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In the genomic era, one of the fundamental goals is to characterize the function of proteins on a large scale. We
describe a method, PANTHER, for relating protein sequence relationships to function relationships in a robust and
accurate way. PANTHER is composed of two main components: the PANTHER library (PANTHER/LIB) and the
PANTHER index (PANTHER/X). PANTHER/LIB is a collection of “books,” each representing a protein family as a
multiple sequence alignment, a Hidden Markov Model (HMM), and a family tree. Functional divergence within the
family is represented by dividing the tree into subtrees based on shared function, and by subtree HMMs.
PANTHER/X is an abbreviated ontology for summarizing and navigating molecular functions and biological
processes associated with the families and subfamilies. We apply PANTHER to three areas of active research. First, we
report the size and sequence diversity of the families and subfamilies, characterizing the relationship between
sequence divergence and functional divergence across a wide range of protein families. Second, we use the
PANTHER/X ontology to give a high-level representation of gene function across the human and mouse genomes.
Third, we use the family HMMs to rank missense single nucleotide polymorphisms (SNPs), on a database-wide scale,
according to their likelihood of affecting protein function.

[Supplemental material is available online at http://panther.celera.com/publications/gr7724_03=suppl.]

The rapid growth in protein sequence databases has led to sig-
nificant progress in understanding the relationships between
protein sequence and function. Hundreds of thousands of pro-
tein sequences have been inferred from genomic or complemen-
tary DNA sequences derived from >200 different organisms, and
recent advances in large-scale direct protein assays, such as pro-
tein separation followed by mass spectrometry, promise to fur-
ther enlarge and refine our knowledge of proteins in vivo. Protein
sequence comparison and interpretation of these comparisons
have matured to become an extremely useful tool for evolution-
ary biology. Proteins (from either the same or different organ-
isms) that have related sequences often have related functions.
The exceptions to this correlation are as interesting as the rule.
Some protein families are relatively restricted in how they are
used for different functions, whereas others have been recruited
for many different purposes. The evolution of proteins to per-
form new tasks, either at the molecular level or at the level of
broader pathways or processes, is apparently very dependent on
the specifics of the individual scaffold. If protein sequence data
are to be used to assist in genome-wide functional classification
of genes, these functional divergence events must be modeled on
a large scale.

Computational algorithms and databases for comparing
protein sequences have reached a relatively mature stage of de-
velopment. In the past few years, profile methods (Gribskov et al.
1987; Henikoff and Henikoff 1991; Attwood et al. 1994), particu-
larly Hidden Markov Models (HMM; Krogh et al. 1994; Eddy
1996) and PSI-BLAST (Altschul et al. 1997), have entered wide-
spread use. The profile has a different amino acid substitution
vector at each position in the profile, based on the pattern of

amino acids observed in a multiple alignment of related se-
quences. Profile methods combine algorithms with databases: A
group of related sequences is used to build a statistical represen-
tation of corresponding positions in the related proteins. The
power of these methods therefore increases as new sequences are
added to the database of known proteins. Multiple sequence
alignments (Dayhoff et al. 1974) and profiles have allowed a
systematic study of related sequences. One of the key observa-
tions is that some positions are “conserved,” that is, the amino
acid is invariant or restricted to a particular property (such as
hydrophobicity), across an entire group of related sequences. If
the sample of sequences is broad enough, such that we can infer
that we are observing the results of mutation and selection at all
positions in the protein, these conserved positions are likely to be
critical for the function of the protein.

The dependence of profile and pattern-matching ap-
proaches (Jongeneel et al. 1989) on sequence databases led to the
development of databases of profiles (BLOCKS, Henikoff and
Henikoff 1991; PRINTS, Attwood et al. 1994) and patterns (Pros-
ite, Bairoch 1991) that could be searched in much the same way
as sequence databases. These approaches typically have better
sensitivity and specificity than pairwise sequence comparisons.
Even more importantly, these databases also capture human
quality assurance (such as sequence correction) and additional
expert analysis and interpretation of the grouped sequences. This
human intervention makes sequence analysis more accessible to
the community of biologists outside the field of computational
biology. Today, two of the most widely used protein family da-
tabases are Pfam (Sonnhammer et al. 1997; Bateman et al. 2002)
and SMART (Schultz et al. 1998; Letunic et al. 2002), which com-
bine expert analysis with the well-developed HMM formalism for
statistical modeling of protein families (mostly families of related
protein domains).

