
Inferring Higher Functional Information
for RIKEN Mouse Full-Length cDNA Clones
With FACTS
Takeshi Nagashima,1,2 Diego G. Silva,3,4 Nikolai Petrovsky,3,4 Luis A. Socha,3,4

Harukazu Suzuki,5 Rintaro Saito,5,7 Takeya Kasukawa,5 Igor V. Kurochkin,1

Akihiko Konagaya,2,6 and Christian Schönbach1,8

1Biomedical Knowledge Discovery Team, Bioinformatics Group, RIKEN Genomic Sciences Center (GSC), Suehiro-cho,
Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; 2Department of Knowledge System Science, School of Knowledge
Science, Japan Advanced Institute of Science and Technology, Ishikawa, 923-1292, Japan; 3Medical Informatics Centre,
University of Canberra, ACT 2601, Australia; 4John Curtin School of Medical Research, Australian National University,
Canberra ACT 2601, Australia; 5Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC),
RIKEN Yokohama Institute, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; 6Bioinformatics Group,
RIKEN Genomic Sciences Center (GSC), Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan

FACTS (Functional Association/Annotation of cDNA Clones from Text/Sequence Sources) is a semiautomated
knowledge discovery and annotation system that integrates molecular function information derived from
sequence analysis results (sequence inferred) with functional information extracted from text. Text-inferred
information was extracted from keyword-based retrievals of MEDLINE abstracts and by matching of gene or
protein names to OMIM, BIND, and DIP database entries. Using FACTS, we found that 47.5% of the 60,770
RIKEN mouse cDNA FANTOM2 clone annotations were informative for text searches. MEDLINE queries
yielded molecular interaction-containing sentences for 23.1% of the clones. When disease MeSH and GO terms
were matched with retrieved abstracts, 22.7% of clones were associated with potential diseases, and 32.5% with
GO identifiers. A significant number (23.5%) of disease MeSH-associated clones were also found to have a
hereditary disease association (OMIM Morbidmap). Inferred neoplastic and nervous system disease represented
49.6% and 36.0% of disease MeSH-associated clones, respectively. A comparison of sequence-based GO
assignments with informative text-based GO assignments revealed that for 78.2% of clones, identical GO
assignments were provided for that clone by either method, whereas for 21.8% of clones, the assignments
differed. In contrast, for OMIM assignments, only 28.5% of clones had identical sequence-based and text-based
OMIM assignments. Sequence, sentence, and term-based functional associations are included in the FACTS
database (http://facts.gsc.riken.go.jp/), which permits results to be annotated and explored through
web-accessible keyword and sequence search interfaces. The FACTS database will be a critical tool for
investigating the functional complexity of the mouse transcriptome, cDNA-inferred interactome (molecular
interactions), and pathome (pathologies).

[Supplemental material is available online at www.genome.org and also at the FACTS Web site http://facts.gsc.
riken.go.jp/supplement/.]

In large-scale sequence annotation, efficient identification of
relevant text information and integration of this information
with biomolecular data is often a limiting factor in inferring
new functions for genes, transcripts, or proteins. Publishing
(and patenting) of novel molecular findings increasingly de-
pends on finding relevant information buried in a vast mass

of text and biomolecular data, akin to finding a needle in a
haystack. Much biological knowledge can be gleaned from
MEDLINE records and their references. Although the knowl-
edge discovery process could be dramatically enhanced by
integrating information retrieval with natural language-
processing techniques, surprisingly little progress has been
made in this area. The ideal, therefore, is to create text-mining
tools that can deal with complex, context-dependent biologi-
cal relationships of genes, transcripts, and their products.

ENTREZ (Schuler et al. 1996), one of the most widely
used keyword-based biological information retrieval tools
that links sequence database entries with literature, is re-
stricted to the textual presentation of retrieved abstracts with
their Medical Subject Headings (MeSH) (Nelson et al. 2001)
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and cross-referenced sequence identifiers, if available. Filter-
ing functions that could aid the summarization of results by
extracting sentences from the retrieved abstracts are not pro-
vided in ENTREZ. PubGene (Jenssen et al. 2001), through its
graphical network output provides a broad view of biological
relationships extracted from abstracts. From a gene name
query, PubGene generates a complex graphical network of
co-occurring gene names in abstracts, which are hypothesized
to have some biological relationship. Both ENTREZ and Pub-
Gene-extracted results contain significant noise that requires
the biologist to refine queries and manually pursue a large
number of retrieved links and abstracts to find the sought-
after answer. Further, PubGene results depend on co-
occurrence of gene names or symbols. Therefore, the ambigu-
ity of automatically collected gene symbols or short gene
names in abstract retrieval without disambiguation or filter-
ing may amplify erroneous associations.

A number of text retrieval and mining tools (see also
Links page of FACTS Web site) that cannot be addressed for
reasons of space, allow the computational identification and/
or extraction of query-relevant biological relationships (e.g.,
protein interactions). For example, PreBIND (http://deep.
mshri.on.ca/prebind/) classifies abstracts retrieved by user-
specified yeast protein names, identifies abstracts containing
likely interaction information, and extracts the candidate
protein names. The success of retrieval depends on the pres-
ence of yeast protein names or alternate names in an internal
name and synonym dictionary. Although PreBIND and other
textual protein interaction extraction tools (e.g., Ono’s PPI
extractor [Ono et al. 2001]) are useful to identify interaction
candidates, functions that would aid further computational
exploration of biological functions and pathways associated
with interaction candidates are not provided.

Text-mining tools for identifying gene-disease relations
from abstracts are important in the process of testing a dis-
ease-association hypothesis and providing support in inter-
preting results. XplorMed (Perez-Iratxeta et al. 2001) permits
the step-wise exploration of user-provided or keyword-
retrieved abstracts by quantitative word dependencies and
categorization by keywords representing a concept, for ex-
ample, disease MeSH. However, the upper input limit is 500
abstracts. Further, the output (keyword chains linked to ab-
stracts) may contain rather general keywords (e.g., cell or pa-
tient) that are not linked with a gene. In contrast, G2D (Perez-
Iratxeta et al. 2002) extracts disease and substance Medical
Subject Heading (MeSH) from MEDLINE articles associated
with a mapped human gene and computationally infers gene
ontology (GO) terms (Ashburner et al. 2000) based on sub-
stance MeSH. The combined GO and substance MeSH con-
cept mapping provide useful context information on poten-
tial biological roles of gene-disease candidates. Because the
G2D database can be queried only by accessions and genome
mapping positions, its application is limited.

Each of the existing text-mining tools has its own unique
strengths and limitations in respect to information retrieval
and extraction of relevant biological information. Input re-
strictions and lack of integrated biological context informa-
tion (e.g., tissue and expression) limit many of the existing
tools to the casual exploration of small data sets related to one
topic (e.g., only protein interactions or only disease associa-
tions). At the time of annotating and analyzing 60,000 RIKEN
mouse FANTOM2 cDNA clones (The FANTOM Consortium
and The RIKEN Genome Exploration Research Group Phase I
& II Team 2002; Mouse Genome Sequencing Consortium

2002), none of the tools available to us suited the large-scale
textual information retrieval on the basis of clone annota-
tions, followed by the extraction of molecular interaction,
gene ontology, and disease association information. Further,
we required annotation capability of the results, because this
is critical to prevent massive error propagation when compu-
tationally inferred functional information is incorporated
into curated databases. In light of these issues, we sought to
construct a system that is (1) transcript focused (FANTOM2
clone set), (2) supports large-scale data retrieval, (3) interre-
lates basic gene-name annotations with sequence and
MEDLINE abstract-inferred molecular interaction-containing
sentences, disease associations, gene ontologies, and other se-
quence-related information (e.g., cDNA library source and
protein motifs) and external data (e.g., gene expression), (4)
produces results that can be both annotated and mined and,
(5) generates intuitive search reports from traversing the in-
tegrated data by keywords, concept-containing keywords, or
sequences.

