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Abstract

The analysis of longitudinal data collected from non-exchangeable dyads presents a challenge for

applied researchers for various reasons. This paper introduces the Dyadic Curve-of-Factors Model

(D-COFM) which extends the Curve-of-Factors Model (COFM) proposed by McArdle (1988) for

use with non-exchangeable dyadic data. The D-COFM overcomes problems with modeling

composite scores across time and instead permits examination of the growth in latent constructs

over time. The D-COFM also appropriately models the interdependency among non-exchangeable

dyads. Different parameterizations of the D-COFM are illustrated and discussed using a real

dataset to aid applied researchers when analyzing dyadic longitudinal data.

The analysis of data collected from dyads across time may introduce a challenge to applied

researchers. Dyad members may be either exchangeable or non-exchangeable. Exchangeable

dyad members are those that cannot be differentiated by a certain variable (e.g., twins,

coworkers, gay couples) whereas non-exchangeable dyad members are those that can be

differentiated by a certain variable (e.g., husband and wife, parent and child, teacher and

student) (see Kenny, Kashy, & Cook, 2006 for more information concerning dyadic data).

Latent growth modeling (LGM) within the structural equation modeling (SEM) arena has

become a popular method with which longitudinal data may be analyzed (Blozis, 2007a;

Hancock & Choi, 2006). The LGM technique provides applied researchers with more

modeling options and flexibility with which to evaluate individual growth across multiple

measurement occasions. Fortunately, LGM may be extended to model the dependency

among dyad members. Notwithstanding, little has been done to elucidate the extension of

LGM methods to longitudinal data analysis within dyad populations. Hence, the purpose of

this paper is twofold: (1) to extend the LGM method for use with longitudinal data for non-

exchangeable dyads, and (2) to demonstrate the flexibility of possible parameterizations

using the LGM method applied to a real longitudinal, non-exchangeable dyadic dataset.

Modeling Longitudinal Data Within a Single Population

Univariate Latent Growth Modeling

In the univariate latent growth model, also referred to as a first-order latent growth model, a

single observed/manifest variable (e.g., reading score) measured on multiple occasions is a
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function of 1) an intercept factor which represents the standing of the individuals on the

manifest variable at the temporal stage of development selected as a reference point (e.g.,

initial time of measurement), 2) a slope factor which represents differences in the

individual’s trajectory of growth across time (e.g., linear growth), and 3) error which is

associated with each manifest variable measured at multiple occasions, representing

variance not explained by the latent growth model (Lawrence & Hancock, 1998).

A latent mean structure is commonly incorporated into a LGM in order to estimate means of

the intercept and slope factors. This is accomplished by regressing the means on a constant

value of one. A univariate, linear LGM across three equally spaced measurement occasions,

centered at the initial measurement occasion, with a mean structure (represented with the

triangle in which a value of one is included) is depicted in Figure 1. The univariate LGM has

received considerable attention and, thus, will not be further described here (see Blozis,

2004; Lawrence & Hancock, 1998; McArdle, 1988; Singer & Willett, 2003; Willett &

Sayer, 1994).

A first-order latent growth model is referred to as a univariate latent growth model in that

only one manifest variable is modeled across measurement occasions. Researchers,

however, may be interested in using more than one manifest variable to measure a latent

construct (e.g., aggression, motivation). One option would then be to create a composite

manifest variable in which the multiple measures of the factor of interest are aggregated,

typically either by creating an average or a sum of the manifest variables. This composite

variable would then be modeled across measurement occasions using the univariate LGM as

in Figure 1.

It is important to note that when using composite scores in a univariate LGM, the growth

trajectory of the latent factor of interest may be misrepresented under certain circumstances.

When analyzing a univariate LGM, the variance in a composite variable is assumed to

consist of common variance among the set of items used to create the composite score.

However, the variance in a composite variable may also consist of each item’s error variance

and specific (or “unique”) variance. It has been shown that biased parameter estimates are

produced when measurement error in the items used to create a composite variable is not

corrected (Fan, 2003) and that a composite variable will be comparable to the latent factor of

interest only when the assumption of perfect reliability in the composite variable is met

(Bollen & Lennox, 1991). In addition, factor loadings are assumed to be equal for each of

the individual items of the latent construct.

Curve-of-Factors Model

The curve-of-factors model (COFM; McArdle, 1988), also referred to as a second-order or

multivariate LGM, was introduced to address the problems noted involving the use of

composite variables at each time point in the univariate LGM. The COFM extends the

univariate LGM with the inclusion of multiple indicator variables of the latent factor of

interest at each measurement occasion. Thus, it is possible to model each indicator’s unique

error variance, factor loading on the construct of interest, and intercept. The COFM is a

second-order factor model that combines a measurement model and a latent growth model

(Blozis, 2007a; Hancock, Kuo, & Lawrence, 2001; Sayer & Cumsille, 2001). The first-order
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factors are the latent construct of interest at each time point. These factors are then modeled

to load on the second-order latent growth factors which are, in this context, the intercept and

slope factors. Figure 2 depicts a COFM of linear growth across T time points for a k-variable

factor.

The measurement portion of the model refers to the loadings of the indicator variables on the

latent construct at each measurement occasion. The second-order factors (i.e., intercept and

slope) provide the latent growth portion of the model used to describe the growth of the

latent construct across time. Again, a mean structure is ordinarily incorporated into the

COFM in order to estimate the intercept and slope factor means and is represented

graphically as the triangle in which a value of one is contained in Figure 21. The COFM has

also been reviewed considerably and, thus, will not be further elucidated here (see Blozis,

2007a; Hancock et al., 2001; McArdle, 1988; Sayer & Cumsille, 2001; Tisak & Meredith,

1990).

Longitudinal Measurement Invariance

When examining longitudinal growth, it is essential to determine whether the change in the

construct of interest across measurement occasions is due to actual changes in the construct

itself and not due to changes involving the measurement of the construct over time. Thus, an

important assumption when examining longitudinal growth is that the measurement of the

latent construct is invariant/equivalent across time (Meredith & Horn, 2001). In brief,

measurement invariance/equivalence, in the longitudinal context, refers to the degree to

which the relationships between indicator variables and the underlying latent constructs they

measure are similar across measurement occasions.