For some proteins, simply knowing its family membership is
enough to predict its function, whereas for others, one must
know its subfamily (alternatively referred to as subgroup or sub-
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type; Hannenhalli and Russell 2000) within that family. The de-
tailed task of subfamily-level classification, however, has prima-
rily been carried out as a cottage industry: independent efforts of
a large number of labs each focusing on a single family. Phylo-
genetic trees (representing the evolutionary relationships be-
tween sequences) and the related concept of dendrograms (tree
structures representing the similarity between sequences) have
been used extensively for this purpose. Tree representations are
particularly useful for identifying distinct subfamilies (subtrees)
of closely related sequences, which tend also to share function
(e.g., Chiu et al. 1985; Rollins et al. 1991).

In contrast to protein sequence comparison methods, on-
tologies to describe protein function are just beginning to enter
widespread use. Ontologies define a controlled vocabulary that
enables large-scale computational analysis. Early efforts to define
biological function ontologies for microbes include EcoCyc (Karp
and Riley 1993) and the MIPS classification (Mewes et al. 1997).
However, the recent sequencing of large, metazoan genomes
such as Drosophila melanogaster and human, demands an ontol-
ogy that also spans the biological functions of multicellular or-
ganisms. The Gene Ontology (GO; Ashburner et al. 2000), still
under active development, is emerging as a standard across eu-
karyotic biology. GO is a very detailed representation of func-
tional relationships, designed as a comprehensive functional an-
notation vocabulary. Several groups (Lander et al. 2001; Mouse
Genome Sequencing Consortium 2002) have selected different
samplings of GO terms for illustrating the functional repertoire
of genomes. However, there are at present no ontologies having
the breadth of GO but designed for high-level browsing and
analysis of functions for large numbers of sequences.

Several groups are starting to combine the advantages of
ontology terms for functional annotation with the power of Hid-
den Markov models for statistical, sequence-based inference.
Family and domain databases such as Pfam and SMART have
associated a number of Hidden Markov Models with GO terms.
The TIGRFAMs database (Haft et al. 2003) provides an excellent
resource for functional classification of microbial proteins, with
>1600 Hidden Markov Models placed into functional categories.
The PANTHER database (http://panther.celera.com) was de-
signed as a resource to comprehensively and consistently treat
both family and subfamily classification of proteins, focused on
metazoans but also covering other organisms.

Rationale

PANTHER Index (PANTHER/X): An Abbreviated Ontology
The goal of PANTHER is to classify proteins by function. Any
attempt at classification requires a meaningful set of rules that
define the area of study, and how to group objects. Ontologies
have been used for some time in computer science for precisely
these kinds of applications. In the field of biology, the Gene
Ontology (GO) contains >7000 terms to describe molecular func-
tion, and almost 5000 terms to describe biological process, ar-
ranged as a directed acyclic graph (DAG) up to 12 levels deep.
Although this level of detail provides a rich vocabulary for func-
tional annotation of gene products, there are other scientific ap-
plications that would benefit from a simpler ontology. We have
developed the PANTHER Index (PANTHER/X) ontology to facili-
tate high-level browsing and analysis of large gene (or protein)
lists, such as those generated in whole-genome analysis or in
analysis of gene expression array data. PANTHER/X comprises a
total of ∼ 250 categories in each schema (“molecular function”
and “biological process”). The ontology borrows heavily from
GO, has been fully mapped to GO, and is available on the GO
Web site (http://www.geneontology.org). PANTHER/X was de-

signed to be no more than three levels deep, and to be structured
such that absolute depth in different parts of the ontology cor-
respond to roughly equivalent levels of functional specificity.
This structure was designed for easy navigation, and to partition
proteins into biologically meaningful groups. For the first ver-
sions of PANTHER/X, we chose to address molecular function
and biological process (GO also contains a cellular component
ontology).

PANTHER Library (PANTHER/LIB): Subfamilies for Capturing
Functional Divergence
If the functions of most proteins were experimentally character-
ized, assigning proteins to functional categories would be prima-
rily a matter of data entry. Sequencing DNA, however, is a much
simpler task than characterizing protein function, thus our pres-
ent knowledge of protein sequences deduced from DNA far ex-
ceeds our knowledge of biological function. Because similar se-
quences often have similar functions, inferring function from
sequence similarity has proved an invaluable tool. However, pro-
teins within a particular family have generally evolved to have
different functions, and different protein families show a wide
variation in the range of functions they have adopted. It is there-
fore critical, when predicting protein function from sequence, to
allow families to be divided into subfamilies of differing func-
tions. To this end, we developed the PANTHER Subfamily and
Family Library (PANTHER/LIB). We adopt the standard defini-
tion of subfamilies as subtrees of a family tree built from protein
sequence information, but allow subtrees to be defined on a case-
by-case basis by biologists who are expert in that particular fam-
ily or field of biology. After choosing the best “cut” of the tree for
predicting function, the biologists associate each subfamily with
PANTHER/X terms defining the functions shared by all subfamily
members.

