‘;2‘;;; éf;ggg{?gj and PANT1 through PAN11 (also known as NALPs
N/A SOBa t : 12963781 2810028K06 and PYPAFs), (Table 12). In some cases, the
N/A SOBb _ + 13195696 N/A PAAD domains are present as the Only motifs
e P P - within these proteins (POP1, POP2), but in most
ota —

instances, the PAAD is combined with various

(N/A) Not applicable because cDNA was already found at NCBI. Minus sign indicates

that either a human or a murine ortholog could not be found.

prin-la and Meprin-1b on chromosomes 6p21 and 18q12,
respectively (Uren and Vaux 1996), Siah-1 and Siah-2 (Hu et
al. 1997), TEF1, TEF2, and TEF3 (Zapata et al. 2001), and TEF4
(J. Zapata, J.C. Reed, unpubl.). The human TEF4 protein is
highly similar (76% identical) to TEF2 (SPOP), containing a
TRAF-like domain and a POZ domain. In mice, orthologs for
all of these human proteins were found in the EST/cDNA data,
with the exception of TEF4. Partial cDNAs encoding mouse
TEF3 were uniquely found in the RIKEN database (Table 10).
Although lacking an ortholog of TEF4, cDNAs encoding TEF2/
TEF4-like proteins were identified in mice that appear to arise
from different genes, termed mouse TEFS, TEF6, TEF7, and
TEF8 (Table 11). Phylogeny analysis suggests that these TEF2/
TEF4-like proteins are not strictly orthologous to their human
counterparts. Why mice have evidently evolved several TEF2/
TEF4-related genes is unclear, and awaits elucidation of the
functions of these proteins. Mice also contain an additional
Siah-family gene relative to humans, apparently as a result of
gene duplication, in which the resulting protein products
(Siahla, Siahlb) share 98% amino acid sequence identity
(Della et al. 1993). The functions of most of these proteins
containing TRAF-like folds are unknown, and may not be di-
rectly relevant to either apoptosis or inflammation, although
Siah-family proteins (which function as E3s in targeting pro-
teins for ubiquitination) have been reported to regulate apo-
ptosis and NFkB in some contexts (Hu et al. 1997; Polekhina
et al. 2002).
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other domains, including CARDs (ASC, NAC),
nucleotide-binding NACHT domains (see below)
(NAC, Cryopyrin, PAN1-PAN11), LRRs (NAC,

Table 10. Comparison of TIR-Containing Protein in
Humans and Mice

Protein Human Mouse NCBI gi RIKEN
IL-1R + + 6680417 C130072K02
TLR1 + + 11528627 N/A

TLR2 + + 20140895 1300018H12
TLR3 + + 20140736 D130071D16
TLR4 + + 20140876 5230401G04
TLR5 + + 20140822 9930017K03
TLR6 + + MGI:1341296  N/A

TLR7 + + 20140470 9830132N19
TLR8 + + MGI:2176887 N/A

TLR9 + + MGI:1932389 N/A

TLR10 + — Not found N/A

MyD88 + + 6754772 G430132D13
TRIF + = Not found N/A

TRIF2? + + 27734184 B430113A10
Mal + + 1690513 N/A

TIRP + + Not found N/A

Total 16 14 — 0

The TIR-containing proteins of humans and mice are compared.
Representative sequence identification numbers are provided.
(N/A) Not applicable, indicating the cDNA was already present in
NCBI. Mal is also known as TIRAp.