Longitudinal invariance/equivalence may be assessed by constraining certain corresponding

parameters at different measurement occasions to be equal. These equality constraints are

commonly tested in a hierarchical manner in increasing order of invariance/equivalence

strictness (Meredith, 1993). Borrowing from the nomenclature in the multiple-group

comparison measurement invariance literature (Horn & McArdle, 1992; Meredith, 1993;

Widaman & Reise, 1997), the more commonly assessed and/or discussed invariance levels,

in an increasing order of stringency, include (1) metric or weak longitudinal invariance in

which the corresponding factor loadings are equivalent across all measurement occasions

(λk1 = λk2 = … =λkT); (2) scalar or strong longitudinal invariance in which the respective

factor loadings and indicator variable intercepts (τk1 = τk2 = … =τkT) are equivalent across

time; and (3) strict longitudinal invariance in which the corresponding factor loadings,

indicator variable intercepts, and indicator variable error variances ( )

are invariant across time. These levels of invariance are typically tested using a chi-square

1Some additional comments are worth mentioning with respect to the parameterization of the COFM in order to better understand its
representation in Figure 2. First, the loading of the same variable at each time point is set to one in order to serve as the reference
indicator for each of the first-order latent factors. Second, the manifest variables’ intercepts must be estimated because the expected
values of the manifest variables are dependent upon the intercepts (Hancock et al., 2001). This is accomplished by regressing the
manifest variable indicators on a value of one. It must be noted that the variable serving as the reference indicator for each first-order
factor has its intercept value set equal to zero at each time point to ensure model identification. Lastly, model identification problems
may be encountered if participants are not measured at a minimum of three measurement occasions with a minimum of three observed
variables at each measurement occasion.
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difference test, Δχ2, between the baseline model without constraints and the model with

equality constraints imposed corresponding to each particular invariance level being tested

(see Blozis, 2007a; Ferrer, Balluerka, & Widaman, 2008; and Harring, 2009).

If longitudinal invariance/equivalence is not supported, the assessment of growth across

time may not be meaningful given that growth may represent changes in the measurement of

the latent constructs themselves rather than growth in the latent constructs of interest across

measurement occasions. While finding support for the highest (strict) level of invariance

would be ideal, it may be hard to achieve in practice. It has been argued that strict invariance

is necessary to meaningfully compare factor means, covariances, and variances (Meredith,

1993). However, some researchers view residual variance constraints as too restrictive

(Byrne, 1994) and contend that non-invariant residual variances only point toward reliability

differences in the indicators (Little, 1997). Thus, it has been suggested that meeting the

strong invariance assumption is sufficient to meaningfully interpret model parameters

(Thompson & Green, 2006). It has been demonstrated that meaningful interpretations may

be made even under partial measurement (metric/weak) and intercept (strong/scalar)

invariance in the multiple-group literature (see Byrne, Shavelson, & Muthén, 1989).

Nonetheless, Lubke and Dolan (2002) found that in certain situations, non-invariant residual

variances can hinder the detection of mean differences elsewhere in the model. Regardless

of the side that one takes in this debate, the constraints imposed within a model should

ultimately complement the theoretical questions of interest (Bollen, 1989).

A related issue to measurement invariance concerns the selection of a reference indicator

(RI) for the factor at each measurement occasion. It has been demonstrated that altering the

choice of the RI under metric/weak measurement invariance alone may result in different

outcomes with respect to growth parameters in COFMs whereas altering the choice of the RI

under scalar/strong invariance will not change growth parameter outcomes (Ferrer et al.,

2008; Stoel, van den Wittenboer, & Hox, 2004). Given these findings, it is important to

establish, at a minimum, scalar/strong invariance of the item serving as the RI across

measurement occasions.

Modeling Longitudinal Data Within a Dyad Population

In addition to being able to appropriately model items’ unique error variances, an added

benefit of the COFM over the univariate LGM is that the COFM framework permits

assessment of the degree of invariance across time that may be assumed. The benefits of the

COFM for individuals within a single population should be extended to better assess growth

for dyad members. The current study is designed to extend the use of the COFM for use

with non-exchangeable dyads and to provide more specific details about the Dyadic COFM

to facilitate its use and interpretation. The following section describes this model.

Dyadic Curve-of-Factors Model (D-COFM)

All of the benefits of using the COFM for a single population extend to its use in a non-

exchangeable dyadic model. It is important to note that the D-COFM is not analyzed as a

multiple-group model in which the data for each group are “stacked.” Instead, D-COFM

data are organized similarly to the data used in a repeated-measures ANOVA in which each
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row of the dataset contains the measured responses for each non-exchangeable dyad (e.g.,

husband and wife, parent and child, teacher and student) with the columns containing

information specific to each dyad member. Figure 3 depicts a D-COFM of linear growth

across T time points for a k-variable factor.

Assume that k manifest variables, yi1, yi2, …, yik, measuring a single latent factor, ηi, are

measured for each individual i in each non-exchangeable dyad member group m (where m =

1 or m = 2) on T different measurement occasions such that 

where t = 1, 2, …, T. If the same k indicator variables are measured at each time t, then q = k

× T for each dyad member m. The measurement model with a mean structure incorporated is

estimated for all individuals in each dyad member group simultaneously and is given as

follows:

(1)

where  is a 2q × 1 vector containing raw scores on each indicator variable, yi1, yi2, …,

yik, at each time, t, for individual i in each dyad member group, m; τ(m) is a 2q × 1 vector

containing means/intercepts for each indicator variable at each time, t, for each dyad

member group, m; Λ(m) is a 2q × T matrix containing first-order factor loadings associating

each indicator variable, yi1, yi2, …, yik, with its latent construct, ηi, at each time, t, for each

dyad member group, m;  is a 2T × 1 vector containing factor scores for each of the latent

constructs at each time point, t, for each dyad member group, m; and  is a 2q × 1 vector

containing normal, random errors for each indicator variable, yi1, yi2, …, yik, at each time, t,

for each dyad member group, m.