Each curator-defined subtree provides a set of “training se-
quences” for building statistical models (HMMs). Although the
present version (3.0) of the PANTHER library has been built using
only publicly available sequences as of March 2001, the HMMs
can be used to accurately classify novel protein sequences as well.
In other words, PANTHER provides not only a controlled vocabu-
lary for protein annotation, but also a means for consistently
applying the vocabulary to new proteins. PANTHER/LIB also pro-
vides a mechanism to determine whether a new sequence repre-
sents a novel subfamily of an existing family. HMMs are built on
the family level as well—if a sequence scores more highly against
the family HMM than any subfamily HMM, it generally repre-
sents a novel subfamily. Family HMMs are associated with only
those PANTHER/X terms that are common to all of its subfami-
lies, ensuring that these predictions are not more specific than
justified by the data.

HMMs for Suggesting Functionally Important Residues
HMM libraries, such as PANTHER, Pfam, and SMART, are used
primarily to recognize and annotate conserved motifs in protein
sequences. However, the position-specific amino acid probabili-
ties in an HMM can also be used to annotate individual positions
in a protein as being conserved (or conserving a property such as
hydrophobicity) and therefore likely to be required for molecular
function. For example, a mutation (or variant) at a conserved
position is more likely to impact the function of that protein. In
addition, HMMs from different subfamilies of the same family
can be compared with each other, to provide hypotheses about
which residues may mediate the differences in function or speci-
ficity between the subfamilies.
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Library Analogy
A useful analogy might be that PANTHER provides a library of
information about protein families. Each book in the library
(PANTHER/LIB) corresponds to a protein family, including a
multiple sequence alignment and a tree to graphically view se-
quence relationships together with information about each fam-
ily member. Each book is divided into chapters (subfamilies) by
biologist curators, who also assign meaningful names to the book
and chapters. The PANTHER/X ontology might then be analo-
gous to an index of the PANTHER library. The curators assign
each subfamily, as well as the family, to appropriate ontology
categories, in effect indexing sequences by their functions. Sta-
tistical models (HMMs) are built from the sequences in each fam-
ily and subfamily, and these HMMs can then be used to index
(classify) novel sequences. PANTHER has an interface for brows-
ing and searching by either function or family/subfamily terms,
and access to the multiple alignment and sequence-based tree
representation of each family, as well as
lists of all proteins in a given organism that
belong to a given family or subfamily (Tho-
mas et al. 2003; http://panther.celera.com).

In this paper, we describe a method for
relating protein sequence relationships to
function relationships. We also describe the
PANTHER/X ontology that we have devel-
oped for summarizing and navigating mo-
lecular function and biological process. We
then apply PANTHER to three areas of ac-
tive research:

1. The family and subfamily classes are
used to derive statistics on the present
sizes and sequence diversity of protein
families and subfamilies, in terms of the
number of members in the nonredun-
dant protein database in GenBank.

2. The associations of proteins with func-
tion ontology terms are used to visualize
the relative number of human and
mouse genes with a given molecular
function or participating in a given bio-
logical process.

3. Position-specific scores in the family
HMMs are used to rank known or puta-
tive missense SNPs according to their
likelihood of affecting protein function.

RESULTS

Size and Sequence Similarity
Distribution of Protein Families and
Subfamilies in GenBank
How many different sequences are pres-
ently in the PANTHER families and sub-
families? Figure 1 shows the histogram of
sizes of PANTHER Version 3.0 families and
subfamilies in the nonredundant protein
database (NRDB) from GenBank. Before cal-
culating these numbers, we first attempted
to remove (“filter”) engineered sequences
and fragments (see Methods). In total,
30.4% of the sequences in NRDB were used
as PANTHER training sequences. The histo-
gram accurately reflects the size distribu-

tion of protein families and subfamilies, except for the smallest
and largest groups. In PANTHER Version 3, we have required a
minimum of 10 members to define a family, and have limited
large families to 1000 members (for efficiency of tree construc-
tion and curation). Note also that families can overlap by up to
90% in terms of their training sequences, thus members of some
larger superfamilies (or sequences containing domains found in
many different multidomain arrangements) are represented in
more than one PANTHER family. Figure 2 shows the distribution
of the number of families per sequence. Most sequences (85%)
appear in only one family, and no sequence appears in more than
nine families. The sequence that appears in nine families is, not
surprisingly, an immunoglobulin variable region (Ig-V), simply
because there are several thousand Ig-V regions in the nonredun-
dant database (many differing from each other at only a single
position), which are artificially divided into different families by
the 1000-sequence limit. Other sequences that appear in the larg-

