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Single nucleotide polymorphisms in the human genome have become an increasingly popular topic in that their
analyses promise to be a key step toward personalized medicine. We investigate two related questions, how much the
haplotype information contributes to linkage disequilibrium (LD) mapping and whether an in silico haplotype
construction preceding the LD analysis can help. For disease gene mapping, using both simulated and real data sets
on cystic fibrosis and the Alzheimer disease, we reached the following conclusions: (1) for simple Mendelian diseases,
in which case a tractable full statistical model can be developed, the loss of haplotype information for either control
or disease data do not have a great impact on LD fine mapping, and haplotype inference should be carried out
jointly with LD mapping; (2) for complex diseases, inferring haplotype phases for individuals prior to LD mapping
helps achieve a better accuracy. An improved version of the linkage disequilibrium mapping program, BLADE v2, is
available at http://www.fas.harvard.edu/∼ junliu/TechRept/03folder/bladev2.tgz.

[The following individual kindly provided reagents, samples, or unpublished information as indicated in the paper:
E.R. Martin.]

Available data on tightly linked single nucleotide polymor-
phisms (SNPs) are experiencing a dramatic growth. Because it is
commonly believed that haplotypes are essential for disease-gene
discovery, genetic demography, and chromosomal evolution
studies, as well as linkage disequilibrium (LD) mappings (Fallin
and Schork 2000; Fallin et al. 2001), much effort has been made
in phasing individuals’ two haplotypes, either experimentally or
computationally. When the family-based genetic information is
available, it is relatively easy to infer the individuals’ phases from
their genotype data, although there are still ambiguities (Hodge
et al. 1999; Hoh and Hodge 2000). In population-based case-
control studies, the experimental ascertainment of individuals’
haplotypes requires laborious and cost-prohibitive chromosomal
isolation and other molecular-haplotyping strategies (Clark et al.
2001). Alternatively, one may explore in silico methods for in-
ferring haplotypes from a sample of genotyped, but unphased
diploid individuals (Clark 1990; Excoffier and Slatkin 1995; Haw-
ley and Kidd 1995; Long et al. 1995; Chiano and Clayton 1998;
Stephens et al. 2001; Niu et al. 2002; Qin et al. 2002).

Although the available in silico haplotyping methods are
cost-effective and have shown considerable power, they are still
error-prone (Fallin and Schork 2000; Clark et al. 2001), and such
errors may mislead the subsequent LD analysis. To deepen this
feeling of discomfort, we note that the genotyping errors have
been shown to seriously affect several pairwise LD measures
(Akey et al. 2001). If the goal of the SNP analysis is to estimate the
location of the disease-related mutation relative to a set of tightly
linked markers, it is of interest to assess how much the haplotype
information helps improve the accuracy. Obviously, there is no
difference at all if only a single-marker-based method is used.

Realizing that the single- or pair-marker methods are unable
to fully exploit the information of the closely linked markers,
researchers have been interested in truly haplotype-based multi-
marker LD fine-mapping methods for case-control genetic

marker data (McPeek and Strahs 1999; Liu et al. 2001; Morris et
al. 2002). In particular, the model in Liu et al. (2001) assumes
that the disease haplotypes can be grouped into k+1 clusters,
corresponding to k distinct founder chromosomes and a null
cluster for all other disease chromosomes without a founder mu-
tation. Each of the k non-null clusters is characterized by an
ancestral haplotype associated with a disease-causing mutation
coalescing to a single time point (age). These k ancestral muta-
tions are assumed to occur at the same (or nearly the same) lo-
cation. Through a Bayesian approach, the resulting algorithm
BLADE can handle complications such as missing marker data,
multiple founders, and the presence of unphased chromosomes
(Liu et al. 2001). Although BLADE is designed mainly to deal with
simple Mendelian disorders, we demonstrate that it can also be
applied to locate the disease-related mutation(s) for complex dis-
eases such as the Alzheimer disease (AD). A main reason for this
is that the null cluster can accommodate those case haplotypes
that do not contain the mutation(s) being mapped.