Growth in the latent constructs, ηi, across time for each dyad member group may be

modeled simultaneously and is given as:

(2)

where  is a 2T × 1 vector containing factor scores for each of the first-order latent

constructs at each time point, t, for each dyad member group, m; Γ(m) is a 2T × p matrix

containing second-order factor loadings reflecting the growth of the latent constructs for

each dyad member group, m, where p represents the number of second-order (trajectory)

factors;  is a 2p × 1 vector containing latent scores reflecting the type of growth modeled

for each dyad member group, m; and  is a 2T × 1 vector containing disturbances

associated with the first-order latent constructs, ηi, in each dyad member group, m. While

several different parameterizations are feasible, one could hypothesize that

, where  is the intercept representing the initial amount of the

construct of interest for each dyad member group, m, and  is the slope representing the

linear rate of change in the construct of interest over time for each dyad member group, m.
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The first-order measurement model with a mean structure in Equation 1 and the first-order

factor growth model in Equation 2 may be re-expressed jointly as follows:

(3)

where the second-order factor model in Equation 3, , is substituted for the

first-order factor in Equation 1, .

The latent means of the second-order intercept and slope factors are given by:

(4)

where  is a 2p × 1 vector containing intercept and slope parameters for individual i in

each dyad member group, m; μ(m) is a 2p × 1 vector containing latent means for the

intercept, , and the slope, , for each dyad member group, m; and  is a 2p × 1

vector containing the disturbances associated with the second-order intercept and slope

constructs for each dyad member group, m.

The covariance matrix of raw scores on each indicator variable at each time for each dyad

member group, , is given as:

(5)

where Φ is a 2p × 2p covariance matrix for the second-order intercept and slope factors in

each dyad member group; Ψ is a 2T × 2T covariance matrix for the first-order factors in

each dyad member group; and Θε is a 2q × 2q covariance matrix for the observed indicator

variables’ residuals in each dyad member group.

The variances of the second-order intercept and slope factors are estimated via their

disturbances in each dyad member group which appear along the main diagonal of Φ. Also,

the covariances between intercept factors, between slope factors, and between intercept and

slope factors within and across each dyad member group can be modeled via their

disturbances which are the off-diagonal elements of Φ (see Appendix A for this

parameterization of the covariance matrix Φ). The variances of the first-order factors in each

dyad member group are estimated via their disturbances which are in the main diagonal of

the covariance matrix for the first-order factors (ψ). The residual variances of the observed

indicator variables appear along the main diagonal of Θε. In addition, covariances between

the residuals for the same items across measurement occasions within each dyad group

could be modeled to represent that facets of the same latent construct tend to be correlated

over time (Loehlin, 2004). Another possible parameterization of the D-COFM could include

the covariances between the residuals of the same items across dyad member groups, also

referred to as residual intraclass covariances (Olsen & Kenny, 2006).
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As with the COFM illustrated in Figure 2, the D-COFM in Figure 3 is parameterized via the

second-order slope factor loadings such that the intercept represents the initial amount of the

latent construct and the linear growth of the construct across time is modeled within each

dyad member group. Paralleling the possible parameterizations of the univariate LGM and

the COFM, the second-order intercept factor in the D-COFM may represent the standing of

the individuals in each dyad member group on the latent construct at other stages of

development by selecting the final, middle, second, third, etc. measurement occasion as the

reference point (Hancock & Lawrence, 2006). The intercept may also denote the average of

the indicator variables across time (e.g., Stoolmiller, 1995) and various additional centering

methods may be implemented (e.g., Blozis & Cho, 2008; Mehta & West, 2000). The growth

trajectory may also be modeled as nonlinear using a variety of parameterizations (see Blozis,

2007b; Browne, 1993; Lawrence & Hancock, 1998; Stoolmiller, 1995; Stoolmiller, Duncan,

Bank, & Patterson, 1993).

All of the same constraints that must be imposed in the COFM remain for the D-COFM.

More specifically, the loading of the same variable at each time point is set to one and serves

as the reference indicator (RI) for each of the first-order latent factors within and across

dyad member groups. Given that the expected value of the manifest variables is dependent

upon the intercepts, the manifest variables’ intercepts within each dyad group are estimated,

which is achieved by regressing the manifest variable indicators on a vector of ones. The

manifest variable serving as the RI for each first-order factor, however, has intercept values

set to zero at each time point to ensure model identification. Also, model identification

problems will be encountered if participants are not measured at a minimum of three

measurement occasions with a minimum of three observed variables at each measurement

occasion. Similar to the univariate LGM and the COFM, time-invariant or time-varying

predictors may be introduced if individual variability has been detected in the intercept and

slope factors within each dyad member group. Further, correlations among the residuals of

the manifest variables may be modeled across time within and across each dyad member

group2.

Dyadic Measurement Invariance

When examining non-exchangeable dyads’ longitudinal growth, it is not only of interest to

determine whether the change in the construct of interest across measurement occasions is

due to actual changes in the construct itself, but it is also of interest to determine whether the

change in the construct of interest across measurement occasions is similar for each dyad

member group. Measurement invariance/equivalence, in the dyad-group context, refers to

the degree to which the relationships between indicator variables and the underlying latent

2As in the conventional COFM, the mean of the intercept factor represents the estimated mean value of the latent construct of interest
at the temporal reference point and the variance of the intercept factor disturbance indicates the variability in the latent construct
among individuals at the temporal reference point in each dyad member group. The mean of the slope factor represents the mean
growth rate on the latent construct of interest across time and the variance of the slope factor disturbance measures the variability in
the growth trajectory of the latent construct among individuals in each dyad member group. The covariance between the intercept and
slope factors’ disturbances models the relationship between the individuals’ levels on the latent construct of interest at the temporal
reference point and their growth rate (e.g., linear) on the latent construct within and across each dyad member group. The covariance
between the intercept factors and between the slope factors across each dyad member group models the relationship between the dyad
member group’s construct levels at the temporal reference point and between the dyad member group’s growth rate (e.g., linear) on
the latent construct.
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constructs they measure are similar across dyad groups. Dyadic measurement invariance

may be assessed by constraining certain parameters to be equal across dyad member groups.

Again, these equality constraints would typically be tested using a hierarchy of increasing

invariance strictness via the Δχ2 test statistic (Bollen, 1989).