RESULTS AND DISCUSSION

FACTS System
The FACTS system (version 1.0) contains 12 core programs
(see also Supplement 1) for keyword-based retrieval, filtering,
and processing, sequence similarity searches, and a result da-
tabase that can be queried through 10 user interfaces. Two
types of keyword-based queries need be distinguished, that
are, command-line and web-based queries. Command-line
queries or batch queries of MEDLINE or sequence databases to
retrieve information are available to FACTS developers or ex-
pert users who downloaded the core programs. Web-based
dynamic querying of MEDLINE, followed by the processing of
retrieved abstracts in FACTS is not supported in this version.
Data that were processed (e.g., disease MeSH associated with a
FANTOM cDNA clone) by the FACTS system and integrated
into its database (version 1) can be queried by keywords or
sequence through Web-based interfaces. These queries permit
users to retrieve and explore functional information of a
FANTOM2 cDNA clone that was associated by FACTS.

A schema of how the FACTS system works is shown in
Figure 1. Implementation details of the PERL programs are
shown as flowcharts in Supplement 1. The program
NameFetcher uses CloneIDs and the database accessions of
their annotation sources (e.g., MGI database) to extract gene/
protein name, symbol, or synonym accession from specified
fields in the source databases (Supplement 2). The combina-
tion of source database name and accession yields the query
ID for the extracted information. If multiple CloneIDs have
the same source accession, they are clustered and receive only
one query ID.

QueryMaker reads the query IDs of the NameFetcher to
construct, according to query rules, from the gene names,
symbols, and synonyms MEDLINE queries that are input for
NCLEVER (Rioux et al. 1994). NCLEVER emulates ENTREZ,
but allows batch queries to MEDLINE. The NCLEVER-
retrieved abstracts are processed by AbstractFilter, which re-
moves abstracts related to plants, and abstracts with gene
names referring to cell line names. The filtered abstracts are
split into sentences by the SentenceSplitter and filtered for
molecular interaction-containing sentences by the Sentence-
Filter. The sentences and their associated query identifier,
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Figure 1 The FACTS System consists of 12 core programs (round-shaped boxes). External databases are FANTOM2 and MEDLINE. Other
databases were installed locally. Arrows indicate the flow between programs and databases. Details are described in the text.

Nagashima et al.

1522 Genome Research
www.genome.org



clone accession, MEDLINE identifiers are stored in the FACTS
database for retrieval and annotation.

Three TermMatcher programs read in names, symbols,
and synonyms derived from the NameFetcher output and
matches them to name fields in OMIM (Hamosh et al. 2002),
Biomolecular Interaction Network Database (BIND) (Bader
and Hogue 2000), or Database of Interaction Proteins (DIP)
(Xenarios et al. 2001). Two TermMatcher programs match dis-
ease MeSH to all MeSH fields in AbstractFilter-derived ab-
stracts and GO terms to SentenceSplitter-processed sentences.
SequenceSearch (FASTY and TBLASTN) searches FANTOM2
sequences against DIP, BIND, and OMIM to obtain sequence
similarity search-based assignments protein-interaction can-
didates and OMIM disease information.

Other sequence-inferred information such as clone sta-
tus (e.g., truncated), coding sequence (CDS) information,
BLASTN (Altschul et al. 1997), or FASTY (Pearson et al. 1997)
derived evidence (e.g., percent identity, match length, and
clone length) for annotation categories of FANTOM2 cDNA
clones and curated, sequence similarity search-based GO
mappings were integrated from the FANTOM2 database. The
text-based (keyword-retrieved molecular interaction sen-
tences, GO terms that matched to sentences, and disease
MeSH that matched to MH field of abstracts), sequence-
inferred, and external data (e.g., splice variant information)
were integrated and loaded into the relational PostgreSQL
FACTS database.

Functionality of FACTS System
The uniqueness of the FACTS system lies in its rule-based,
large-scale retrieval of textual information on molecular in-
teractions, gene ontology GO, and potential disease associa-
tions, together with its biologically oriented and comparative
integration of sequence-based data into the FACTS database
for data mining and annotation.

The FACTS database can be searched from 10 interfaces
by various keyword, accession or predefined queries, and se-
quences. The interface ‘Search by Gene Name’ permits the
keyword-based retrieval of FACTS entries restricted by gene
name, symbol, and synonym of the RIKEN clone. To address
the different needs of biologists, we implemented partial and
exact matching of keywords plus optional target restrictions
on database references of clone annotations, annotation cat-
egories (homolog, similar to, etc.) derived from the FANTOM2
MATRICS (Mouse Annotation Teleconference for RIKEN
cDNA sequences) annotation pipeline, and/or tissue source of
the cDNA library. For example, a user with interest in explor-
ing functional information on receptors expressed in the
brain can query with the keyword ‘receptor’ in partial match-
ing mode, restricted to clones derived from brain cDNA librar-
ies. ‘Search by keyword’ allows the keyword-based retrieval of
molecular interaction containing sentences, BIND protein
names, OMIM, disease MeSH, and GO terms associated with a
clone annotation. A search with ‘Inflammation’ restricted to
disease MeSH and clones derived from skin cDNA libraries will
retrieve clones associated with immune response and inflam-
matory pathways, together with their curated gene names,
corresponding hyperlinked MEDLINE identifiers, and FACTS
reports.

The interface ‘Data and Result Sources’ contains pre-
defined queries on 14 data sources, including computational
extracted molecular interactions, annotated PPI sentences,

term-matching or sequence similarity search-inferred OMIM
titles, disease MeSH, and external data, for example, MDS
(Kawaji et al. 2002), MousDB (Zavolan et al. 2003), and
InterPro (Apweiler et al. 2000). The items can be queried alone
or in any combination and restricted by cDNA library source
and annotation category to obtain a hyperlinked statistic of
associated functions for each clone.

Another entry point to the FACTS database is the BLAST
search interface. Sequence searches of the FANTOM2 or RTPS
(Representative Transcript Protein Set) sequence sets (The
FANTOM Consortium and The RIKEN Genome Exploration
Research Group Phase I & II Team 2002; Mouse Genome
Sequencing Consortium 2002; Baldarelli et al. 2003) result in
BLAST outputs with hyperlinks to the FACTS report of entries.
Search by accession permits queries with multiple CloneID,
DDBJ accessions, MEDLINE identifiers of abstracts or
FANTOM2 cluster ID, or RTPS accessions to retrieve FACTS-
inferred functional information.

The association query interfaces ‘Infer mol. interaction
associations’ and ‘Infer disease associations’ facilitate the ex-
traction of potential interaction partners and their disease
associations on the basis of shared disease MeSH terms, OMIM
titles, or molecular interaction-containing sentences. Combi-
natorial FACTS database searches with text or sequence-
inferred GO, disease MeSH, OMIM title, and/or molecular in-
teraction sentences are facilitated by the interface ‘Infer by
term’. The search target can be restricted by annotation cat-
egory (e.g., homolog, similar to, etc.) and/or molecular inter-
action-associated clones. The search report includes clone ID,
gene name, hyperlinks to the MeSH, GO, OMIM of the clone,
and information on whether the clone is an alternative splice
variant. Users can thereby identify candidate transcripts that
are directly and indirectly associated by shared functional
concepts for microarray construction, signaling, or disease
gene pathway studies.