2New TRIF from humans, accession number is HS:NT_030385.4-
27498150. Minus sign indicates that a murine ortholog was not
found.
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Table 11. Comparison of TRAF- and TEF-Family Proteins of
Humans and Mice

Protein Human  Mouse NCBI gi RIKEN
TRAF1 + + 6678425  4732496E14
TRAF2 + + 731003  A130081B14
TRAF3 + + 6686038 N/A

TRAF4 + + 7274404 9430080B18
TRAF5 + + 1549146 N/A

TRAF6 + + 6678429  A530087L19
MEPRIN-Ta + + 15929651 N/A
MEPRIN-Tb + + 1083414 N/A

SIAH-1 + + 2137774  N/A

SIAH-Tb — + 423568 N/A

SIAH-2 + + 2137775 N/A

TEF1 + + 20891715 2210010009
TEF2 + + 15799255  2700043G01
TEF3 + + Not found ~ 4930400A15
TEF4 + = Not found  Not found
TEF5 — + 17483747  9030207F01
TEF6 - + 20874936  N/A

TEF7 + 20874228 N/A

TEF8 + 20962014 N/A

Total 14 18 N/A 1

The TRAFs and other proteins containing a TRAF-like domain
(TRAF encompassing factors; TEFs) of humans and mice are com-
pared. The murine cDNAs found exclusively in the RIKEN database
are indicated. (N/A) Not applicable, indicating the data was al-
ready present at NCBI. Minus sign indicates that either a human
or mouse ortholog could not be found.

Cryopyrin, PAN1-PAN11), HIN200, B-Box, or SPRY domains
(Pawlowski et al. 2001). Mice appear to contain substantially
fewer PAAD-family genes, as revealed through the available
cDNA sequence data. Only 12 of the PAADs were identified
within the mouse EST/cDNA data, presenting the orthologs of
Pyrin, Cryopyrin, ASC, NAC, IFI16, PAN1, PAN2, PAN3,
PANS, PANG6, PAN7, and PAN11. Of note, the available mu-
rine cDNA sequence data corresponding to the apparent NAC
ortholog lack the carboxy-terminal CARD domain found in
the human protein, suggesting that (1) incomplete cDNAs
were sequenced or (2) that a true difference exists in the struc-
tures of the human and mouse proteins, or (3) that a true
ortholog of NAC is not present in mice, and instead, the can-
didate cDNA clones should be viewed as having originated
from a paralogous gene more similar to the PANs and
Cryopyrin in domain organization. Similarly, the Pyrin pro-
tein of mice contains the PAAD and B-box domains found in
the human protein, but is lacking the carboxy-terminal SPRY
domain of its human counterpart. The expansion of PAN fam-
ily genes in humans correlates with a cluster of eight of these
genes on human chromosome 19, suggesting recent gene du-
plication events.

NACHT Domains

The NACHT domain represents a nucleotide-binding fold of
unknown structure, which is found in many proteins of im-
portance for apoptosis and inflammatory reactions (Koonin
and Aravind 2000). Because this domain forms oligomers (at
least in some cases), it can serve as a scaffold for bringing
associated proteins such as proteases and protein kinases into
close apposition, inducing their activation through the in-
duced proximity mechanism (Inohara et al. 2000). The
Caspase-9-activating protein of mammals, Apafl, contains a

Table 12. Comparison of Human and Mouse
PAAD-Family Proteins

Protein Human  Mouse NCBI gi RIKEN
PYRIN + + 6110308 N/A

IFIT6 + + Not found A430075K09
AIM2 + = Not found Not found
ASC + + 12963604 2310046K21
POP1 + = Not found Not found
POP2 + = Not found Not found
NAC + + 20346355 N/A
Cryopyrin + + 20344504 N/A

PAN1 + + Not found E330007A02
PAN2 + + Not found E330028A19
PAN3 + + Not found A330055K17
PAN4 + = Not found Not found
PANS + + 20343891 6430548120
PAN6 + + 20947431 N/A

PAN7 + + Not found E330007A02
PANS + — Not found Not found
PAN9 + = Not found Not found
PAN10 + — Not found Not found
PANT1 + + Not found E330019F16
Total 19 12 — 6

The PAAD proteins of humans and mice are compared. Represen-
tative mouse genes are indicated by the I.D. number from either
NCBI or RIKEN cDNA clones databases. The PAN-family proteins
are also known as PYPAFs or NALPs. Designations reported thus far
in the literature include: PAN1 (NALP2, PYPAF2), PAN2 (NALP4,
PYPAF4), PAN3 (PYPAF5), PAN6 (PYPAF7), and PAN7 (PYPAF3).
The NAC protein is also known as DEFCAP, CARD7, and NALP1.
Cryopyrin is also known as PYPAF1 and NALP3. (N/A) Not appli-
cable, indicating that a cDNA was already present at NCBI. Minus
signs indicate that a murine ortholog could not be found.

related but distinct nucleotide-binding domain, called an NB-
ARC, which is found in Apafl homologs in animals (Dark in
Drosophila; Ced4 in Caenorhabditis elegans), and in pathogen-
response proteins of plants (Chinnaiyan et al. 1997).