For instance, metric/weak dyadic invariance would indicate that that the corresponding

factor loadings are equivalent across dyad member groups (e.g., for item k at time t:

). Once metric/weak dyadic invariance is supported, researchers could then test

whether scalar/strong dyadic invariance holds which would require that the corresponding

factor loadings as well as indicator variable intercepts (e.g., ) are equivalent across

dyad member groups. If model fit drops significantly upon addition of the intercept

constraints, this would indicate that one dyad member group (e.g., wives) may have

consistently scored at a different level (i.e., either higher or lower) on the manifest indicator

variables as compared with the other dyad member group (e.g., husbands). On the other

hand, if scalar/strong longitudinal invariance is supported, researchers could continue to test

for strict dyadic invariance which would require that the corresponding factor loadings,

indicator variable intercepts, and indicator variable error variances (e.g., ) are

equivalent across dyad member groups. If support is found for strict invariance, this would

signify that the indicator variables are measuring the latent construct with similar variability

among individuals across dyad groups.

Similar to issues concerning the selection of the reference indicator (RI) in the COFM, the

selection of the RI in dyad-group models also has model interpretation implications. For

instance, it has been demonstrated that selecting a RI with non-invariant factor loadings

across groups in a multiple-group comparison can result in inaccurate results with respect to

detecting invariance elsewhere in the model (Johnson, Meade, & DuVernet, 2009). As such,

the item selected to serve as the RI, at a minimum, should be invariant across dyad member

groups with respect to the relevant unstandardized factor loading. Moreover, if a mean

structure is incorporated into the dyad-group context, the item selected as the RI should be

invariant with respect to its intercept across dyad member groups in addition to the

invariance of its unstandardized factor loading in order to satisfy strong/scalar invariance.

In addition to permitting the assessment of invariance across dyad members for measures at

a certain point in time, the D-COFM would also allow examination of invariance across

time to answer important questions concerning the similarities and differences between dyad

member groups. The following section will describe an application of various

parameterizations of the D-COFM to a real longitudinal dyadic dataset. These

parameterizations will follow the invariance/equivalence hierarchy within the longitudinal

context as well as within the dyadic-group context. It must be noted that this model will be

applied to non-exchangeable dyadic data. The application of these techniques to

exchangeable dyadic data requires satisfying further assumptions (see Kenny et al., 2006

and Olsen & Kenny, 2006 for more detailed information).
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EXAMPLES

Data from the National Longitudinal Study of Adolescent Health (Add Health) were used to

illustrate different parameterizations of the D-COFM using male and female full siblings’

responses to items on the Center for Epidemiologic Studies Depression Scale (CES-D;

Radloff, 1977). Overall model fit was assessed using global fit indices, including the CFI,

TLI, RMSEA, and SRMR. Relative model fit among models was assessed using the chi-

square difference test, Δχ2, and information criteria, including the AIC, BIC, and sample

size adjusted BIC (aBIC)3.

Dataset

Participants—Add Health is a nationally representative longitudinal study of adolescents

in the United States who were in grades 7-12 during the 1994-1995 academic year. Data on

the Add Health cohort have been collected in four waves4 through 2009 and contain

information on various subject areas, including participants’ physical, psychological,

economic, and social well-being. Participants for the current study consisted of 541 male

and female full sibling pairs who participated in the Add Health study. Ages of the

participants at Wave 1 data collection ranged from 12 to 20 years with a mean of 16 years

(SD = 1.66). Only one full sibling pair per household was included in the current study.

As is common with longitudinal studies, there was some attrition over the four waves of data

collection. At time 1, there were 540 male siblings and 541 female siblings. By time 4, the

number of valid responses to items was 443 for males and 460 for females. It is unknown,

without further examination, whether these missing data patterns are missing at random

(MAR) or not missing at random (NMAR). Nonetheless, given that the use of these data was

solely to illustrate the D-COFM, data were assumed to be MAR. As such, full information

maximum likelihood (FIML) was implemented in Mplus version 5.2 to handle missing data.

Broader substantive generalizations from the results should therefore not be made.

Measure—Responses to a subset of the items from the Center for Epidemiologic Studies

Depression Scale (CES-D; Radloff, 1977) were used as the observed variables. The original

CES-D scale consists of 20 items measured on a four-point Likert scale ranging from 0 to 3

(0 = Rarely or None of the Time; 1 = Some or a Little of the Time; 2 = Occasionally or a

Moderate Amount of Time; and 3 = Most or All of the Time). Only nine of the original 20

items were asked of participants during each of the four Add Health interview waves. A

series of factor analyses were conducted to extract a subset of the nine items5 that measured

3The AIC is referred to as an efficient information criterion, indicating that it will tend to select the model that best approximates the
true model when the true model does not exist among the set of comparison models. In contrast, the BIC and aBIC are referred to as
consistent information criteria, meaning that they will tend to select the true model accurately when the true model exists among the
set of comparison models (McQuarrie & Tsai, 1998). The BIC has been shown to outperform the AIC with respect to correctly
selecting the true model among a set of competing models (Haughton, Oud, & Jansen, 1997; Whittaker & Stapleton, 2006), but the
two criteria generally perform more similarly under larger sample size and factor loading conditions (Bandalos, 1993; Cudeck &
Browne, 1983). Further, the AIC has a tendency to select, and not necessarily correctly, more parameterized models (Bozdogan, 1987;
Browne & Cudeck, 1989). Thus, if the two types of criteria (efficient versus consistent) do not agree under optimal situations in which
sample size is large and factor loadings are acceptable, the literature generally suggests that the consistent information criteria be
implemented for model selection.
4Wave 1 data were collected during the 1994-1995 academic year; Wave 2 data were collected in April through August of 1996;
Wave 3 data were collected from July of 2001 through April of 2002; and Wave 4 data were collected from January 2008 through
February 2009. For more information concerning Add Health data collection protocol, see Udry (1998).
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a single factor across the four time points for brothers and sisters. This resulted in a subset of

four items (items 1, 3, 5, and 6 from the original CES-D scale; see Table 1).

Analysis and Results

A sequence of parameterizations of the D-COFM was performed and is subsequently

described (see Table 2 for model descriptions). Prior to applying the D-COFM, a search for

an appropriate reference indicator (RI) was conducted. Similar to the strategies

recommended by Byrne et al. (1989), Rensvold and Cheung (2001), and Yoon and Millsap

(2007), item 3 was found to satisfy strict invariance across time and across dyad member

groups through a series of invariance tests using all possible RI options.