Figure 1 Number of sequences in PANTHER families and subfamilies. (A) the distribution of the
sizes of PANTHER/LIB families. Note that families are limited to no less than 10 sequences, and no
more than 1000 sequences. (B) distribution of the sizes of PANTHER/LIB subfamilies. Singleton
subfamilies are not included in the figure. The insets show a more detailed view of the distributions
for sizes smaller than 100 sequences.
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est number of PANTHER families are myosins, and Notch-related
proteins.

How similar are the sequences in a PANTHER family or sub-
family? Figure 3 shows the histogram of the average percentage
identity of sequence pairs in the same PANTHER family or sub-
family. The average pairwise identity clearly peaks at 30%–40%
for families, with 1714 (77%) of the families falling between 20%
and 50% average pairwise identity. Some protein families have
clearly diverged more than others in sequence. For subfamilies,
which are defined more by functional (rather than just sequence)
conservation, the distribution is broader. The number of func-
tionally defined subfamilies is approximately constant across the
range of pairwise identities from 50% to 90%. This suggests that
different protein families have very different constraints on the
average number of sequence changes required to alter their bio-
logical function. For this reason, PANTHER subfamilies are de-
fined on a case-by-case basis by expert curators, rather than by
using a computational algorithm. The peak at an average pair-
wise identity of >95% probably primarily reflects the fact that to
date, sequencing projects have focused on a few key model or-
ganisms, and sampled others very nonrandomly.

Molecular Function and Biological Process Classifications
of Human and Mouse Genes
Among the applications of PANTHER/X is visualizing, in biologi-
cal terms, inventories across databases or genomes (Venter et al.
2001). Nearly every whole-genome sequencing effort has pre-
sented a pie or bar chart of functions, or similar representation of
predicted genes across the genome (or chromosome, in some
cases). However, no standard set of categories is used across more
than one or a few different publications. Figure 4 shows the cat-
egorization of LocusLink (Pruitt et al. 2000; Pruitt and Maglott
2001) human genes and mouse genes using two different ontolo-
gies, GO (Fig. 4B,D) and PANTHER/X (Fig. 4A,C). The functions
represented are the same—the only difference is the structure of
the ontology (see Methods and Mi et al. 2003). In brief, for GO,
each GO association is represented as its highest-level (most gen-
eral) term, derived by tracing up the edges of the DAG. For PAN-
THER/X, the GO association was first mapped to the closest
matching term in PANTHER/X and then traced to its highest-
level term. For molecular function, GO contains 28 level 1 terms.

The distribution of gene products in differ-
ent GO categories is very uneven: Nine cat-
egories contain no LocusLink associations
at all, and taken together the emptiest 15
categories (54% of the categories) contain
only a total of 14 LocusLink assignments
(0.17% of the associations). On the other
hand, three categories (enzyme activity,
binding activity, and signal transducer activ-
ity) contain ∼ 70% of the LocusLink gene as-
sociations. Using PANTHER/X, there is a
more even distribution of association across
categories (Fig. 4A,C) without sacrificing
biological meaning, facilitating visual
analysis. There is also significantly more de-
tail, especially for biological process terms
(note that if GO level 2 terms had been used
instead of level 1 terms, there would have
been 468 molecular function and 261 bio-
logical process terms, making a bar chart
difficult to reproduce here). Although most
categories contain approximately the same
number of human genes as mouse genes, it
is apparent in Figure 4 that there are several
categories with significant differences be-

tween the genomes. This can be either because of real differences
in gene number in the mouse and human genomes, or because of

Figure 2 Overlap of PANTHER families. Some sequences appear in more than one family, and this
figure shows the distribution of the number of families in which a given sequence appears. Most
sequences (163,912, 85%) appear in only one family, and no sequence appears in more than nine
families.