An interesting question is whether the explicit construction
of the case or control haplotypes before the LD mapping is nec-
essary for an efficient use of the available multi-marker informa-
tion. Conceptually, haplotype inference and the location estima-
tion can be achieved at the same time via a joint statistical
model. Because the uncertainty in haplotype phasing is ac-
counted for in this framework, the resulting location estimation
can be more robust. To test this hypothesis, we conducted a
permutation study of the cystic fibrosis (CF) data set (Kerem et al.
1989) and a study based on simulated genotype data sets of a
hypothetical Mendelian disease. We show that if the inferred
haplotypes are deemed as bona fide and being used subsequently
for the location estimation, the untreated uncertainty in haplo-
type phasing is translated into a less-reliable result. It is thus
desirable to modify the available in silico haplotyping methods
to impute multiple compatible haplotype pairs for each un-
phased individual. On the other hand, a joint model may not be
very meaningful in complex diseases, in which only a small frac-
tion of the case haplotypes has the disease-causing mutations.
We show that in a case-control study of the AD using high-
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density SNPs around a well-established susceptibility gene,
apolipoprotein E (APOE), performing haplotype phasing prior to
disease mutation mapping significantly improved the accuracy.

For high-density SNP markers, it is often inappropriate to
treat SNPs on the control haplotypes as in linkage equilibrium,
and an inhomogeneous Markov chain model appears appropri-
ate when the markers are not too closely linked (Liu et al. 2001).
Here, we describe an expectation-maximization (EM) algorithm
to treat unphased control chromosomes under the Markov
model. We tested the performance of BLADE under this circum-
stance and observed that the loss of control haplotype informa-
tion does not have any material effect on the accuracy of the
location estimate.

RESULTS
Throughout this section, we compared the following two strate-
gies for fine mapping the disease mutation: (A) a direct analysis
by jointly modeling haplotype uncertainty and LD for the un-
phased data, and (B) inferring the haplotypes first and then ap-
plying a fine-mapping algorithm to the ascertained haplotypes.
Two LD mapping algorithms were used in this study, BLADE
(Liu et al. 2001) and DHSMap (McPeek and Strahs 1999), both of
which are capable of fine mapping on either phased or un-
phased disease data. While implementing strategy B, either
HAPLOTYPER (Niu et al. 2002) or PLEM (Qin et al. 2002) was
used to infer the haplotypes. Because BLADE can treat unphased
control chromosomes under the Markov model, strategies A and
B are also compared under two scenarios: (1) phased control hap-
lotypes, and (2) unphased control genotypes. For DHSMap, com-
parison was made for scenario 1 only. Beside HAPLOTYPER and
PLEM, we have also tested two other computational haplotyping
methods, PHASE (Stephens et al. 2001) and Clark’s (Clark 1990)
method, for strategy B. The conclusions were similar to those
using HAPLOTYPER and PLEM.

CF Data Set
The CF data set (Kerem et al. 1989) contains haplotypes on 23
bi-allelic markers around the CF transmembrane conductance
regulator gene on chromosome 7q31.2. The control group has 92
haplotypes and the diseased group has 94. The founder muta-
tion, �F508, is located between markers 17 and 18, ∼ 0.88 cM away
from the leftmost marker. By modeling the control haplotypes as
an inhomogeneous Markov chain, BLADE gave a very accurate
location estimate for the disease mutation. The posterior mean
was 0.88 cM and the 95% probability interval (PI) for the loca-
tion, which is defined as the central interval that contains 95% of
the posterior probability mass, was [0.82, 0.93] cM (Liu et al. 2001).

To assess the impact of haplotype information of the disease

chromosomes on LD mapping, we simulated 100 independent
diseased group data sets. Each data set consists of 47 unphased
diseased individuals with genotypes produced by random pairing
of the 94 known disease haplotypes in the CF data set, effectively
losing all of the haplotype information. Table 1 shows the com-
parisons between strategies A and B for fine-mapping the disease
mutation (�F508) for the 100 simulated data sets, using original
control haplotypes. Two different LD mapping algorithms
(BLADE and DHSMap), and four different haplotyping algo-
rithms (i.e., HAPLOTYPER, PLEM, PHASE, and Clark’s algorithm)
were used to make this comparison. The results obtained
by PLEM, PHASE, and Clark’s algorithm are similar to that of
HAPLOTYPER, and are omitted.