Individual plots and averages of the four items at each of the four time points were graphed

for brothers and sisters to examine whether it was feasible to model a linear trajectory across

time. A general linear pattern in the plots was found. Given that measurement occasions

were unequally spaced, the slope factor loadings were set to 0, 2, 7, and 13 at times 1, 2, 3,

and 4, respectively, to match the timing of measurement occasions4. In addition, the

intercept was modeled to represent the initial amount of the depression construct.

As mentioned previously, several constraints are incorporated into the basic COFM for

identification purposes, including setting the intercept of the RI (item 3) to zero for each

factor and time point. In addition to the constraints, all estimated models included several

covariances that were freely estimated in the D-COFM. Residuals for corresponding items

across measurement occasions within each dyad group were allowed to covary given that the

specific aspects of a construct of interest may be correlated over time (see, e.g., Loehlin,

2004). All covariances among the second-order growth factors both within and across dyad

members were also estimated (see Figure 3).

Unconditional Unconstrained Linear Growth Model (ULGM)—For the first

illustration, the unconditional, unconstrained D-COFM with linear growth was analyzed in

which none of the items’ factor loadings, intercepts, or residual variances (with the

exception of the RI) were constrained to be equivalent across time and/or across dyads. The

unconstrained linear growth model fit the data well (ULGM; see Table 3 for model fit

information). Second-order factor (growth trajectory) parameter estimates are presented in

Table 4 and the second-order factor covariances with corresponding correlations are

presented in Table 5 for the first set of models estimated. The intercept factor mean for

brothers  and for sisters  was significantly greater than zero. There

was significant variability in the initial measurement of depression among brothers

 and among sisters . The slope factor mean for brothers

 and sisters  indicated a significant decrease in linear growth

across time in the depression construct. Thus, there tended to be a linear decline (on

average) in depression across measurement occasions for both brothers and sisters. There

5Responses to the items tended to be positively skewed, demonstrating a low frequency of depressive symptoms among participants.
Consequently, Maximum Likelihood Robust (MLR) estimation in Mplus version 5.2 was used for the initial exploratory factor
analyses as well as the remaining analyses.
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was no significant variability in the declining rates of depression among the brothers

, whereas there was significant variability in the declining rates of depression

among the sisters .

The brothers’ initial level of depression was not significantly related to their decreasing

trajectory in depression  with a corresponding correlation  of −.

134; however, the sisters’ initial level of depression was significantly and negatively related

to their decreasing trajectory in depression . Thus, sisters

with low initial levels of depression tended to experience less decline in depression across

measurement occasions as compared to sisters with high initial levels of depression who

tended to experience greater decline in depression across measurement occasions. The

covariance between brothers’ and sisters’ intercept factor disturbance variances was

statistically significant . The positive relationship  indicates

that brothers with high initial levels of depression also tended to have sisters with high initial

levels of depression. The covariance between brothers’ and sisters’ slope factor disturbance

variances was not statistically significant , indicating that the linear

trajectory across time for brothers was unrelated to the linear trajectory across time for

sisters . The covariance between the brothers’ intercept factor and the

sisters’ slope factor was not statistically significant , indicating that the

brothers’ initial level of depression was not statistically significantly related to the sisters’

decreasing trajectory in depression . Further, there was no statistically

significant relationship between the brothers’ declining rate in depression and the sisters’

initial level of depression .

Longitudinal Dyadic Invariance Constraints—To mimic the sequential order of

invariance testing within the longitudinal and multiple-group literature, metric/weak

invariance was first tested across time and dyad member groups simultaneously.

Subsequently, scalar/strong invariance was tested across time and dyad member groups

simultaneously followed by testing for strict invariance across time and dyad member

groups simultaneously. While these invariance levels were tested simultaneously, one could

test these consecutively (i.e., longitudinally followed by dyadic invariance or vice-versa).

Full Metric Invariance Model (FMIM): Corresponding indicators’ factor loading

constraints were first imposed on the linear D-COFM across measurement occasions and

across dyad member groups to assess whether metric/weak longitudinal and dyadic

invariance was supported. The full metric invariance model (FMIM) fit the data adequately

(see Table 3). Because MLR estimation was implemented, chi-square difference testing

must be corrected appropriately using the Satorra-Bentler scaled Δχ2 test ( ; Satorra &
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Bentler, 2001). The  test between the unconstrained linear growth model and the

constrained factor loading model was not statistically significant ( , Δdf = 21, p

> .05), supporting the less parameterized metric invariance model and thus providing

evidence that the relationship between corresponding items and depression factors were

similar across time and dyad member groups (see Tables 4 and 5 for the second-order

parameter estimates of interest with these particular constraints imposed).

Full Strong Invariance Model (FSIM): Corresponding indicators’ intercepts were then

constrained across measurement occasions and across dyad member groups to examine

whether scalar/strong longitudinal and dyadic invariance was supported. The full strong

invariance model (FSIM) fit the data fairly well (see Table 3 for model fit information and

Tables 4 and 5 for parameter estimates). Nonetheless, the  test between the constrained

factor loading model and the constrained item intercept model was statistically significant

( , Δdf = 21, p < .05). Modification indices were examined to help pinpoint

which item intercepts might be non-invariant across time and/or dyad member groups. Each

item intercept associated with the largest modification index was freely estimated in

sequential order until the  test between the FMIM and the current partial strong

invariance model (PSIM) was no longer statistically significant.

Partial Strong Invariance Model (PSIM): Six item intercept constraints were released,

resulting in the final partial strong invariance model (PSIM; see Table 3 for model fit

information and Tables 4 and 5 for parameter estimates for this model). It was found, for

instance, that the intercept for item six was higher at the first measurement occasion for the

sisters than the same item’s intercepts at all four measurement occasions for the brothers.

Also, the intercept of item six was higher at the first measurement occasion than the same

item’s intercepts at the remaining three measurement occasions for the sisters. Accordingly,

the sisters “felt more depressed” at the first measurement occasion than the brothers did at

all four measurement occasions. In addition, the sisters “felt more depressed” at the first

measurement occasion than they did at the succeeding three measurement occasions. It is

important to note that the non-invariant intercepts indicate that some source other than the

factor is influencing mean differences. Thus, latent mean differences are not only due to the

influence of the factor, but also due to differences in the intercepts.