Figure 3 Pairwise identity within PANTHER families and subfamilies. (A)
Average pair-wise identity within PANTHER families. (B) Average pairwise
identity within PANTHER subfamilies. Singleton subfamilies are not in-
cluded. Pairwise identity is calculated over only the region of the se-
quences that aligns to the family HMM.
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inconsistencies of associations in LocusLink. Three PANTHER
biological process categories each contain more than two times
as many human genes as mouse genes: neuronal activities, muscle
contraction, and cell proliferation and differentiation.

Several GO terms cannot be mapped to PANTHER/X, even
in an abbreviated form. This has relatively little impact on the
number of proteins that can be meaningfully classified. In total,
<0.5% of classified LocusLink genes have a GO term but no
mapped PANTHER/X term. For human biological process classi-
fications, ∼ 25% of the unmapped terms have actually been made
obsolete in GO, and the other unmapped terms are generally
detailed terms that have not yet been mapped to PANTHER/X.
For unmapped human molecular function classifications, ∼ 33%
represent terms that are now obsolete. No less than 51% of the
unmapped terms are “binding proteins” defined under binding
activity (GO:0005488), such as zinc binding (GO:0008270), protein
binding (GO:0005515), or transcription factor binding (GO:
0008134). When designing PANTHER/X, we decided that these
categories did not carry the same degree of functional meaning as
receptor or transcription factor, for example, and were not as useful
for dividing sets of proteins. To take the most extreme example,
nearly all proteins can be categorized under protein binding. In
other cases, PANTHER/X terms can be found in a different sec-
tion of GO. For example, cytoskeletal proteins and extracellular
matrix proteins are found in the GO cellular component ontology,
but were included in the PANTHER/Xmolecular function ontology
because they also have functional implications.

Predicting the Effect of Missense SNPs on Protein
Function Using HMMs
At the level of protein sequences, each step in the process of
evolution can be viewed (usefully if simplistically) as a random
mutation followed by an in vivo functional assay. If we observe
enough different proteins that have the same function to some
degree of approximation, we can assume that we have sampled
most of the “neutral” mutations (those that do not impair func-
tion). In real alignments, of course, we do not typically have a
broad enough sampling of different sequences to assume that all
possible functional variants have been observed. Fortunately, sta-
tistical solutions to this problem have already been developed for
HMMmodeling of protein families, and we suggest that they can
also be fruitfully applied to the problem of “missense SNP scor-
ing” in proteins. Indeed, the method proposed by Ng and Heni-
koff (2001) uses statistical methods that are very similar to those
implemented in the SAM HMM modeling package (Hughey and
Krogh 1996; Karplus et al. 1998), including the use of Dirichlet
mixture priors (Sjolander et al. 1996).

The PANTHER/LIB HMMs can be viewed as a statistical
method for scoring the “functional likelihood” of different
amino acid substitutions on a wide variety of proteins. Because it
uses evolutionarily related sequences to estimate the probability
of a given amino acid at a particular position in a protein, the
method can be referred to as generating “position-specific evo-
lutionary conservation” (PSEC) scores. For the preliminary analy-
sis presented here, we use the PANTHER Version 3.0 family-level
HMMs (not subfamily-level). To demonstrate the utility of this
view of the HMM probabilities, we analyzed the missense allele
pairs obtained from two different databases. The first is the Hu-
man Gene Mutation Database (HGMD; Krawczak and Cooper
1997; Cooper et al. 1998), a curated database of mutations in
human genes, most of which are linked to a disease. The second
is dbSNP (Sherry et al. 2001), a database of human gene varia-
tions, most of which were collected randomly. We can then score
the likelihood of a single amino acid at a particular position
(amino acid PSEC, aaPSEC), or the likelihood of the transition of

one amino acid to another (substitution PSEC, subPSEC). For-
mally, we define the scores as follows:

aaPSEC(a,i,j) = ln[Paij/max(Pij)], (1)

where Paij signifies the probability of amino acid type a at posi-
tion i in HMM j, the maximum is taken over the probabilities of
all amino acids at position i of HMM j, and

subPSEC(a,b,i,j) = �|aaPSEC(a,i,j)�aaPSEC(b,i,j)| = �|ln(Paij/Pbij)|,
(2)

for a substitution of amino acids a and b.
When aaPSEC = 0, this is the evolutionarily most common

allele (inferred to be definitely functional), whereas more nega-
tive values of aaPSEC indicate that the allele is less likely to be
observed across evolution (inferred to be less likely to conserve
function). The substitution PEC score is simply the difference
between the aaPSEC scores for the two alleles. We take the abso-
lute value in order to make the scores symmetric, and then mul-
tiply by �1 to adhere to the substitution matrix convention that
more negative scores correspond to more severe substitutions.
When subPSEC = 0, the substitution is interpreted as function-
ally neutral, whereas more negative values of subPSEC predict
more deleterious substitutions.