To test the effect of losing control haplotype information,
we generated another 100 independent “control group” data
sets. In addition to randomly pairing up the disease haplotypes,
we also randomly paired up the control haplotypes and esti-
mated the Markov transition matrices from these unphased con-
trol genotypes by an EM algorithm (see Methods). The root mean
square errors (RMSEs) of strategies A and B in this case, when
BLADE was used as the LD mapping tool, were 0.0103 and
0.0339, respectively, leading to the same conclusion as shown in
Table 1.

In summary, both strategies A and B were reasonably accu-
rate in location estimations for this example, and the loss of
control haplotype information did not seem to affect the estima-
tion accuracy. Strategy A performed significantly better than
strategy B in terms of both the RMSE of the disease location
estimate and the percentage of times at which the 95% PI over-
laps with the target region, regardless of the LD mapping method
or haplotype phasing algorithm used in the analysis.

A Simulation for Simple Mendelian Disorders
To assess the robustness of the above findings, we simulated 100
populations of the disease haplotypes originating from a single
founder 200 generations ago, assuming that there is a simple
Mendelian disorder caused by a single founder mutation. We
considered 20 bi-allelic markers, each 0.2 cM apart. The founder
mutation was set to locate between markers 10 and 11, ∼ 1.9 cM
away from the leftmost marker. The 200 disease haplotypes were
given as 100 pairs of unphased genotypes, and the 200 control
haplotypes were simulated from the equilibrium model. The
same comparative study as for the CF data was performed, and
the results are listed in Table 2.

As a comparison, we also applied BLADE to the 100 sets of
simulated disease haplotypes (i.e., the phase information is
known). The average of the 100 location estimates was 1.90 cM
with the RMSE of 0.095 cM, and 98 out of 100 times, the 95% PI

Table 1. Comparison of Strategies A and B for Fine Mapping the Location of the Disease Mutation in 100 Data
Sets Simulated Based on the Cystic Fibrosis Data

LD mapping algorithm Strategy Mean(pos)a Std(pos)b Mean 95% PI widthc RMSEd Overlape

BLADE A 0.8600 0.0145 0.1461 0.0262 99%
B 0.8647 0.0315 0.1402 0.0349 96%

DHSMap A 0.8868 0.0428 0.2141 0.0432 96%
B 0.9072 0.0702 0.1620 0.0749 66%

aThe average of the 100 location estimates in the 100 simulations (true location = 0.88 cM).
bThe sample standard deviation of the 100 location estimates.
cThe average width of the 95% probability intervals (PIs) in the 100 simulations.
dRoot mean square error (RMSE): square root of the average squared differences between the estimated and the true
location, i.e., RMSE = √ (1/100) ∑ 100

i=1 (�̂i � �)2, where � is the true location and �̂i is the location estimate based on the ith

simulated data set.
eThe percentage of times (in the 100 simulations) that the 95% PI overlapped with the target region.
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overlapped with the target interval. This example again shows
that strategy B is inferior to strategy A in both the RMSE of the
location estimate and the percentage of times at which the 95%
PI overlaps with the target region.

APOE SNP Data Set for AD
AD represents the most common type of dementia in the elderly
(Rocchi et al. 2003). The human APOE gene, located on chromo-
some 19q13.2, encodes a single polypeptide chain with 299
amino acids, which is recognized as playing a major role in the
transport of cholesterol and other lipids between peripheral tis-
sues and the liver. There are three major isoforms, APOE-2,
APOE-3, and APOE-4, differing from one another only by single
amino acid substitutions. APOE-3 seems to be the normal iso-
form, and APOE-4 is shown to be an important AD-susceptible
allele in the general population (for review, see Mahley and Rall
Jr. 2000). The APOE SNP data set was published by Martin et al.
(2000), containing 220 cases and 220 controls. Each multilocus
genotype consists of marker data for 60 SNPs, spanning >3.5 Mb.
In total, 9.4% of the SNP marker data were missing. Studies of
APOE in primates and other mammals have suggested that
APOE-4 is the ancestral allele in humans (Hanlon and Rubinsztein
1995; Gerdes and Cookson 1996), and therefore, it is expected that
LD will extend over a short distance. Pairwise LD analysis by GOLD
(Abecasis and Cookson 2000) also confirmed that LD extends only
a small distance from the APOE-4 locus (data not shown).