Again, while there is debate among researchers with respect to the level of intercept

invariance when making meaningful conclusions, we continue with model-fitting for

illustrative purposes. Applied researchers should endeavor to make sense of potential non-

invariance and assess whether the non-invariance invalidates use of the relevant indicator.

Full Residual Invariance Model (FRIM): To test for strict longitudinal and dyadic

invariance, corresponding item residual variances were constrained to be equal across

measurement occasions and across dyad member groups. The full residual invariance model

(FRIM) fit the data fairly well (see Table 3 for model fit information). However, the 

test between the partial scalar/strong invariance model (PSIM) and the fully constrained

residual variance model was statistically significant ( , Δdf = 28, p < .05).
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Each item error variance associated with the largest modification index was freely estimated

in successive order until the  test between the PSIM and the current model was no

longer statistically significant (see Tables 4 and 5 for the second-order parameter estimates

of interest with these particular constraints imposed).

Partial Residual Invariance Model (PRIM): Five item residual variance constraints were

released, resulting in a partial residual invariance model (PRIM; see Table 3 for model fit

information). It was found, for example, that the residual variance associated with item 1 at

the second measurement occasion for sisters was larger than it was for the brothers at all

measurement occasions and for the sisters at the remaining measurement occasions. This

could suggest overall variability in depression across time and across dyad member groups.

Thus, the sequential testing of longitudinal dyadic invariance resulted in selection of the

PRIM. Parameter estimates of interest in the final model (PRIM) were not too dissimilar

from those in the ULGM (see Tables 4 and 5). The Mplus code for the PRIM is included in

Appendix B.

Additional Tests of Interest—Researchers may be interested in whether there are

statistically significant differences between certain parameters estimated for the brothers and

the sisters. More specifically, one may test whether there are significant differences between

intercept factor means, slope factor means, the covariance between the intercept and slope

factor disturbances, the intercept factor disturbance variance, and the slope factor

disturbance variance for the brothers and the sisters. These were tested individually by

running the PRIM with an additional constraint of interest included (e.g., intercept factor

mean constraints across dyad groups) and subsequently conducting the  test between

the PRIM and the newly constrained model. A statistically significant  test would

indicate a significant difference between the brothers’ and sisters’ parameter estimates of

interest (e.g., intercept factor mean). Second-order (growth trajectory) parameter estimates

are not presented for this set of models because the estimates for these same parameters

when they are freely estimated are already provided in Tables 4 and 5.

All of the models with these constraints of interest fit the data well (see Table 3). The model

comparison tests indicated that there was a statistically significant difference between the

brothers’ and the sisters’ intercept factor means. The sisters, on average, demonstrated a

significantly higher level of depression than did the brothers during the initial measurement

occasion in the 1994-1995 school year (see Table 4). There was a statistically significant

difference between the brothers’ and sisters’ intercept and slope factor disturbance

covariances. More specifically, a moderately strong negative and statistically significant

relationship between initial levels of depression and their linear rate of decline in depression

across time was demonstrated among the sisters whereas there was no significant

relationship demonstrated among the brothers (see Table 5). There was also a significant

difference between the brothers’ and sisters’ intercept factor disturbance variances,

indicating more variability among the sisters’ initial levels of depression than among the

brothers (see Table 4). There was no statistically significant difference between brothers’

and sisters’ slope means or between the variability in linear rates of decline in depression
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across measurement occasions for the brothers and sisters (see Table 4). Hence, brothers’

and sisters’ rate of linear growth (decline) in depression across measurement occasions

could be assumed equivalent and the variability in growth rates was comparable for the dyad

members.

Conditional D-COFM (CD-COFM)—The models examined thus far have been

unconditional models in which no predictor variables were included. Researchers may want

to include predictor variables to examine how well they may explain the variability in the

intercept and slope factors. To illustrate this, the age of the brothers and the sisters at the

initial measurement occasion during the 1994-1995 academic year was hypothesized to have

a direct effect on the respective dyad member’s intercept and slope factors and were

included in the PRIM as a predictor variable. The conditional model fit the data adequately

(see Table 3). However, only the age of the brothers at the initial measurement occasion

statistically significantly predicted their initial amount of depression. Every one year

increase in age resulted in a .042 increase in initial level of depression among the brothers

and every one standard deviation increase in age resulted in a .258 standard deviation

increase in initial level of depression among the brothers. There still remained a significant

amount of unexplained variance in the brothers’ and sisters’ intercepts as well as in the

sisters’ slope after including age as a predictor.

Discussion

The purpose of this paper was to provide various illustrations of and demonstrate the

flexibility of the D-COFM with data for non-exchangeable dyads in longitudinal studies.

Longitudinal and dyadic invariance tests when implementing the D-COFM were illustrated

using items selected from the Center for Epidemiologic Studies Depression Scale (CES-D;

Radloff, 1977) from the Add Health dataset to represent depression in male and female full

siblings across four measurement occasions. These illustrations resulted in the PRIM, in

which full metric/weak invariance, partial scalar/strong invariance, and partial residual

invariance was exhibited longitudinally and across dyad groups.

Overall, all of the D-COFM models tested fit the data well (see Table 3) and the estimates

for the first six unconditional models with sequential invariance constraints did not change

substantially (see Tables 4 and 5). Given that model fit information differences among the

models were negligible, the information criteria were examined to select from among the set

of models which would cross-validate best in subsequent samples. The least constrained

and, thus, more parameterized model (ULGM) resulted in the smallest AIC value (italicized

in Table 3) among the models testing invariance across time and dyad member groups up

through the PRIM. This is not unexpected given that the AIC has a propensity to select more

parameterized models (Bozdogan, 1987; Browne & Cudeck, 1989). In contrast, the partial

residual invariance model (PRIM) resulted in the smallest BIC and aBIC values (italicized in

Table 4), suggesting support for the pattern of time and dyad member invariance reflected in

this model’s parameterization. Again, the PRIM was the model with full metric/weak

invariance and with intercepts and error variances found only to meet assumptions of partial

invariance across time and across dyad groups. There is still a lack of consensus about the

meaningful interpretation of parameter estimates under partial invariance (Byrne et al.,
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1989; Meredith, 1993) and, thus, further research is warranted with respect to the validity of

interpretations made under partial invariance situations.