FACTS database query results are linked to a functional
report containing seven tables as follows: (1) basic informa-
tion, (2) summary of search and extraction results, (3) mo-
lecular interactions from PubMed abstracts, (4) protein inter-
action pairs derived from BIND and DIP databases, (5) disease
MeSH terms of MEDLINE abstracts, (6) OMIM and Morbid
Map titles, and (7) gene ontology terms.

The basic information table provides users with a sum-
mary of computational assigned and curated gene names,
symbols, and synonyms. The integrated information on CDS
status (e.g., immature, 3�UTR, 5�UTR, etc.), clone status infor-
mation (e.g., length, truncated, antisense, and immature),
and annotation category (e.g., homolog, similar to, etc.) aids
query prioritization and annotation selection. A clone that
contains only the 3�UTR of a gene is obsolete for exploring
protein–protein interactions, whereas it is still useful for in-
ferring and annotating potential protein–RNA interactions of
UTR site regulatory elements. InterPro-derived domain infor-
mationmay provide hints for localizing sequence regions that
are critical for protein interaction.

The summary table of query and extraction results dis-
plays simple statistics of query matches in MEDLINE ab-
stracts, downloaded, and processed abstracts, followed by the
number of query word-containing sentences, interaction
word, and query word-containing sentences and disease
MeSH terms. For results extracted from GO, OMIM, and
BIND, we compared text and sequence-based counts and re-
ported the overlap between both methods. A button ‘Anno-
tate’ opens an interface for the annotation of computationally
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extracted molecular interaction sentences, disease MeSH,
OMIM, and text-based GO assignments.

The comparison of constructed query strings and hits in
abstracts with gene or protein names (query), symbols, and
synonyms (N&S) of the data sources enables the detection of
erroneous queries and improvement of the query construc-
tion rules. A query reconstruction function in the FACTS re-
port interface lets users correct the query string, request re-
querying, and updating of the results from the FACTS admin-
istration. This feature allows the cyclic improvement of
information retrieval.

Query Construction for Text Retrieval
The FACTS systemwas applied to both the computational and
human annotated FANTOM2 cDNA clone set (Suppl. 3). Here,
we report only the results for human curated clones. The cov-
erage and specificity of abstract retrieval fromMEDLINE using
gene or protein names depends on how queries are formu-
lated. Synonym and symbol usage affects the sensitivity,
whereas the specificity is influenced by common English
words (e.g., protein), ambiguous words and symbols, or
phrases that are unlikely to occur in abstracts. We addressed
those issues by defining query rules to distinguish informative
from uninformative names and decreased the number of un-
successful retrievals by missed alternate names or overly spe-
cific words. The rules were empirically derived from the
knowledge of molecular biologists plus systematic gathering
and visual inspection of names, alternate names, and symbols
from various databases. From the corrected queries, we are
able to derive new rules. During the development of FACTS,
24 rules were added through query reconstruction.

Depending on the data sources, symbols or words were
not always suitable for querying MEDLINE abstracts because
the annotations contained (1) uninformative names such as
hypothetical protein or similar to SIMILAR TO KIAA0266
GENE PRODUCT, (2) phrases that are unlikely to occur in an
abstract (e.g., SIMILAR TO MANNOSIDASE, ALPHA, CLASS
2C, and MEMBER 1 and 3) symbols or synonyms with one or
two letters or alpha-numeric characters. Those symbols or
synonyms were deleted from the query.

We derived 205 query construction rules (Suppl. 4A)
that are specific for FANTOM2 cDNA clone annotations and
their data sources (Suppl. 2). The majority of rules targeted the
removal of annotations that would result in excessive
MEDLINE abstract retrieval (e.g., membrane protein) and the
deletion of uninformative prefixes, and terms (e.g., similar to,
structure containing, -pending, member 1 and 3, class 2C)
derived from the FANTOM2 MATRICS annotation pipeline or
data sources. A few rules determined the generation of spell-
ing-variants for symbols (e.g., Pax6 and Pax-6) and the use
of the Boolean operators “and” and “or” For example, the
SWISSPROT name GLUTATHIONE S-TRANSFERASE, MU
TYPE 3 was converted to Glutathione S-transferase AND “mu”
AND “3”.

Because the query construction process by NameFetcher
and QueryMaker led to a clustering of FANTOM2 gene name
annotations by their database source accessions, we reduced
the number of queries significantly. By querying with the
gene name of the database reference rather than the clone
annotation itself, we imply that a clone annotated as ‘similar
to Abca1’ or ‘weakly similar to Abca1’ may have functions
related to Abca1 of the data source. The annotation prefixes
were based on sequence identity, match length thresholds

calculated from BLASTN, or FASTY outputs as described in
detail by The FANTOM Consortium and The RIKEN Genome
Exploration Research Group Phase I & II Team (2002) and The
Mouse Genome Sequencing Consortium (2002). As the clus-
tering by annotation source accession may result in irrelevant
functional associations, we integrated this sequence search-
based evidence (e.g., FASTY, 77% ID, 100% length, match =
835) from the FANTOM2 database field ‘evidence’ to provide
users a confidence measure for FACTS assigned molecular
functions.

Before the FANTOM2 MATRICS, we constructed 14,210
queries from the computational gene-name annotations of
60,770 clones (Suppl. 2). Curators subsequently changed
42.7% of the annotations, which prompted 9895 (69.6%)
changes in FACTS queries. A total of 8662 (60.9%) resulted in
new FACTS query constructions or reassignments of existing
queries; 985 (6.8%) queries became uninformative and were
removed. Curation reduced the number of queries to 13,245.
These comprised curated gene names in addition to 34,158
symbols, synonyms, and alternate names of 28,843 (47.5%)
clones. A total of 31,927 (52.5%) of human-curated clone an-
notations were uninformative for MEDLINE queries, but still
informative for functional inference from their sequences.

Information Retrieval and Extraction From MEDLINE
and Other Biomolecular Databases
NCLEVER retrieved for 9873 (74.5%) MEDLINE queries more
than 1.2 million abstracts (Table 1A). The number of re-
trieved abstracts for each query varied from 1 to 1907 ab-
stracts. Among the top 20 query retrievals were C-protein,
LINE protein, Ran oncogene, Rad51 one misconstructed
query (DiGeorge syndrome-related protein FKSG5 or protein),
and also queries with ambiguous symbols (e.g., Gpr106 or
GREAT and alcoholsulfotransferase or STD). We addressed the
frequently occurring ambiguity problem of gene symbols
with three characters by systematic filtering of the abstracts in
the context of full name or all available synonyms. Abstracts
containing only the three-letter symbol were removed. Am-
biguity of four or five character symbols (e.g., GREAT) oc-
curred less frequently and was dealt with on a case-by-case
basis when reported through the query reconstruction function.

A total of 3372 (25.5%) of queries did not match any
word in MEDLINE abstracts at the time of querying (Table
1A). Queries without retrieved abstracts were often derived
from domain- and structure-containing, or SWISS-PROT
(Bairoch and Apweiler 2000) and PIR-inferred annotations.
Abstracts rarely contain domain or fold names unless they are
from review articles or associated with the discovery or char-
acterization of functionally important domains or folds. Mul-
tiple word-containing protein names without available sym-
bols (e.g. [ALR-like protein]; AK077567) or classifications of
proteins (SWISS-PROT) that are informative but too specific to
appear in the abstract (e.g., Atp11a or [ATPase and class VI
and type 11A]; AK006628) were another source of unsuccess-
ful queries. We avoided total removal of classifications (e.g.,
class or type) or combinations of all query words by the Bool-
ean operator “or” to prevent generating large numbers of false
positive abstracts.