From the original set of 60 SNPs, we used only those 30 SNPs
in close proximity to the APOE-4 locus (Martin et al. 2000) to test

the disease-mapping ability of BLADE, of which the SNPs were at
least in moderate LD. The SNPs under consideration span a re-
gion of 615 kb. The APOE-4 (i.e., SNP528) is located 425 kb from
the leftmost marker, SNP479. The physical distances were trans-
lated into genetic distances by assuming (1) a linear mapping
function between the genetic distance (� in cM) and the physical
distance (x in Mb), when � << 1 M; and (2) 1 Mb = 1 cM. Al-
though the conversion is known to be variable across the ge-
nome, comparison of chromosome 19 physical map versus the
integrated genetic map shows that the approximation is reason-
able for the region surrounding APOE (Martin et al. 2000). Be-
cause haplotyping algorithms cannot handle an excessively large
portion of missing data, we deleted all of those genotypes that
contained >30% missing marker data, or those with >5 consecu-
tive missing markers. Therefore, 186 case and 189 control geno-
types were actually used in this study.

By modeling the control haplotypes as a Markov chain and
assuming k = 1 (i.e., a single founder mutation), we applied strat-
egies A and B on the APOE data set. Because APOE-4 is the most
susceptible SNP according to the single-marker LD measurement,
we also tested on a modified data set with the APOE-4 marker
removed from the original data set. In other words, we compared
the performances of the two strategies solely on the basis of the
genotype data of the remaining 29 SNPs.

The histograms of the posterior samples of the disease loca-
tion � obtained by the two strategies with APOE-4 deleted are
shown in Figure 1. Alongside, we also displayed the single-
marker LD measurements from the data set. The results are sum-

Table 2. Comparison of Strategies A and B for Fine Mapping the Founder Mutation Location in 100 Simulated
Data Sets With a Hypothethical Mendelian Disorder

LD mapping algorithm Strategya Mean(pos)b Std(pos)c Mean 95% PI width RMSEd Overlape

BLADE A 1.9042 0.0950 0.2194 0.0947 97%
B 1.9064 0.1367 0.1721 0.1361 93%

DHSMap A 1.9094 0.0881 0.1059 0.0882 86%
B 1.9097 0.1292 0.0842 0.1289 70%

aThe average of the 100 location estimates in the 100 simulations (true location = 0.88 cM).
bThe sample standard deviation of the 100 location estimates.
cThe average width of the 95% probability intervals (PIs) in the 100 simulations.
dRoot mean square error (RMSE): square root of the average squared differences between the estimated and the true
location, i.e., RMSE = √ (1/100) ∑ 100

i=1 (�̂i � �)2, where � is the ture location and �̂i is the location estimate based on the ith

simulated data set.
eThe percentage of times (in the 100 simulations) that the 95% PI overlapped with the target region.

Figure 1 Histograms of the posterior samples of the position parameter � with APOE-4 deleted. (a) Results of strategy A; (b) results of strategy B. The
origin of the x-axis is set to be the position of APOE-4, and the distal direction to be positive. The circles denote the single-marker LD measurements,
and the triangle indicates that marker APOE-4 was deleted in our Bayesian analysis. The brackets denote the 95% PI bounds.
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marized in Table 3. We can see that both estimates are reasonably
close to the true location, and both of the 95% PIs covered the
true location (i.e., 0.425 cM). However, strategy B appears to have
a significantly tighter 95% PI.