For comparison purposes, an unconditional model and a conditional model including age as

a predictor were estimated in which composite scores at each measurement occasion were

used to evaluate possible differences from the D-COFM illustrations. The fit of the

unconditional models were adequate, although they did not demonstrate better fit than their

D-COFM counterparts6. The composite models yielded similar patterns of results as their D-

COFM counterparts; however, they cannot be used to investigate the patterns and degree of

measurement non-invariance. Consequently, some of the potentially important theoretical

differences among dyad member groups across time would be unnoticed. Invariance tests

are restricted with the use of composite variables and assume, at the very least, that

measurement invariance is satisfied. In addition, composites assume perfect reliability

among the manifest variables used to create the composite which is difficult to achieve in

applied settings. Lastly, the use of composite scores without a correction for measurement

error can bias the growth trajectory’s parameter estimates (Fan, 2003).

As with all applications of statistical techniques, the appropriate assumptions should be

examined and satisfied. For instance, attrition occurred in the Add Health study, rendering

missing CES-D data for the D-COFM illustrations. Data were assumed missing at random

(MAR), however, the validity of this assumption is unclear. Assuming that data are MAR

when missing data patterns are in fact not random can compromise the validity of the

results. Thus, researchers are encouraged to discern whether missing data are due to some

phenomena related to the research question under investigation to better ensure the

soundness of the findings from the data. It is again emphasized that the dataset and models

investigated in the current study were used solely to demonstrate the D-COFM and not for

the reader to make broader substantive generalizations based on the specifics of the analyses

conducted.

Upon graphical observation of the data, it was determined that the growth rates tended to be

linear. Also, a model fit comparison between a linear model and one with an unspecified

functional form supported the fit of the linear model7 which was then assumed in all ensuing

D-COFM model illustrations. It is important that researchers examine the growth trajectories

individually as well as aggregately in order to appropriately model growth and render more

valid conclusions. If data do demonstrate a non-linear pattern, it could be modeled in various

ways as previously highlighted.

The intervals between each of the four measurement waves were unequal and were modeled

as such using the slope factor loading values. Treatment of measurement occasions as fixed

versus varying does have some implications. For instance, the age of the siblings varied at

6The fit of the conditional composite model {[χ2 (35) = 60.608, p < .05], CFI = .909, TLI = .879, RMSEA = .037 (90% CI: .020, .
052), SRMR = .045} slightly declined as compared to the fit of the unconditional composite model {[χ2 (22) = 35.985, p < .05], CFI
= .939, TLI = .922, RMSEA = .034 (90% CI: .011, .054), SRMR = .037}.
7Linear and unspecified (at the last measurement occasion) growth models were both fitted to the dyadic data. Because the linear

growth model was nested in the unspecified model,  test was conducted which indicated that the linear model did not fit the

data significantly worse than the unspecified model ( , Δdf = 2, p > .05).
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all measurement occasions. Age at the first measurement occasion was included as a

predictor in the conditional D-COFM, however, various centering strategies may be

implemented to accommodate this age heterogeneity as well as other types of heterogeneity

found in the timing of measurement waves (see, e.g., Blozis & Cho, 2008 and Mehta &

West, 2000).

It is important to note again that the constraints illustrated and discussed are appropriate for

longitudinal, non-exchangeable dyadic data. When working with longitudinal, exchangeable

dyadic data, however, additional invariance constraints are necessary and model fit along

with comparisons are not as straightforward. Briefly, because the members of a dyad are

exchangeable, meaning that they are unable to be differentiated with respect to a particular

characteristic (e.g., gender), researchers randomly assign members of a dyad to either dyad

member group, m. Additional parameterizations include covariances among the

corresponding item residuals across dyad member groups (intraclass covariances) which

may then be constrained to be equal across measurement occasions. Finally, model fit and

comparisons may be conducted using adjusted fit indices due to the random assignment to

exchangeable dyad member groups (see Kenny et al., 2006 and Olsen & Kenny, 2006 for

more information). Future research should examine the impact of various parameterizations

and invariance constraints on the interpretation of parameters of interest for exchangeable

dyads.

In conclusion, the D-COFM extends the COFM which was recommended as an extension of

the univariate LGM in order to overcome problems inherent when modeling composite

scores across measurement occasions without meeting the necessary assumptions. The D-

COFM will not only allow longitudinal invariance testing, but will allow dyadic member

group invariance testing while appropriately modeling the dependence among non-

exchangeable dyads. Researchers may be able to model linear or nonlinear growth across

time as well as examine the standing of individuals on the latent construct at other stages of

developmental interest. The influence of predictors, observed and/or latent, at the individual-

and/or dyad-level may also be investigated. In addition, researchers can assess differences in

the mean intercept and mean slope values (as well as additional parameters) across non-

exchangeable dyad groups. In conclusion, it is hoped that the illustrations of the D-COFM

provided in this paper will help applied researchers when analyzing dyadic longitudinal data.

Appendix A

The D-COFM Parameterization in the Second-Order Factor Covariance

Matrix (Φ)

The parameterization in the D-COFM, as demonstrated in Figure 3, looks like the following

in the covariance matrix for the second-order intercept and slope factors:
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where  and  are the variances of the intercept and slope factor disturbances,

respectively, for each dyad member group (m = 1 or m = 2);  and  are the

covariances between the intercept and slope factor disturbances within each dyad member

group;  and  are the covariances between the intercept and slope factors’

disturbances across each dyad member group, respectively;  is the covariance

between the intercept factor disturbance in dyad member group one and the slope factor

disturbance in dyad member group two; and  is the covariance between the intercept

factor disturbance in dyad member group two and the slope factor disturbance in dyad

member group one.