The downloaded abstracts served as a basis for this analy-
sis. We did not construct Boolean queries with terms specify-
ing a particular function (e.g., cyclin E and interact) to avoid
having to re-query all of MEDLINE when the focus changes.
We were interested in molecular interactions, particularly
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protein interactions, disease associations, and gene ontology.
Before extracting the above information, we cleaned the
downloaded abstracts by rules (Suppl. 4B–D) developed from
human curation of abstracts retrieved by 40 randomly chosen
queries and biological knowledge. For example, abstracts con-
taining plant, but not transplant or implant, were removed.
Furthermore, we used rules to delete abstracts containing
variations of cell or cell line preceding or following a gene
symbol (e.g., IL-4 dependent cell line and CCR3 cells). For
example, CCR3 cells, which refers to cells transfected with
CCR3, were detected in 3 of 521 abstracts retrieved with a CCR3
query (http://facts.gsc.riken.go.jp/CCR3/). In total, the disam-
biguation or filtering and cleaning steps reduced the number
of downloaded abstracts by 38% and affected 34% of queries.

Molecular Interactions Inferred From Abstracts
At present, the FACTS database is loaded with 740,436 ab-
stracts related to 20,611 clones (9356 queries). MEDLINE ab-
stract-inferred molecular interactions were derived from
261,043 predicted molecular interaction sentences associated
with 14,021 (48.6%) clones (6362 queries). A total of 9148
(65%) of the molecular interaction sentences-associated

clones have an InterPro domain, whereas 4351 (30.9%) clones
are also members of 12,841 splice variation clusters in
MouSDB. These clones may therefore reveal important clues
on the effect of alternative splicing on predicted protein func-
tions.

Molecular interactions in abstracts are generally explicit
and confined to one sentence. If the interaction encompasses
two sentences, the neighboring sentence may implicitly refer
to “it” or “which”, meaning an interaction described in the
preceding sentence. We decided, therefore, to extract a single
sentence, rather than sentence pairs, using 10 sentence de-
limiter rules (Suppl. 4B). Sentences containing molecular in-
teractions were defined by the presence of at least one of the
75 interaction indicator words (e.g., bind or inhibit) and the
query word(s). Interaction indicators (Suppl. 4C) comprised
stemmed words (e.g., bind* equals bind, binds, and binding),
complete words, and phrases expressing protein–protein, pro-
tein–DNA, protein–RNA, protein–small molecule (e.g., drug)
interactions. Because receptors and kinases constitute the
largest protein families involved in signal transduction and
are potential drug targets, we included combinations of
phrases containing ‘receptor’ or ‘kinase’ (kinase xxx asso-
ciat*). Sentences containing one or more of 101 false positive

Table 1A. Summary of MEDLINE Abstract Retrieval and Extraction of Molecular Interaction-Containing Sentences, Disease MeSH
and GO Terms

MEDLINE Clones % Query % Abstract % Sentence % Term

Queried 28,843 100.0 13,245 100.0 n/a n/a n/a n/a n/a
w/o abstract 7,619 26.4 3,372 25.5 n/a n/a n/a n/a n/a
Abs. retrieved 21,779 75.5 9,873 74.5 1,201,630 100.0 10,744,757 100.0 n/a
Abs. removed 11,351 39.4 4,933 37.2 461,194 38.4 4,093,616 38.1 n/a
Abs. remain 20,611 71.5 9,356 70.6 740,436 61.6 6,651,141 61.9 n/a
Mol. interact. 14,021 48.6 6,362 48.0 156,879 13.1 261,043 2.4 n/a
Disease MeSH 13,789 47.8 6,304 47.6 201,925 16.8 n/a n/a 3,672
GO 19,720 68.4 8,973 67.7 418,714 34.8 3,831,845 35.7 4,765

(Abs) Abstract, (n/a) not applicable, (w/o abstract) without abstract, (mol. interact) molecular interaction information-containing sentences.
Term: refers to number of non-redundant GO or disease MeSH terms. All numbers are nonredundant. Note that one clone can be associated
with multiple abstracts. Cleaning of abstracts affected 11,351 transcripts, of which 1,168 had only one abstract. Therefore, the number of
clones with remaining abstracts is 20,611.

Table 1B. Summary of Text and Sequence-Based Functional Associations

Category Clones (%) Query (%) Term
Source DB
coverage

TEXT
Disease MeSH 13,789 66.9 6,304 47.6 3,672 93.3
GO 19,720 95.7 8,973 67.7 4,765 41.4
OMIM 10,931 53.0 5,248 39.6 4,532 31.7
Morbid map 2,585 12.5 1,218 9.2 961 45.4
BIND 1,509 7.3 636 4.8 1,346 12.0
DIP 639 3.1 304 2.3 554 4.9

SEQUENCE
GO 16,518 80.1 n/a n/a 2,844 24.7
OMIM 2,615 12.7 n/a n/a 757 5.3
Morbid map 2,489 12.1 n/a n/a 738 34.9
BIND 161 0.8 161 0.8 132 1.2
DIP 382 1.9 382 1.9 413 3.7

Comparisons among text and sequence-derived categories are based on 20,611 clones.
All numbers are nonredundant.
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interaction indicator words (e.g., fluorescence activated cell
sorter [FACS], cell interaction, activation curve; see Supple-
ment 4D) were removed.

This strategy resulted in a significant data size reduction
and concentration of interaction sentences (see Table 1A). For
example, molecular interactions associated with CMKBR3 or
CCR3 or chemokine (C-C) receptor 3 or MIP-1 �RL2 were
summarized in 174 sentences extracted from 123 abstracts
(A530083H05; AK041106, and Web site reference FACTS
CCR3). To obtain similar molecular interaction information
on CMKB3 from ENTREZ-retrieved abstracts would require
significant longer reading time. The advantage of our sen-
tence-based approach is that context information can be cap-
tured. For example, FACTS extracted from abstract 11396683
(Marone et al. 2001) two sentences: (1) Human basophils and
mast cells express the chemokine receptor CCR3, which binds
the chemokines eotaxin and RANTES, and (2) by interacting
with the CCR3 receptor on Fc epsilonRI+ cells, HIV-I Tat pro-
tein is a potent chemo-attractant for human basophils and
lung mast cells. Besides three CMKRB3-interacting proteins,
the sentences contain cell type-specific expression informa-
tion and the suggestion of a role in HIV infection. Even sen-
tences of the following type: “The objectives of this study
were to investigate CCR3-mediated activation of the mitogen-
activated protein (MAP) kinases … and c-jun N-terminal ki-
nase (JNK) in eosinophils …” (Kampen et al. 2000) are useful
for biologists, because they provide pointers to intracellular
signaling information and potential cellular or disease con-
text. We also considered molecular interactions that defi-
nitely do not occur as informative. FACTS extracted from
MEDLINE abstract 11404385 four sentences that summarize
the interactions of CCR1, CCR3, CCR4, and CCR5, with the
ligands RANTES and MIP1-�. The sentence “MIP-1� has simi-
lar binding characteristics to RANTES except that it does not
bind to CCR3” is important, as it implies that MIP-1 � and
RANTES have different receptor ligand-binding sites.