In humans, 20 candidate NACHT family members have
been identified from a combination of cDNA, EST, and ge-
nomic data (A. Rojas, K. Pawlowski, F. Xu, J.C. Reed, and A.
Godzik, in prep.), including (1) Nodl (CARD4), Nod2
(CARD1S), and Ipaf (CLAN), which contain amino-terminal
CARDs and carboxy-terminal LRRs flanking the NACHT do-
main; (2) Cryopyrin (PYPAF1; NALP3) and the PAN-family
proteins, PAN1-PAN11 (NALP2-NALP12) (PYPAF2-PYPAF12),
which contain amino-terminal PAADs and carboxy-terminal
LRRs flanking the NACHT domain, (3) NAC (NALP1, CARD?7,
DEFCAP), which contains an amino-terminal PAAD, followed
by NACHT, and then LRRs and a carboxy-terminal CARD; (4)
Naip, which has three BIRs preceeding the NACHT, followed
by LRRs; (5) CIITA (MATER), which contains an amino-
terminal a-helical domain with CARD-like features upstream
of the NACHT, followed by LRRs; and (6) the NACHT-only
proteins, NOP1 and NOP2 (Table 13). In mice, orthologs for
these proteins were found for only 16 of the 20 candidates.
These included Naip, Nodl, Nod2, Ipaf, ASC, NAC,
Cryopyrin, Pyrin, PAN1, PAN2, PAN3, PANS, PAN11, and
CIITA (MATER). Thus, on the basis of the available data, it
appears that humans have evolved additional diversity in
NACHT-family proteins, relative to mice. As mentioned
above, a cluster of eight PAN-family genes is found on chromo-
some 19p13, suggesting recent gene amplification events (A.
Rojas, K. Pawlowski, F. Zu, J.C. Reed, and A. Godzik, in prep.).
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Table 13. Comparison of NACHT-Family Proteins of
Humans and Mice

Protein Human  Mouse NCBI gi RIKEN
CLAN + + 20901567 9530011P19
Nod1 + + Not found F830007N14
Nod2 + + 22003911 F830032C23
NOP1 + + 20893386 D230007K08
NOP2 + + 20888106 N/A

NAC + + 20346355 N/A

NAIP? + + 6754789 A130017A22
Cryopyrin + + 20344504 N/A

PAN1 + + Not found E330007A02
PAN2 + + Not found E330028A19
PAN3 + + Not found  A330055K17
PAN4 + — Not found Not found
PANS5 + + 20343891 6430548120
PAN6 + + 20947430 N/A

PAN7 + + Not found E330007A02
PAN8 + — Not found Not found
PAN9 + = Not found Not found
PAN10 + — Not found Not found
PANT11 + + Not found E330019F16
CITA + + 1870519 A530020G08
Total 20 16 — 6

The NACHT-family proteins of humans and mice are compared.
(N/A) Not applicable.

“The NAIP gene location on chromosome 13 in mice contains at
least six closely related genes, more than one of which may en-
code proteins containing the NACHT domain. The number of
cDNAs found uniquely in the RIKEN database is indicated (n = 6).
(N/A) Not applicable, indicating that a cDNA was already avail-
able at NCBI. Minus sign indicates that a mouse ortholog was not
found.