We further removed both APOE-4 and its nearest neighbor-
ing marker (SNP952, which has the second-highest single-marker
LD measurement) from the data set. Now, markers SNP988 and
its neighbor have the strongest single-marker association with
AD. Because these two markers are 8.6 and 16 kb away from the
APOE-4 locus (i.e., the origin of the x-axis in Fig. 1), respectively,
the single-marker result under this scenario is misleading. How-
ever, as shown in Figure 2, the haplotype-based LD mapping
result using strategy B remained robust even though we have lost
the two SNPs with the strongest associations with AD. The esti-
mated position by strategy B was 0.4303 cM (width of 95% PI;
0.0129 cM). The best result in 10 independent trials of strategy A
was far off from the real locus (0.61 cM; almost at the end of the
whole region).

This example shows that even when as few as ∼ 20% of dis-
eased subjects actually carried the APOE-4 mutation, and the
most susceptible markers are not available, BLADE can still accu-
rately map the location of the AD-susceptible mutation. It also
shows that, for complex traits, because of their polygenic nature
as well as the presence of incomplete penetrance and phenocopy,
the contribution of the information derived from the association
between the founder mutation and the disease manifestation to
disease haplotype inference is much less compared with that for
Mendelian traits. Thus, inferring haplotype phase first using a
computational algorithm (e.g., PLEM) and then performing LD
mapping (i.e., strategy B) using these inferred haplotypes, may
have slight advantages over the direct use of BLADE (strategy A).

Simulation Study of a Complex Disease
For complex diseases, usually only a portion of the patients ac-
tually carry the founder mutation of interest, whereas most oth-
ers are, in fact, genetically no different from the control popula-
tion at the locus of interest. To reflect this fact, we randomly
picked 15 �F508-carrying haplotypes from the CF data set, and
mixed them with 35 haplotypes randomly selected from control
set, to form the genotypes of 25 hypothetical diseased individu-
als (thus, only 30% of the diseased haplotypes actually carry the
founder mutation, �F508). The remaining 67 control haplotypes
in the CF data set were used as controls (the control haplotype
phases are known). Then, we applied the following three ap-
proaches to estimate the location of the disease mutation: (1)
using BLADE on the 50 case haplotypes and 67 control haplo-
types; (2) assuming that the 25 diseased individuals are unphased
and conducting LD mapping using strategy A; and (3) using strat-
egy B. This process was repeated independently 100 times.

In our simulation, we call a trial successful if the resulting
95% PI covers the true location and also has a width of no greater

than 25% of the whole region (1.73 cM). The results of our analy-
sis are summarized in Table 4, in which Mean(pos), Std(pos),
Mean PI width, RMSE, and size of cluster1 were calculated only
among such successful trials. Because approach 1 uses the phase
information without any uncertainty, it is not surprising that it
outperformed the other two approaches. It is a bit surprising,
however, that strategy B performed only slightly worse than the
case in which one knows the complete phase information.

The findings from this simulation study agree with those
from the APOE data set; when the case haplotypes account for
only a small proportion (e.g., 20%–30%) of the diseased group (in
the complex disease case), strategy B appeared to perform slightly
better than strategy A in fine mapping of the disease mutation
(Table 4). In contrast, when the case haplotypes account for a
large proportion (e.g., 70%) for the diseased group (in the Men-
delian disease case), strategy A, on average, beats strategy B
(Tables 1, 2). This simulation study, in conjunction with our
analysis of the APOE SNP data set, indicates that it is rather non-
trivial, or even may not be possible, to design an effective model
to integrate haplotype inference and disease mutation fine map-
ping in complex traits. Currently, strategy B is an attractive way
to handle unphased diseased individuals for fine mapping of mu-
tations responsible for a complex trait.

DISCUSSION
Several popular haplotype-frequency estimation and phase-
construction methods have been proposed in the past 15 yr, in-
cluding Clark’s algorithm (Clark 1990), the EM algorithms (Ex-
coffier and Slatkin 1995; Hawley and Kidd 1995; Long et al. 1995,
Chiano and Clayton 1998), PHASE (Stephens et al. 2001), and
HAPLOTYPER (Niu et al. 2002). Although almost all of these al-
gorithms can potentially impute multiple haplotype phases for
unphased individuals, it is unclear as to what extent the haplo-
type-phase uncertainty can influence the LD mapping results.
Our study shows that, for LD fine mapping on simple Mendelian
diseases, strategy B, which uses the optimal prediction of disease
haplotype phases from a computational algorithm and ignores
the inherent uncertainty in such predictions, leads to a worse
location estimate compared with strategy A, thus arguing that it
is not necessary to explicitly phase each individual’s haplotypes
by computation methods first before the LD mapping step.