Although molecular interaction-containing sentences
represent a fuzzy concept, they provide useful biological and
functional information on direct and indirect interactions for
exploration and annotation. A FACTS database search using
the interface ‘Infer Molecular Interactions’ with the keyword
‘Tumor necrosis factor receptor-associated factor 6’ restricted
to annotation category MGI (known gene) retrieves 47 poten-
tial molecular interactions, of which 24 are nonredundant.
When selecting the TRAF6 interacting candidate, tumor ne-
crosis factor receptor superfamily member 1b (TNFRSF1B),
three molecular interaction sentences are displayed as evi-
dence. Nerve growth factor-dependent TRAF6-TNFRSF1B in-
teraction was shown in Schwann cells (Khursigara et al. 1999).
The predicted shared disease MeSH for Traf6 and Tnfrsf1b is
Autoimmune disease.

We purposely did not narrow the computationally ex-
tracted text information to a particular interaction type or
interaction pairs (e.g., protein names). (1) Molecular inter-
action-containing sentences provide richer information, po-
tentially on the context surrounding the interaction. (2) Blas-
chke et al. (2001) showed, in a small case study, only 30%
extraction overlap between interacting proteins of DIP and
MEDLINE abstract-derived sentences describing those inter-
actions. (3) Extraction of particular interaction pairs or com-
plexes from sentences that are reliable and biologically appli-
cable can only be achieved by a combination of human cura-
tion and sequence comparison of the inferred interacting
molecules with their sources.

Annotation
The computationally inferred molecular interaction sen-
tences have a broad coverage and contain potentially inter-
esting functional information in compressed form for biologi-
cal interpretation and annotation. The computationally de-
rived molecular interaction sentences can be curated for
protein–protein, protein–DNA, protein complexes, or pro-
tein–small molecule interactions after completing an annota-
tor registration form. The registration and annotation mode
applies also for the other computational inferred information
(e.g., GO, OMIM, and disease MeSH). All annotations are re-
checked before being added to the FACTS annotation results
or transferred to external databases as curated entries.

Annotation of Molecular
Interaction-Containing Sentences
When matching (TermMatcher) gene/protein names, sym-
bols, or synonyms derived from FANTOM cDNA clone anno-
tations to the name fields of BIND and DIP entries, 10.2%
(2099) of clones overlapped with 7.2% (1611) entries of the
combined nonredundant BIND and DIP-derived experimen-
tal protein–protein interactions. Because 1589 (75.7%) of
those clones were also associated with computationally ex-
tracted molecular interaction sentences, this number consti-
tutes only 11.3% of all molecular interaction candidates
(14,021 clones). Therefore, it is important to augment experi-
mental mouse protein–protein interactions (PPI) stored in
public databases, including the FANTOM2 PPI Viewer (Suzuki
et al. 2003), with reliably inferred PPI information from the
literature. As a consequence, we applied a multiple-step strat-
egy to annotate PPI-containing sentences and to assign se-
quence candidates to the names of the interacting proteins.

Because PPI represent a subset of molecular interactions,
we performed on the existing FANTOM clone query-derived
sentences exact and case-insensitive term-matching with fea-
ture table descriptions “product” and “gene” of mouse, hu-
man, rat, and chimpanzee entries of GenBank (Release 127.0)
to generate a PPI candidate-enriched sentence set for human
curation. We limited the set to 431,234 candidate sentences
of 166,375 abstracts derived from 4,728 queries of the
FANTOM2 clone categories ‘homolog,’ ‘similar to,’ ‘inferred,’
and ‘weakly similar to.’ To reduce the number of potential
false positives, we removed 87,389 sentences derived from
spurious and ambiguous queries such as LINE protein, and C
protein among others. For the remaining sentences, we de-
leted another 34,566 sentences containing the molecular in-
teraction indicator words at the beginning or end of the sen-
tence. The sentences in this set were often found to contain
uninformative or unrelated interaction. For example, sen-
tences beginning with ‘Binding was inhibited’ or ‘Binding was
determined’ did not specify what was bound. Similarly, sen-
tences with words ‘DNA binding,’ ‘after binding,’ ‘tissue bind-
ing,’ or ‘sperm-egg binding’ at the end were frequently found
to be unrelated to PPI. To further enrich the sentences for
interaction statements concerning two different proteins, we
deleted 284,170, because the predicted protein names or sym-
bols were identical. Another 16,205 sentences containing the
interaction indicator words activat*, inactivat*, or inhibit*
were removed, because visual inspection of sentences showed
that the majority referred to interactions other than PPI. At
the end of the filtering, we obtained 8904 sentences with
9233 computational binary PPI associated with 2850 clones.

Despite the computational preprocessing, the resulting
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sentences still contained other molecular interactions in ad-
dition to PPI (e.g., protein–DNA, protein–RNA, protein com-
plexes, and protein–drug). The deleted and remaining sen-
tences are valuable sets for refining our filtering strategy to
minimize information loss and noise. We curated 5458 sen-
tences associated with 1199 clones (414 queries). Annotation
and double checking yielded 402 PPI interaction pairs derived
from 845 PPI candidate sentences relating to 223 clones (96
queries) and 179 GenPept derived sequences. In addition, we
obtained 18 protein–DNA and seven protein–small molecule
interactions. We transferred 402 PPI interaction pairs to the
FANTOM2 PPI viewer. Because the GenPept-derived se-
quences are associated with less information than FANTOM2
sequences, we compared them against the FANTOM2 cDNA
set using TFASTY (protein sequence against translated data-
base; no frame-shift, no unexpected stop codon). A total of 58
GenPept sequences that matched to FANTOM2 cDNA se-
quences with greater than 95% identity over more than 95%
CDS length were manually inspected and replaced with
FANTOM2 sequences. To reduce redundancy among the se-
quences of interacting proteins, we compared them against
each other using BLASTP (>95% identity, >95% length) and
selected one representative. Finally, we obtained from 402
protein interactions pairs, 90 PPI networks comprising 39
non-FANTOM2mouse, 19 rat, 63 human, and 276 PPI curated
FANTOM2-derived predicted proteins.

The small overlap (4.3%) of 402 annotated, double
checked, and sequence post-processed, and rechecked PPI
pairs and 9233 computationally predicted PPI pairs in our
rigorous multistep PPI extraction procedure shows the limi-
tations of text-based extraction of protein names or symbols
that can be automatically associated with sequence accessions
and species information. Even with improved protein name
dictionaries such as PNAD (Yoshida et al. 2000) we do not
expect significant improvement, because the automatic asso-
ciation of text-derived protein names with the correct species
and sequences that are not frame-shifted or immature is prob-
lematic.