Appendix B

Mplus Code for the PRIM

TITLE: D-COFM with Full Factor Loading, Partial Item Intercept, and Partial Residual Variance Invariance

DATA: File is C:\Documents and Settings\Dyadic SEM\Dyad.txt;

VARIABLE: Names are Pairid Aid1 B1I1-B1I9 B2I1-B2I9 B3I1-B3I9 B4I1-B4I9

Aid2 S1I1-S1I9 S2I1-S2I9 S3I1-S3I9 S4I1-S4I9;

Usevariables are B1I1 B1I3 B1I5 B1I6

B2I1 B2I3 B2I5 B2I6

B3I1 B3I3 B3I5 B3I6

B4I1 B4I3 B4I5 B4I6

S1I1 S1I3 S1I5 S1I6

S2I1 S2I3 S2I5 S2I6

S3I1 S3I3 S3I5 S3I6

S4I1 S4I3 S4I5 S4I6;

Missing are (999);

ANALYSIS: Estimator = MLR;

MODEL: !!First-order Factors (B1-B4) for the Brothers with Factor Loading Constraints

!!Across Time and with Corresponding Loadings for Sisters

B1 by B1I1*(1)

   B1I3@1

   B1I5 (2)
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   B1I6 (3);

B2 by B2I1*(1)

   B2I3@1

   B2I5 (2)

   B2I6 (3);

B3 by B3I1*(1)

   B3I3@1

   B3I5 (2)

   B3I6 (3);

B4 by B4I1*(1)

   B4I3@1

   B4I5 (2)

   B4I6 (3);

!!First-order Factors (S1-S4) for the Sisters with Factor Loading Constraints

!!Across Time and with Corresponding Loadings for Brothers

S1 by S1I1*(1)

   S1I3@1

   S1I5 (2)

   S1I6 (3);

S2 by S2I1*(1)

   S2I3@1

   S2I5 (2)

   S2I6 (3);

S3 by S3I1*(1)

   S3I3@1

   S3I5 (2)

   S3I6 (3);

S4 by S4I1*(1)

   S4I3@1

   S4I5 (2)

   S4I6 (3);

!!Intercept and Slope Factors for Brothers (I1 and S1, respectively)

I1 S1 ∣ B1@0 B2@1 B3@7 B4@13;

!!Intercept and Slope Factors for Sisters (I2 and S2, respectively)

I2 S2 ∣ S1@0 S2@1 S3@7 S4@13;

!!Have to Constrain Intercept for Reference Indicator to Zero for Model Identification

!!For both Brothers and Sisters
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[B1I3@0 B2I3@0 B3I3@0 B4I3@0];

[S1I3@0 S2I3@0 S3I3@0 S4I3@0];

!!Item Intercept Constraints Across Time and Dyad Members

[B3I1 B4I1] (4);

[B2I5 B4I5] (5);

[B1I6 B2I6 B3I6 B4I6] (6);

[S1I1 S2I1 S3I1 S4I1] (4);

[S1I5 S2I5 S4I5] (5);

[S2I6 S3I6 S4I6] (6);

!!Non-invariant Item Intercepts Freely Estimated

[S1I6 S3I5 B2I1 B3I5 B1I1 B1I5];

!!Estimate Intercept and Slope Factor Means for Brothers and Sisters

[I1* I2*];  !!Later Constrained to be Equal to Test for Significant Difference

[S1* S2*];  !!Later Constrained to be Equal to Test for Significant Difference

!!Estimate Intercept and Slope Factor Variances

I1* I2*;  !!Later Constrained to be Equal to Test for Significant Difference

S1* S2*;  !!Later Constrained to be Equal to Test for Significant Difference

!!Covariances Between Intercept and Slope Factor Disturbances

!!for Brothers and for Sisters

!!Later Constrained to be Equal to Test for Significant Difference

I1 with S1;

I2 with S2;

!!Covariances Between Dyad Intercept and Between Dyad Slope Factor Disturbances

I1 with I2;

S1 with S2;

!!Covariances Between Intercept and Slope Factor Disturbances Across Dyad Members

I1 with S2;

I2 with S1;

!!Covariances Among Same Item Residuals Across Time Within Dyad Member Group

B1I1 with B2I1 B3I1 B4I1;

B2I1 with B3I1 B4I1;

B3I1 with B4I1;

B1I3 with B2I3 B3I3 B4I3;

B2I3 with B3I3 B4I3;

B3I3 with B4I3;

B1I5 with B2I5 B3I5 B4I5;

B2I5 with B3I5 B4I5;
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B3I5 with B4I5;

B1I6 with B2I6 B3I6 B4I6;

B2I6 with B3I6 B4I6;

B3I6 with B4I6;

S1I1 with S2I1 S3I1 S4I1;

S2I1 with S3I1 S4I1;

S3I1 with S4I1;

S1I3 with S2I3 S3I3 S4I3;

S2I3 with S3I3 S4I3;

S3I3 with S4I3;

S1I5 with S2I5 S3I5 S4I5;

S2I5 with S3I5 S4I5;

S3I5 with S4I5;

S1I6 with S2I6 S3I6 S4I6;

S2I6 with S3I6 S4I6;

S3I6 with S4I6;

!!Item Residual Variance Constraints Across Time and Dyad Members

B1I1 B2I1 B3I1 B4I1 (7);

S1I1   S3I1 S4I1 (7);

  B2I3 B3I3 B4I3 (8);

     S3I3 S4I3 (8);

B1I5 B2I5 B3I5 B4I5 (9);

S1I5 S2I5   S4I5 (9);

B1I6 B2I6 B3I6 B4I6 (10);

S1I6 S2I6 S3I6 S4I6 (10);

!!Non-invariant Item Residual Variances Freely Estimated

S2I1 S2I3 B1I3 S1I3 S3I5;
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Figure 1.
Univariate Linear Latent Growth Model for a Manifest Variable at Three Measurement

Occasions Within a Single Population.
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Figure 2.
Curve-of-Factors Linear Latent Growth Model for Factors with k-Indicator Variables at T

Measurement Occasions Within a Single Population.
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Figure 3.
Dyadic Curve-of-Factors Linear Latent Growth Model for Factors with k-Indicator

Variables at T Measurement Occasions.

Note. This model does not depict the measurement model and associated intercepts (see

Figure 2 for those details). The “(1)” and “(2)” superscripts differentiate the two members of

the non-exchangeable dyad.
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Table 1

Center for Epidemiologic Studies Depression Scale (CES-D) Items Selected to Measure Depression for the D-

COFM Illustrations

Item Number Item

1. I was bothered by things that usually don’t bother me

3. I felt that I could not shake off the blues even with help from my family or friends.

5. I had trouble keeping my mind on what I was doing.

6. I felt depressed.

Note. Participants were given the following instructions when responding: “How often was each of these things true during the past week?”
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