Table 3. Comparison of Strategies A and B for Estimating the
AD Locus From the APOE Data Set

Data Set Strategy Positiona
95% PI
width

Size of
cluster 1b

All 30 markers A 0.4366 0.0283 82
B 0.4272 0.0168 95

29 markers without A 0.4269 0.0299 62
APOE-4 B 0.4247 0.0149 106

aThe true APOE-4 location is at 425 kb, corresponding to 0.425 cM.
bThe number of haplotypes assigned to cluster 1 (the mutation-taking
cluster). The total number of disease haplotypes was 372.

Figure 2 The histogram of posterior samples of the location parameter
� obtained by strategy B, with both APOE-4 and SNP952 deleted. The
brackets denote the 95% PI bounds.
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For complex diseases, however, the haplotype information
for a particular disease locus has a less-significant contribution to
the overall case pool. As a result, jointly modeling haplotype
uncertainty and disease location may only add to the model
complexity without having appropriate gain. Performing haplo-
type phasing first with a reasonable computational algorithm,
and then feeding in the LD mapping machine with such approxi-
mately inferred haplotypes may thus offer some slight advan-
tages in position estimation of the founder mutation.

METHODS

LD Mapping
The location estimation method used in our study employs a
statistical model to describe the dependence structure among key
variables characterizing the haplotypes and adopts a Markov
chain Monte Carlo strategy to draw posterior samples of the lo-
cation parameter and other variables. The resulting method,
implemented in BLADE (Liu et al. 2001), can handle multiple
founder haplotypes, missing data, and can achieve the fine map-
ping on the basis of either known haplotypes or unphased chro-
mosomes, or a mixture of both. An improved version of the pro-
gram, BLADE v2, is available at http://www.fas.harvard.edu/
∼ junliu/TechRept/03folder/bladev2.tgz, which can deal with
unphased controls. The APOE data set is available upon request
to Dr. Eden R. Martin.

BLADE uses the genetic distance (in Morgan, or cM) to mea-
sure distances among the markers, and this measure has been
used traditionally for microsatellite or bi-allelic markers. The
conversion between the genetic and physical distances ranges
from ∼ 1 cM per Mb for long chromosome arms to ∼ 2 cM per Mb
for short arms (International Human Genome Sequencing Con-
sortium 2001). But, this has been shown to be very crude for SNPs
because of the presence of recombination hotspots (Jeffreys et al.
2001) and SNP-based haplotype blocks (Gabriel et al. 2002). If
most of the typed SNPs are within the same block in which few
recombinations occur, the LD decay effect will be too weak to be
useful for LD mapping. Consequently, it is important to deter-
mine a proper set of SNP markers to genotype prior to using
BLADE or other LD fine-mapping algorithms.

Simulation
In our Mendelian-disease simulation study, the disease haplo-
types are supposed to descend from a single founder 200 genera-
tions ago. We considered 20 equally spaced bi-allelic markers, 0.2
cM apart. The founder mutation was located between markers 10
and 11, ∼ 1.9 cM away from the leftmost marker. The control
haplotypes are assumed to be in the equilibrium. The growth rate
of the population was 1.031, except for the first eight genera-
tions, in which the expansion rate was doubled. These param-
eters were chosen to mimic the history of the European popula-
tion and to ensure the survival of the mutation. Each chromo-
some had a negative binomial number of descendants. When

recombination occurs, a disease haplotype recombines with a
random one in equilibrium. We set the mutation rate for each
marker to be 0.001 per generation. The ancestral haplotype con-
sists of alleles with the following population frequencies: (0.5,
0.3, 0.7, 0.5, 0.3, 0.7, 0.3, 0.5, 0.7, 0.5, 0.7, 0.3, 0.7, 0.5, 0.3, 0.7,
0.3, 0.5, 0.7, 0.5). For each of the simulated populations, we
produced a set of 200 disease haplotypes by sampling at random
from the final generation, and then we independently generated
a control set of 200 normal haplotypes. The 200 disease haplo-
types were given as 100 unphased genotypes.