First, we compare aaPSEC scores for wild-type and mutant
alleles in HGMD. If we assume that all HGMD mutations are
causative for a disease, then the wild-type allele is assumed to be
functional, whereas the mutant is impaired. In other words, we
can use wild-type aaPSEC scores to represent a set of functional
variants, and mutant aaPSEC scores to represent nonfunctional
variants (Fig. 5A). The PANTHER Version 3.0 library assigned
PSEC scores to 76% of the pairs (other positions could not be
aligned to a PANTHER HMM). As expected, the distribution of
HGMD mutant alleles extends to very negative aaPSEC scores,
whereas the wild-type allele distribution is peaked at 0. Only
0.1% (a total of 12) of the wild-type alleles have aaPSEC < �3.
These exceptions may help prove the rule, with some wild-type
alleles actually encoding functionally impaired proteins. An in-
teresting example is the Y897S mutation in Tie2, for which there
are data at both the phenotypic level (an association with inher-
ited venous malformations) and the molecular level (tyrosine
kinase activity). The evolutionary conservation pattern at posi-
tion 897 predicts that the disease-associated mutant with serine
at this position should be “functional” while the wild type is not,
exactly the reverse of what we would naively expect. Signifi-
cantly, Y897S was shown to be a gain-of-function mutation, re-
sulting in an eightfold increase in ligand-dependent autophos-
phorylation (Calvert et al. 1999), and is an interesting example of
how a wild-type protein that is functionally impaired at the mo-
lecular level can be more “functional” at the phenotypic level. In
contrast to the small number of wild-type alleles with
aaPSEC < �3, >40% of the mutant alleles fall below this cutoff,
suggesting this may be a useful cutoff value. The simple model of
considering aaPSEC < �3 indicates that at least 0.76 � 0.41 = 31%
of the mutant alleles in HGMD have impaired function and are
therefore likely to be causative for the disease they are linked to.
The number is likely to be significantly higher than this. If we
consider progressively higher score intervals, the ratio of mutant
alleles to wild-type alleles decreases rapidly, but even for the in-
terval �1.0 > aaPSEC > �1.5, there are more mutant alleles than
wild-type alleles.

Figure 5B shows a similar analysis of the set of missense
variations listed in dbSNP. The wild-type here is defined by the
allele represented in the primary RefSeq sequence. The distribu-
tions for different dbSNP alleles are not as well segregated as they
are for HGMD, implying that the dbSNP substitutions are much
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less likely to occur at evolutionarily conserved sites in proteins.
In addition, PANTHER HMMs (which represent the most highly
conserved regions in proteins) cannot provide scores for as large
a fraction of dbSNP variations as for HGMD. Of the 16,076 mis-
sense variations in dbSNP, 9920 occur in proteins with signifi-
cant scores to a PANTHER HMM (NLL-NULL score < �100), of
which 6508 align to a position in the top-scoring PANTHER
HMM. This means we can analyze 40% of the dbSNP missense
SNPs, as compared with 76% for HGMD. Of alleles we can score,
9.2% (598/6508) fall above our cutoff of aaPSEC < �3, as com-
pared with 41% for the HGMD set. This indicates that our score
correlates well with functional effect. However, there are still
several low-scoring alleles in the dbSNP set, which we would
predict to have impaired function. This will require detailed in-
vestigation outside the scope of this paper. Our list of potentially
deleterious missense SNPs in dbSNP includes several well-
characterized alleles known to have functional effect, such as
R145C in apoE2* and apoE4-Philadelphia (aaPSEC = subPSEC =

�5.06) and R158C in apoE2 (aaPSEC = sub-
PSEC = �3.25). In addition, ∼ 5% of these
low-scoring missense SNPs occur in olfactory
receptor genes, in which mutations deleteri-
ous at the molecular level are not likely to
affect survival in humans.