The protein–protein interaction networks constructed
from the curated interactions were visualized in a static sum-
mary view and in a dynamic JAVA applet viewer in context of
tissue, OMIM Morbidmap, disease MeSH, InterPro (Apweiler
et al. 2000), and GO information. A network may contain
identical protein names if the gene name annotation refers to
clones of different library origin (see http://facts.gsc.riken.
go.jp/viewer/InteractionViewer.php?CloneID=E230016M11
for clone ID E230016M11). The network shown in Figure 2A
consists of 11 proteins involved in DNA repair, cell death, and
cell cycle control. The transcript-based view (Fig. 2B) allows
the observer to predict PPIs in context of expression as in-
ferred from dBEST tissue distributions using BLASTN and
FANTOM cDNA library information. Growth arrest and DNA-

damage-inducible 45 � (Gadd45a; AK029473 and AK054076)
was cloned from neonate day 0 head and oviduct libraries.
Selection of head (Fig. 2C) resulted in the subnet CDC2A—
GADD45A—PCNA—FEN1, which is supported by expression
data. When adding the disease MeSH term ‘ischemic attack’
(Fig. 2D) to the head expression criteria, the FEN1–PCNA in-
teraction disappears, suggesting that FEN1 does not play a
role in ischemia. Gadd45a and Pcna are induced by ischemic
damage of the adult and fetal brain and are important in
suppressing apoptosis and cell survival (Li et al. 1997; Char-
riaut-Marlangue et al. 1999). Cdc2a is the mouse homolog
of human Cdc2, which was shown to be up-regulated in
ischemic heart muscle and is implicated in cell survival after
infarction (Reiss et al. 1996). To our knowledge, there are
no reports on the cell survival-related role of CDC2 in the
ischemic brain. This example shows that context-inferred PPI
networks may result in interesting experimental targets, such
as the role of the mouse CDC2A and other interacting pro-
teins in the ischemic brain.

BIND and DIP-Inferred Protein Interactions
BIND and DIP databases were queried by gene name and/or
symbol plus all FANTOM2 cDNA sequences. To assign protein
interactions recorded in the BIND and DIP databases, we used
a word-matching and a sequence similarity-based search strat-
egy. Gene/protein names, symbols, or synonyms derived
from FANTOM cDNA clone annotations to the name were
matched (TermMatcher) to the name fields of BIND and DIP
entries. Matching names and/or symbols were extracted to-
gether with the accessions of the entry. We obtained 1346
molecular interactions for 1509 (7.3%) clones (636 queries).
Sequence-based assignments of BIND (http://facts.gsc.riken.
go.jp/pi_seq_base.html) and DIP protein interactions were
performed by comparing all DNA sequences of FANTOM
clones in the FACTS database against the protein sequences of
the BIND and DIP databases using the FASTY program with
BLOSUM 80 matrix. The best match with greater than 95%
identity over more than 95% length to the FANTOM2 query
sequence was selected as a protein interaction candidate. For
BIND-derived candidates, we extracted the interacting protein
names from the BIND name fields and integrated them into
FACTS database to facilitate an integrated display with mo-
lecular interaction sentences. Due to restrictions in integrat-
ing data from DIP, we hyperlinked candidates to their original
DIP entry.

Of note is the small overlap (BIND 2.2%, DIP 4.9%) of
inferred PPI by term-matching and sequence searching (Table
3A, below) and less than 5% of source database coverage. We
can largely exclude term-matching problems, as the target
symbols or names are from identical data sources (e.g., MGI)
and do not occur in free text format.

Figure 2 (A) MEDLINE abstract-derived PPI network for curated PPI of 11 proteins: CDC2A, CDKN1A, CNOT7, FEN1, GADD45A, PCNA, MTK1,
P21(CIP1/WAF1), UNG2, MYH, and DNMT1 (see also http://facts.gsc.riken.go.jp/viewer/InteractionViewer.php?CloneID=2810049I05 for protein
interaction viewer of clone ID 2810049I05). Detailed information on data source accessions and inferred functions (OMIM Morbidmap, disease
MeSH, tissue distribution, gene ontology assignment, and InterPro domains) appears after clicking on the circles. Orange-colored circles symbolize
mouse proteins. Blue circles show potential interacting proteins of human origin. (B) The PPI network shown in A is derived from 64 interaction
pairs inferred from 14 FANTOM2 and 5 GenPept sequences. The clone-based display of inferred PPI facilitates the visualization of context
information. (C) Selection of head shows CDC2A—GADD45A—PCNA—FEN1 PPI associated with transcripts that are expressed in the head.
Symbols preceding the tissue names, (f) FANTOM2 READ database-derived EST tissue information; (g) dbEST-derived EST tissue information. (l)
FANTOM2 cDNA library source-derived tissue information. (D) Additional selection of disease MeSH Ischemic attack, transient removes FEN1 from
the PPI network.
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However, term-matching is blind to alternative splice
forms, truncated or partial sequences that were not extracted
by FASTY. Because PPI can be abolished by substitution of one
amino acid residue as demonstrated for PDZ domain ligands
(Gee et al. 2000), all text-extracted PPI need to be carefully
scrutinized by either sequence similarity search of the data
source sequence or reading the full-text article before proceed-
ing with experimental validation. The computational BIND
sequence-inferred networks partially overlap with mouse ex-
perimentally derived mouse PPI as reported by Suzuki et al.
(2001).

Gene Ontology-Inferred Functions
The GO-controlled vocabulary describes functionality of gene
products. The assignment of GO codes from free text has been
performed recently for a small set of GO terms to evaluate
three different document classification methods (Ray-
chaudhuri et al. 2002). The best method achieved 72% accu-
racy. We opted for simple term-matching using manually
modified GO terms. The modifications included splitting
phrases or compound words (e.g., GO 0004791 thioredoxin
reductase [NADPH] becomes thioredoxin reductase “and”
NADPH) and removal of words (e.g., in sensu), which are un-
likely to occur in abstracts. Term-matching was performed to
both query-word containing sentences and molecular inter-
action sentences. GO terms with split phrases were assigned if
all the words occurred in one sentence, regardless of their
combination. Curated, sequence-inferred GO associations
were extracted from the FANTOM2 database and compared
with the sentence-matched GO terms.

A total of 4765 GO terms were matched to one or more
sentences of 418,714 abstracts associated with 19,720 (68.4%)
clones (8,973 queries) (Table 1A). The overlap between cu-
rated sequence-inferred and text-inferred GO-associated
clones is 78.2% (Table 3A, below). Clones associated with se-
quence or text-inferred GO only amount to 3.0% and 18.8%,
respectively (Table 3A, below). If we compare the text and
curated, sequence-based GO inference on GO term level,
50.1% of GO terms were associated by term-matching only,
16.4% by sequence, and 33.4% by both methods (Table 3B,
below). A total of 1778 sequence-inferred GO assignments
covered 21.4% (8,612 of 40,159) clones that were not consid-
ered informative for text queries or whose query failed to
retrieve abstracts whose abstracts were removed during the
cleaning procedure (Table 2, below).

GO inference by term-matching shows high coverage
(Table 1B), because the terms can be associated with query
and co-occurrence with other gene names. For example,
SCYA27 (small inducible cytokine 27, AK005520) is described
by two sequence-inferred GO IDs for molecular functions
(chemokine and cytokine) and one for cellular role (extracel-
lular) that were also captured from the sentences. Additional
sentence matching-derived GO terms that increase the func-
tional information for SCYA27 include ‘homeostasis,’ ‘necro-
sis,’ ‘receptor,’ and ‘chemokine receptor.’ SCYA27 interacts
with chemokine receptor GPR2. The interaction is involved in
regulation of T cell-mediated skin inflammation, autoim-
mune skin diseases, and homeostasis (Homey et al. 2000). The
GO term necrosis is associated with TNF �, which induces
SCYA27 expression. The GO terms ‘extracelluar matrix’
(SCYA27 binds to the extracellular matrix) and ‘chromosome’
(Scya27 maps to chromosome 4) are false positives. The de-
tection of false positive GO term associations caused by co-

occurrence of unrelated genes or spurious hits (e.g., kinase in
the phrase kinase inhibitor genistein) is assisted by a hyper-
linked table of sequence and sentence-inferred GO compari-
sons and MEDLINE ID references for the sentence-inferred
GO terms.