NF«B, I«B, and IKK Family Proteins

NFkB family transcription factors play important roles in host
defense and cell survival (for review, see Ghosh and Karin
2002; Karin and Lin 2002). The DNA-binding activity of these
transcription factors is rapidly induced in mammalian cells by
a variety of cytokines and by certain molecules produced by
bacteria, inducing transcription of several genes involved in
inflammation and apoptosis, including TNF-family cytokines
(TNF, LTa, LTB, FasL), molecules involved in TNF-family re-
ceptor signaling (TRAF1), Caspase-inhibitors (c-IAP2, FLIP),
and Bcl-2-family members (Bfl-1, Bcl-X).

The NF«B (Rel)-family represents a group of structurally
related transcription factors containing an evolutionarily
conserved amino-terminal domain spanning ~300 amino-
acids, which is termed the Rel homology domain (RHD). This
domain is involved in DNA binding and dimerization, and is
also responsible for interactions with a family of endogenous
NFkB suppressors, the IkB family (Ghosh et al. 1998; Ghosh
and Karin 2002). Five members of the NF«B family are evident
in human and mouse databases: RelA (p65), RelB (pS0),
NFkB-1 (pS0/p10S), NFkB-2 (p52/p100), and c-Rel (Table 14).
The nuclear factor of activated T cells (NF-AT) also contains a
RHD-like domain, although it is not commonly considered a
member of the Rel-family.

The NF«B-family transcription factors are comprised of
homo- and hetero-dimeric pairs of Rel-family proteins. Regu-
lation of these transcription factors is complex, involving a
diversity of mechanisms. In general, however, activity of
NFkB-family proteins is controlled by a counteracting family
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Table 14. Comparison of Rel-Family and Related Proteins
of Humans and Mice

Protein Human Mouse NCBI gi RIKEN
REL-family
c-rel + + 227081 N/A
RelA + + 6677709 F730039C18
RelB + + 18042801 N/A
p50/p105 + + 111166 F830007L.24
p52/p100 + + 5081604 N/A
IkB-family
IkBa + + 1022734 0610009F10
kBB + + 14548082 A230051M19
IkBe + + 14548076 2210407G04
IkBz + + 13447398 N/A
Bcl-3 + + 15809014 N/A
IkB-like 1 + + 6754844 N/A
IkB-like 2 + + 10129816 N/A
IkB-like-like2 + = Not found Not found
IKK-family
IkBKa + + 14285502 9530016120
IkBKB + + 14285499 N/A
IkBKry + + 6754316  9930039F20
IkBKe + + 9789983  E430020M09
TBK-1 + + 9790253 1200008B05

Note that another IkB-family protein IkBy (data not shown), can
be produced in mice (but not humans) from an alternative inter-
nal promoter in the p50/p105 gene (NCBI: gil247617I; RIKEN
F830007L24). (N/A) Not applicable, indicating that a cDNA was
available from NCBI. Minus sign indicates that a mouse ortholog
was not found.

of suppressors, the IkB-family, that sequesters these transcrip-
tion factors in the cytosol. IkB-family proteins contain con-
served Ankyrin-repeat structures, which bind RHDs. Eight
members of the IkB family have been found in humans. Seven
of these are also found in mice, including IkBa, IkBB, IkBe,
IkBz, Bcl3, IkB-like-1, and IkB-like-2 (Table 14). Additionally,
mouse databases also reveal an alternative form of NFkBI,
termed IkBy that is identical to the carboxy-terminal half of
NFkB-1, and that is produced by transcription of the NFxB-1
(p50/p105) gene from an alternative internal promoter
(Ghosh et al. 1998).

Release of NFkB typically entails degradation of IkB-
family proteins, resulting from a mechanism involving phos-
phorylation by IkB-Kinases (IKKs or IkB-Ks; Table 14), fol-
lowed by ubiquitin-dependent proteasome-mediated destruc-
tion. IKKs contain a conserved serine-kinase domain and a
putative leucine-zipper domain. So far, five members of the
IKK family have been found in human and mouse databases.
Of those, IkBKa, IkBKB, and IkBK+y form a protein complex in
which IkBKa and IkBKB represent the catalytic subunits,
whereas IkBKy is a regulatory subunit (lacking a kinase do-
main) and is not structurally related to the o and B subunits
(Karin and Ben-Neriah 2000; Ghosh and Karin 2002). IkBKe
(Shimada et al. 1999) and Tank Binding Kinase (TBK)-1
(Pomerantz and Baltimore 1999) also are members of the IxB
kinase family (Table 14).