We now assess the ability of the substi-
tution PEC scores, subPSEC, to separate neu-
tral from deleterious missense SNPs. Figure 6
shows a relative operating characteristic
(ROC) plot (Swets 1988) to compare position-
specific substitution scores with two of the
most commonly used amino acid substitu-
tion scales. The first is BLOSUM62 (Henikoff
and Henikoff 1993), the most highly used
substitution matrix for comparing protein se-
quences, and the second is the physico-
chemical distance score proposed by
Grantham (1974). In the ROC plot for assess-
ing diagnostic accuracy, the “signal” of cor-
rect predictions (true positives) is shown as a
function of the “noise” of incorrect predic-
tions (false positives). We use the HGMDmu-
tations as an approximate set of functionally
deleterious missense SNPs, and the set of db-
SNP variations as an approximate set of neu-
tral missense SNPs. In actuality, of course,
not all HGMD alleles are deleterious, nor are
all dbSNP alleles neutral. Nevertheless, we ex-
pect HGMD to be significantly enriched in
deleterious alleles relative to dbSNP; there-
fore, different scoring schemes can be com-
pared with each other based on how well
they segregate the alleles in these different
sets.

In the ROC plot, a perfect prediction
method would give a vertical line (infinite
slope) with a noise of 0, and a completely
random prediction would give a line with a
slope of 1. The position-specific scores have a
much higher slope than for BLOSUM62
scores, particularly at low error values. For
example, using position-specific scores, in or-
der to predict 10% of the HGMD (presumably
deleterious) alleles, one would also incor-
rectly predict ∼ 1% of the dbSNP (presumably
neutral) to be deleterious as well. To predict
10% of the deleterious alleles with BLO-

SUM62 scores, one would expect a number of errors roughly
equal to 5% of the neutral alleles. This means that the false-
positive prediction rate in this range is five times greater for
BLOSUM62 than for position-specific scores. Our results are con-
sistent with Ng and Henikoff (2001), showing that the “average”
substitution probabilities in a substitution matrix are not as well
suited as position-specific scores for scoring the functional like-
lihood of missense SNPs.

The position-specific scores are particularly effective at “res-
cuing” false-negative predictions by BLOSUM62 or Grantham
scores. For example, the F294Y mutation in the GALT gene prod-
uct has a high BLOSUM62 score, but has a very low position-
specific score. In other words, the substitution appears conserva-
tive in an average sense, but at this particular position in the
galactose-1-phosphate uridylyltransferase family, phenylalanine
is absolutely conserved and any mutation should score poorly.
Not surprisingly, then, F294Y is associated with galactosemia.
Another example is the apparently conservative D203E mutation

Figure 4 (Continued on facing page)
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in the CHST6 gene product, which leads to type 1 macular cor-
neal dystrophy.

A significantly smaller but fully experimentally validated set
of SNPs is available from the Whitehead Institute (Cargill et al.
1999). We considered all 115 missense SNPs scored by Ng and
Henikoff (2002). We found that 100/115 aligned to a position in
an HMM from PANTHER Version 3.0, and could be given sub-
PSEC scores. Of the 10 lowest-scoring missense SNPs, seven are
also predicted by Ng and Henikoff to be deleterious, thus there is
significant agreement on the strongest predictions. However,
whereas Ng and Henikoff predict that 19/100 of the missense
SNPs in this set are deleterious, only 5/100 have subPSEC < �3
(L57P in the INTGB3 gene product, R163W in F3, F291S in ANX3,
L88R in DRD5, and I173N in CYP21), indicating that our cutoff is
considerably more conservative. We therefore expect a lower

false-positive prediction rate, but a higher
false-negative prediction rate, than Ng and
Henikoff.

DISCUSSION
We have described PANTHER, a comprehen-
sive database for classifying protein sequences
(see next page). PANTHER Version 3.0 in-
cludes >2200 protein families, which are fur-
ther subdivided into >30,000 subfamilies. A
subfamily is defined as groups of proteins that
can be annotated as having a similar name,
and identical biological function, as judged
by biologist curators. Each family is repre-
sented as a tree, a multiple sequence align-
ment, and an HMM for searching. Subfamilies
are curator-defined subtrees of the family tree,
and also represented as HMMs. Both families
and subfamilies have been named by biolo-
gist curators and associated with ontology
terms describing function. It is hoped that the
broader scientific community can help to en-
sure that the names and ontology associa-
tions are correct and up to date.