The data mining function “infer by terms” alleviates false
positives and captures indirect functional associations by
combination of the Boolean ‘and’ with multiple GO terms or
combination of GO with disease MeSH terms. A search of the
sentence-inferred GO and abstract-inferred disease MeSH in
the clone annotation categories ‘MGI’ (identical to known
gene), ‘homolog,’ and ‘similar to’ with GO terms ‘chemokine
receptor’ and ‘homeostasis’ and ‘necrosis’ and disease MeSH
term ‘Inflammation’ retrieves 279 clones, representing 143
gene product candidates directly and indirectly related to the
above concepts. The output includes hyperlinks to a compari-
son of text and curated sequence-based GO assignments, dis-
ease MeSH terms, and information on potential alternative
splicing. Seventy-four candidates are potential splice variants.

The same search on the curated sequence-inferred GO
and disease MeSH failed to retrieve any candidates, because
the combination of the three GO did not occur. Another rea-
son was that sequence-inferred GO terms were deleted by the
FANTOM2 MATRICS curator because of premature stop
codons or partial sequence status (e.g., JAK3 homolog,
AK043429). In some cases, GO terms were not assigned. One
of the candidates, stromal cell-derived factor 1 (AK045092),
plays a role in chemokine, cytokine signaling, and homeosta-
sis of thyroid tissues (Aust et al. 2001) and hematopoiesis. The
curated sequence-inferred GO terms ‘cytokine,’ ‘extracellular,’
‘chemotaxis,’ ‘immune response,’ and ‘chemokine’ were also
present in the text-inferred GO terms, whereas ‘homeostasis,’
a term for cell growth and/or maintenance, was only found in
text-inferred GO. This data mining function is a powerful tool
to infer shared pathways or disease associations that would
not be possible from sequence-inferred information only, or
with disease and GO information retrieval tools known to us.

OMIM-Inferred Human Disease Associations
OMIM is a database of inherited disease associations (Hamosh
et al. 2002). OMIM titles were extracted from the OMIM
Genemap and Morbidmap files by matching the associated
gene symbols to the FANTOM clone annotations. OMIM
Morbidmap is a subset of OMIM that contains inherited or
heritable disease genes with cytogenetic map location. Match-

Table 2. Summary of Sequence-Based Functions for Clones
Without Abstract

Category Clones (%) Term
Source dB
coverage

w/o abstract 40,159 100.0 n/a n/a
GO 8,612 21.4 1,778 15.4
OMIM 661 1.6 269 1.9
Morbid map 566 1.4 261 12.3
BIND 101 0.3 65 0.6
DIP 48 0.1 49 0.4

A total of 40,159 clones comprise 7,619 (19.0%) without re-
trieved abstract, 1,168 (2.9%) with retrieved abstract(s) that were
removed during filtering, and 31,372 (78.1%) clones with anno-
tations that were uninformative for query construction.
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ing of FACTS queries to gene name and symbol in Morbidmap
inferred 961 potential disease associations (Table 1B) for 2585
clones (1218 queries). The noncurated TBLASTN (protein
query against translated sequence database) search results (E-
50 e-value threshold) of FANTOM2 cDNA sequences against
1022 human disease-associated sequences (Schriml et al.
2003) yielded 738 inferred disease associations for 2489
clones with abstracts and 261 for clones without abstracts
(Table 2). The overlap between text and sequence-based
methods was only 28.5% for clone and 48.1% for the
Morbidmap disease association (Tables 3A and 3B). Visual in-
spection of the disease candidate clones that were only asso-
ciated with human disease by TBLASTN (34.6%) revealed iso-
forms and clones with hypothetical domain-containing gene
names that could not be identified by term-matching. False
positive TBLASTN-predicted disease associations were de-
tected by term-matching. For example, Gabrg1 (AK032128,
OMIM 137166) was wrongly associated with the Greig cepha-
lopolysyndactyly syndrome related to Gli3 (OMIM 165240)
and CCR2 or CCR5 OMIM entries (601267, 601373) were as-
signed to CCR3 (A530083H05, AK041106). False positive dis-
ease associations inferred by term-matching were caused by
ambiguous query symbols or words. Thus, the use of both
methods together leads to an increased confidence if compu-
tational assignments overlap. Further, it enhances the detec-
tion of inconsistencies that can then be corrected by human
curation.

MeSH-Inferred Human Disease Associations
MeSH and GO terms comprise a curated, controlled vocabu-
lary that link related concepts in a hierarchical structure.
MeSH are applied in indexing abstracts and establishing con-
cept relationships among them. We used the human disease-

specific MeSH Tree (2001 Release) for term-matching to MeSH
Headings (MH) of abstracts. MH is one of the MEDLINE record
descriptors that follow the abstract text. If identical disease
MeSH occurred in different abstracts associated with the same
query (e.g., MH1:abstract 1; MH1:abstract 2), the redundant
MeSH terms were removed (e.g., MH1:abstract 1; MH1:abstract
2) and the nonredundant MeSH were assigned to the corre-
sponding MEDLINE identifiers. We inferred 3672 disease
MeSH for 66.9% (13,789) of clones (6,304 queries) with
cleaned abstracts. Of those, 23.5% (3244 clones) overlapped
with 82% of predicted hereditary disease associations from
Morbidmap. The computationally derived disease MeSH-
clone distribution (Supplement 5A) shows a high frequency of
clone associations with neoplasms (49.5%), pathological con-
ditions, signs and symptoms (48.1%), nervous system diseases
(35.9%), immunological diseases (30.1%), and neonatal dis-
eases and abnormalities (28.8%). Notably, one clone can be
associated with multiple disease MeSH categories. Breast neo-
plasm is associated with a clone (AK007298) derived from a
gene similar to tissue kallikrein or glandular kallikrein that
belongs to MeSH categories ‘Neoplasm’ and ‘Endocrine Dis-
eases,’ because in human breast cancer, glandular kallikrein is
differentially regulated by steroid hormones (Magklara et al.
2000). Symptoms and pathologies are a very broad category
with often spurious associations. For example, the MeSH
term, ‘Acute disease,’ was assigned, on average, to every sixth
clone.

MeSH Annotation and Disease Associations
Clones that were annotated as similar to (>70% and <85%
identity over >70% of length) are good targets to discover new
disease associations. FACTS predicted 708 clones (522 queries)
with disease MeSH associations and 591 text and sequence-

Table 3A. Clone-Based Comparison of Inferred Functions

All Text (%) Overlap (%) Sequence (%)

GO 20,338 19,720 97.0 15,900 78.2 16,518 81.2
Component 19,649 18,731 95.3 10,765 54.8 11,683 59.5
Function 19,582 17,947 91.7 12,954 66.2 14,589 74.5
Process 19,295 17,544 90.9 11,792 61.1 13,543 70.2
OMIM 11,732 10,931 93.2 1,814 15.5 2,615 22.3
Morbid map 3,950 2,585 65.4 1,124 28.5 2,489 63.0
BIND 1,634 1,509 92.4 36 2.2 161 9.9
DIP 973 639 65.7 48 4.9 382 39.3

Note: Numbers are based on 20,611 clones.