BAGs

The BAG domain is comprised of an anti-parallel two a-helix
structure that docks with high affinity onto the ATPase do-
main of 70-kD heat shock proteins (Hsp70), modulating their
function as molecular chaperones and helping to target
Hsp70-family proteins onto specific target proteins
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(Takayama and Reed 2001). Hsp70-family molecular chaper-
ones play roles in suppression of apoptosis, and examples of
involvement in BAG-family proteins in suppressing cell death
have been reported for BAG1 (Rap46), BAG3 (Bis), BAG4
(Sodd), and BAG6 (Scythe) (for review, see Briknarova et al.
2002). Humans contain six identifiable BAG-family proteins,
which contain the Hsp70-binding BAG domain in association
with various other domains. Mice also contain six ortholo-
gous BAG-family members, with cDNA sequence data for one
of these uniquely found in the RIKEN database (Table 15).
Thus, the BAG-family proteins appear to be highly conserved
in humans and mice.

CIDE Domains and Apoptotic Endonucleases
DNA fragmentation is often considered a hallmark of apopto-
sis, reflecting the activation of endonucleases that cleave DNA
between nucleosomes (Wyllie 1980). A unique domain is
found in the apoptotic endonuclease DFF40 (CAD) and its
homologs (Liu et al. 1997; Inohara et al. 1998; Sakahira et al.
1998), called the CIDE or CIDE-N domain. The CIDE-N do-
main represents a ~75 amino acid fold consisting of a twisted
five-stranded B sheet with two a-helices arranged in an «/f
roll (Lugovskoy et al. 1999). The CIDE-containing endonucle-
ase DFF40 (CAD) is held in an inactive state by a specific
chaperone protein, DFF45 (ICAD), which also contains the
CIDE domain, and which associates via CIDE-CIDE interac-
tions (Zhou et al. 2001). The endonuclease DFF40 (CAD) be-
comes released upon cleavage of chaperone DFF45 (ICAD) by
Caspases, thus linking endonuclease activation to activation
of the cell death proteases. Five CIDE family members are
evident in the transcriptomes of humans and mice (Table 16).
In addition to CIDE-family endonucleases, two proteins
have been identified that are sequestered in mitochondria,
which can contribute directly or indirectly to genome diges-
tion. These are EndoG, an evolutionary endonuclease (Li et al.
2001) and AIF, a flavoprotein that somehow promotes large-
scale cleavage of genomic DNA during apoptosis (Susin et al.
1999). Humans and mice contain cDNAs encoding EndoG
and AIF. Overall, therefore, the proteins associated with apo-
ptosis-associated genome destruction appear to be well-
conserved in humans and mice.

Miscellaneous Apoptosis-Relevant Proteins

We also compared the human and murine databases with
respect to a variety of miscellaneous proteins of reported rel-
evance to apoptosis regulation, including Cytochrome c (the
Apafl-activating protein), several Bcl-2-binding proteins (see
above), and pS53 and its relatives p63 and p73 (transcription
factors that can regulate the expression of multiple apoptosis

Table 15. Comparison of BAG-Family Proteins of Humans
and Mice

Protein Human Mouse NCBI gi RIKEN
BAG1 + + 5915764 2310004L01
BAG2 + + 2170378 D030052C04
BAG3 + + 20843831 4931440G06
BAG4 + + 19850178 2410112115
BAG5 + + 20859151 4930405)06
GAB6 + + Not found 2410045D21
Total 6 6 — 1

Table 16. Comparison of CIDE-Containing Proteins in
Humans and Mice

Protein Human Mouse NCBI® RIKEN
CPAN + + 6681185 5730477D02
DFF45 + + 2754588 D030054J11
FSP27 + + 2829467  A530033M24
DFFA-likeA + + 3114591 N/A
DFFA-likeB + + 3114593 1110030C18
Total 5 5 — 0

The CIDE-containing proteins of humans and mice are compared.
?Some of these cDNA sequences were originally found in non-
NCBI databases at Jackson Laboratories. (N/A) Not applicable.

genes), finding conservation of these proteins in humans and
mice.