Estimating Control Haplotype Frequencies
The current practice in haplotype-based case-control studies is to
compare frequencies of the most common haplotypes in both
groups. Another approach, as we have shown for the CF data, the
APOE data, and the simulated Mendelian data, is to model the
control haplotypes by a Markov chain, and to use BLADE to
differentiate the two groups. The latter approach is more appro-
priate when the SNP marker distances are of moderate size, or
when the linkage between markers is not very strong. In these
cases, the number of distinct haplotypes is too large for a direct
comparison.

When a Markov chain model is used for the control haplo-
types, the haplotype frequencies cannot be assessed straightfor-
wardly with only unphased data. We developed an EM algorithm
to estimate the transition probabilities from the mth to the
(m+1)th marker. The genotype of each locus is coded as follows:
(0) homozygous minor alleles, (2) homozygous major alleles, and
(1) heterozygous. We let Ni,j be the number of marker pairs with
genotypes i and j, respectively, at the two neighboring loci. Be-
cause only N1,1 causes ambiguity, the EM algorithm for estimat-
ing the frequencies �abof all haplotypes (a,b) iterates as follows:

�ab
�t + 1� =

1
N �N1,1

�ab
�t��ab

�t�

�01
�t� �10

�t� + �00
�t� �11

�t�
+ 2N2a,2b + N1,2b + N2a,1�

in which ā = 1�a. These frequencies can be easily converted to a
transition matrix. The algorithm usually converges very fast.

To test the effect of losing haplotype information among
the controls, we simulated a control data set by randomly pairing
up the given haplotypes in the CF control data set. To infer the
location of the disease mutation (�F508), we first used the EM
algorithm to estimate the Markov transition matrices for the con-
trol group and then applied the BLADE algorithm. The posterior
mean and 95% PI were 0.89 cM and [0.83, 0.94] cM, respectively,
almost identical to the case when the control haplotypes were
available (Liu et al. 2001).

Determining the Number of Clusters
Following Liu et al. (2001), we assume that the disease haplotypes
can be grouped into k+1 clusters corresponding to k founder
chromosomes in the current disease population and one null
cluster for all other disease chromosomes. Each non-null cluster
is characterized by an ancestral haplotype associated with a
single disease-causing mutation coalescing to a single time point

Table 4. Comparison of the Fine Mapping of a Founder Mutation Using Case Haplotypes, Case Genotypes
With Strategy A, and That With Strategy B for 100 Simulated Complex Disease Data Sets

Strategy #Successesa Mean(pos) Std(pos) Mean 95% PI width RMSE Size of cluster 1c

Phase known 42 0.8852 0.0940 0.3389 0.0930 19.85
A 33 0.8489 0.0818 0.3299 0.0863 20.33
Bb 41 0.9081 0.0926 0.3401 0.0957 20.41

aThe number of times that the method is successful, i.e., the 95% PI covers the true location and also has a width no greater
than 25% of the whole region (1.73 cM).
bPhased by HAPLOTYPER.
cAverage number of haplotypes being sorted into cluster 1. The total number of disease haplotypes is 50, of which 15 are
the mutation-carrying haplotypes.
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(age). Although the cluster number k has a significant effect on
the estimation results, its determination is still an outstanding
issue. A feasible strategy is to use the maximum a posterior (MAP)
criterion. That is, we choose k so as to maximize the joint pos-
terior distribution:

logPr�H|Â,Ĝ,�̂� + logPr�Â� + logPr�Ĝ� + logPr��̂�,

in which A is the set of ancestral haplotypes, G the vector of
numbers of generations from the ancestral mutations, and � the
location of the disease mutation. The explicit forms of the like-
lihood function and prior distributions are given in Liu et al.
(2001).
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