Table 3B. Term-Based Comparison of Inferred Functions

All Text (%) Overlap (%) Sequence (%)

GO 5,702 4,765 83.6 1,907 33.4 2,844 49.9
Component 621 558 89.9 215 34.6 278 44.8
Function 2,747 2,137 77.8 1,059 38.6 1,669 60.8
Process 2,333 2,069 88.7 633 27.1 897 38.4
OMIM 4,725 4,532 95.9 564 11.9 757 16.0
Morbid map 1,147 961 83.8 552 48.1 738 64.3
BIND 1,445 1,346 93.1 33 2.3 132 9.1
DIP 877 554 63.2 90 10.3 413 47.1

Note: Numbers are based on 20,611 clones.
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inferred OMIM association out of a total of 2578 clones (1114
queries) of the category ‘similar to.’ As MeSH-inferred disease
associations are important in the identification of nonheredi-
tary disease associations, we evaluated the performance of
FACTS by comparing the results of computational and medi-
cal expert annotations.

From 708 clones, we assigned the curator 333 clones (234
queries) selected randomly by clone IDs. The curator con-
firmed that of these 333 clones, 234 (70%) had relevant dis-
ease-MeSH-inferred disease associations. Ninety nine clones
(62 queries) were deleted because they represented indirect or
nonspecific (e.g., acute disease), associations or were incorrect
associations caused by ambiguous gene names or queries ir-
relevant to disease associations (e.g., similar to SIMILAR
ENIGMA, similar to serine-rich protein, etc.). On average, dis-
ease MeSH annotation (see Suppl. 5B,C) reduced the clone
and term coverage in the 23 disease MeSH categories by more
than 50% and mostly affected disease MeSH in the branches
of the MeSH tree hierarchy, whereas the MeSH distribution
among the top hierarchies did not change. Only 273 (24.2%)
of 1127 nonredundant disease MeSH terms attributed by
FACTS to the 333 human curated clones were confirmed upon
curation. For example, in a clone annotated as similar to squa-
mous cell carcinoma antigen 2 (AK003650, cloneID
1110023A16), 6 of 16MeSH associations were deleted. Among
the deleted MeSH associations, was Psoriasis, which origi-
nated from a MeSH-indexed abstract containing a description
on the sequence similarity of human hurpin to SCCA2 and
the overexpression of hurpin in psoriatic skin lesions (Abts et
al. 1999). AK003650 and hurpin are both serin protease in-
hibitors (IPR000215). However, AK003650 does not contain
the putative reactive sites Thr 356 and Ser 357, characteristic
for the ovalbumin-serpin family member hurpin. In addition,
AK003650 showed only 49% identity to human hurpin, but
82.5% identity to mouse SCCA2.

The disease association data mining function ‘Infer dis-
ease association’ can be used if the focus is on targeting hu-
man disease-associated FANTOM2 cDNA clones that share the
same signaling pathway. A query with Psoriasis restricted to
the annotation category of known genes (MGI) and database
reference MGD, retrieves 373 entries (clone ID, gene name)
representing 171 nonredundant transcripts that are poten-
tially associated with psoriasis. Selection of soluble acid phos-
phatase 1 retrieves a list of 14 potential associated molecules
with their molecular interaction sentences and disease MeSH.
Among six nonredundant candidates are STAT1 and STAT3,
which both share Psoriasis and 11 other disease MeSH terms
with soluble acid phosphatase 1. Psoriasis is associated with the
STAT pathway through interferon gamma (Komine et al. 1996).

In rule-based systems, it is important to know the extent
of information loss. The comparison of manual and FACTS-
retrieved disease associations (OMIM Morbidmap and disease
MeSH) for clones of the category ‘similar to’ showed that 27%
and 20% of them were detected by only one of the two meth-
ods, respectively. The overlap between both methods was
53% (data not shown). Hence, FACTS-inferred human disease
associations are applicable for gross classification and decision
support of biomedical experts, and should assist in rapidly
expanding manually extracted potential human disease genes
for further experimental studies.

Conclusions
The FACTS strategy of combining computationally inferred
functional associations from sentences, controlled vocabular-

ies, and sequence sources produces a summarization effect.
The integrated display of interrelated information on molecu-
lar interaction, disease association, and gene ontology enables
users to explore unexpected relations and to test them experi-
mentally. To make the system accessible to researchers, we
have deliberately implemented a simple annotation system
that allows remote curation via the internet. Existing data
mining or natural language processing systems did not satisfy
the requirements for output, searching, and in-depth explo-
ration of higher functional relationships of mouse transcripts.
In particular, publicly available molecular interaction data-
bases suffer from lack of integrated context information on
potential disease associations. The FACTS sequence and text-
based functional inference and annotation system provides a
useful tool that will be expanded progressively in terms of
entry numbers and functionality to analyze the mouse tran-
scriptome and gene expression information.

METHODS

Databases
Query construction depended on mapping database refer-
ences and accessions to the gene/protein descriptions, sym-
bols, and aliases of computational and human curated RIKEN
clones, and we therefore locally installed 17 reference data-
bases (Suppl. 2). In addition to the query-related databases, we
downloaded BIND, DIP MeSH tree, GO, OMIM, MDS (Kawaji
et al. 2002), MouSDB (Zavolan et al. 2003), RTPS, and VTPS
(Variant-based representative Transcript Protein Set) data
(Baldarelli et al. 2003) to increase functional information and
facilitate query result integration.

Query Construction Rules
The query rules were developed prior to the MATRICS anno-
tation by visual inspection of test query results derived from
the computational annotations. Emphasis was placed on de-
tecting the cause of query results with no match or excessive
matches to MEDLINE abstracts. Misconstructed queries were
corrected and rules derived, as shown in Supplement 4A. Fre-
quently occurring words with no meaning to the subject were
deleted from query by using PubMed’s stopword list.

Querying MEDLINE and Retrieval of Abstracts
To query MEDLINE, we used three locally installed
NCLEVER4.0 MEDLINE search engines (Suppl. 2). All query
constructs were formatted into NCLEVER syntax and re-
stricted to MEDLINE entries having an abstract in the English
language. To avoid an overload of the NCBI ENTREZ server,
we developed a batch query script that sends queries every
1–5 min per search engine. If a query matched to MEDLINE
abstracts, we restricted downloading of abstracts to 300 que-
ries per day.

Abstract Processing
From the downloaded MEDLINE-formatted abstracts, we ex-
tracted sentences from the AB field (abstract text) and MeSH
terms from the MH field. We reduced obvious false positives
by deleting abstracts containing the query word in combina-
tion with a cell line name, for example, CD34+ cells or cell
line MT-1. The latter is an ambiguous symbol for MT-1 cells
and metallothionein 1.
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To recognize and excise sentences from the text field, we
used a sentence delimiter rule that distinguishes the delimiter
‘.’ from the occurrence of ‘.’ in numbers or abbreviations
(Suppl. 4B). Sentences containing molecular interaction in-
formation were extracted together with the MEDLINE identi-
fiers of the abstract by filtering with interaction indicator
words (e.g., bind and coimmunoprecipitate) and the query
words (Suppl. 4C). The resulting subset was cleansed from
potential false positive interaction indicators (Suppl. 4D) that
confer irrelevant interactions. Finally, we assigned to the re-
maining sentences confidence values for the interactions. For
example, sentences describing an interaction with ‘might’
were automatically (Suppl. 4E) given the value (L), for low.
Other interactions received the confidence value (M) for me-
dium. High confidence (H) labels were assigned only by an-
notators.

FACTS Programs
Programs of the FACTS system were written in PERL. Imple-
mention details, including input and output behavior
are shown in Supplement 1. The programs NameFetcher,
QueryMaker with query construction rules, AbstractFilter,
SentenceSplitter with sentence delimiter rules, SentenceFilter,
TermMatcher for OMIM, BIND, DIP, GO, and disease MeSH
can be downloaded from the FACTS Web site.
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