Combinations of Domains

It is interesting to note that 39 of the proteins described above
contain more than one of the domains mentioned above. For
example, several Caspases combine the Caspase protease fold
with either CARD or DED domains. Para-caspase combines
the DD with a Caspase-like fold. Several proteins also com-
bined the NACHT domain with either CARD or PAAD do-
mains. Only one predicted protein was identified in either
human or mice that combined the DD and DED, namely
FADD. Only RAIDD combined both the CARD and DD do-
mains. NAC and ASC were the two proteins found that com-
bine the CARD and PAAD domains. No predicted proteins
were found that combine a CARD with a DED domain or that
pair a DED with a PAAD domain. Only one protein contained
both BIR and NACHT domains, namely NAIP. Only cIAP1 and
cIAP2 combine the BIR and CARD domains. Only MyD88
combines the DD and TIR domains. NFkB-1 and NF«B-2 have
DDs in association with RHDs. We speculate that these few
proteins that contain more than one of the signature domains
implicated in apoptosis or inflammation represent critical
points of cross-talk between the domain-families. This specu-
lation is supported by gene ablation studies in mice in some
instances (Kuida et al. 1995, 1998; Li et al. 1995; Nakagawara
et al. 1997; Adachi et al. 1998; Hakem et al. 1998; Takahashi
et al. 1998; Zhang et al. 1998; Kawai et al. 1999; Fitzgerald et
al. 2001; Kabra et al. 2001).

Conclusions

Comparisons of the cDNA (EST) record of humans and mice
reveals remarkable conservation of expressed genes involved
in apoptosis and inflammation. In some cases, humans con-
tain additional genes not evident in mouse, suggestive of
more complex or more precise regulation of events such as
Caspase-1 activation or signaling by TNF-family receptors. De-
spite the incompleteness of the mouse data, in several cases
we can correlate absence of certain genes with obvious dupli-
cations in the human genome, which clearly happened after
divergence of mouse and human ancestors. It is interesting to
note that many of these human-specific expansions can be
related to apoptosis triggered by infections or external stimuli.
However, in other cases, mice have expanded gene numbers
(e.g. Al, NAIP, TEFs) relative to humans, implying greater
redundancy in some aspects of apoptosis regulation. Knowl-
edge of the similarities and differences in the repertoire of
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expressed genes involved in apoptosis and inflammation in
humans and mice lays a foundation for understanding the
utility and limitations of the mouse models of disease that are
used for validating targets for drug discovery and for testing
new therapeutic agents prior to entering clinical trials in hu-
mans.

METHODS

Several parallel approaches were taken for comparative analy-
sis of apoptosis genes in human and mouse. First, amino acid
sequences of human apoptotic genes from our collection, as
described earlier, were used for T-BLAST-N searches (Altschul
et al. 1997) of the RIKEN EST collection in a search for ho-
mologous sequences. Second, amino acid translation of the
RIKEN data were subjected to an automated annotation pro-
cedure, using Psi-BLAST to find homologous sequences of hu-
man apoptotic genes, followed by structure-based analysis us-
ing FFAS in conjunction with a library containing three-
dimensional structures of the relevant protein folds. Third, a
procedure similar to the third one was used for finding mu-
rine genes in public databases, including NCBI nonredundant
(NR) protein database and Jackson Laboratories.

All identified murine genes were checked by phylogeny
and multiple sequence-alignment methods to assign or-
thologs to human proteins where possible (Thompson et al.
1994; Li et al. 2000). For most of the protein domain families,
multiple sequence alignments were prepared using T-coffee
(Notredame et al. 2000), and the resulting alignments were
used as an input to generate NJ trees using clustal. (Thompson
et al. 1997)
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