We have characterized the size and se-
quence similarity distributions for PANTHER/
LIB families and subfamilies. Consistent with
previous results from several studies, as family
size increases, the number of families of that
size decreases rapidly. Also consistent with
previous studies, the distribution of sequence
similarity within families is peaked sharply
around 30%–40% identity, owing primarily
to the practical limits of aligning related pro-
tein sequences. We report for the first time
the corresponding distributions for protein
subfamilies, where subfamilies are defined as
comprising proteins that have the same func-
tion (to the best of our biological knowledge
at present). We find that the sequence simi-
larity distribution for subfamilies is much
broader than for families, indicating that the
relationship between sequence and func-
tional plasticity varies widely for different
protein families.

We have also illustrated the utility of our
abbreviated ontology (PANTHER/X) for high-
level analysis of large lists of proteins. Com-
pared with a slice through a given depth of
the Gene Ontology (GO), PANTHER/X di-
vides mammalian genes into functional bins

containing a relatively consistent (and tractable) number of se-
quences, allowing us to identify biological processes for which
the number of associated human and mouse genes differs signifi-
cantly (e.g. neuronal activities). It is important to emphasize that
PANTHER/X was designed primarily for mammalian (or verte-
brate, at least) proteins, and will need to be augmented to pro-
vide a more comprehensive classification of proteins from a
broader range of organisms.

Finally, we have used the position-specific amino acid prob-
abilities in the PANTHER/LIB HMMs to score single nucleotide
polymorphisms in human proteins that lead to an amino acid
substitution (missense SNPs). We have scored mutant alleles
from the Human Gene Mutation Database (HGMD), using both
dbSNP (a database of mostly randomly sampled variation) as well
as wild-type HGMD alleles as controls. Our results indicate that

Figure 4 Comparing classifications of human and mouse LocusLink genes using GO terms and
their mapped PANTHER/X terms. Top-level molecular function categories for (A) PANTHER/X and
(B) GO. Top-level biological process terms for (C) PANTHER/X and (D) GO. The set of gene
classifications is identical for PANTHER/X and GO; the difference is in organization (relationships
between ontology terms).
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HMM scores, derived from observing amino acid substitutions in
a specific position in related protein sequences, can be usefully
applied to the problem of predicting whether a given allele will
be functionally neutral or deleterious. Our results demonstrate
on a database-wide scale that position-specific scores are more
effective at this task than substitution matrices such as BLO-
SUM62 and the Grantham scale. If we choose a very conservative
prediction cutoff based on wild-type allele scores in HGMD,
roughly 4% of the missense SNPs in dbSNP (we were able to make
predictions for 40% of the missense SNPs, and ∼ 9% of those were

below our cutoff) are likely to affect protein
function. These predictions will require further
analysis.

METHODS
The overall process for building the PANTHER
classification is shown in Figure 7. The basic
steps are:

1. Family clustering.
2. Multiple sequence alignment (MSA), family

HMM, and family tree building.
3. Family/subfamily definition and naming.
4. Subfamily HMM building.
5. Molecular function and biological process

association.

Of these, steps 1, 2, and 4 are computational,
and steps 3 and 5 are human-curated (with the
extensive aid of software tools).

Family Clustering
In PANTHER, families are defined as clusters of
related proteins for which a good multiple se-
quence alignment can be made. The clusters
are built around “seed” sequences, in two
steps. In the first step, we use BLASTP to find
sequences related to the seed in both sequence
and overall length. An HMM is then con-
structed from this “initial cluster,” which is
used to find additional members of the family
to define an “extended cluster.” The two-step
process allows us to avoid the problems of
training an initial HMM from a diverse set of
sequences, yet still capture the diversity of the
larger set in the final HMM.

Seed Selection
Seed selection involves choosing the proteins
that will serve as “seeds” around which we will
build initial HMMs. For PANTHER Version 3.0,
we focused on annotating mammalian ge-
nomes, and thus we biased our seed set accord-
ingly. We defined our starting set as all human,
mouse, and rat proteins in the GenBank
Nonredundant (NR) Protein Database Release
122 (February 15, 2001). From this set, we re-
moved (“filtered”) very short sequences (<30
amino acids), sequences annotated as partial
(having an NR definition line containing the
words “partial” or “fragment”) or mutants
(definition line containing the strings “mu-
tant,” “mutation,” “engineer,” or “synthetic”).
Engineered mutants often contain changes to
key functional residues, and including them
can weaken the residue conservation profiles.
We then sorted the sequences from longest to
shortest, and used BLASTP alignments to split
them into clusters defined by a percent iden-
tity cutoff (25%) and length-based cutoff (the
length of the aligned region must be at least
70% of the length of the shorter sequence).

From each cluster, the representative seed was defined as the
sequence having the median length.

Initial Cluster and Initial HMM Building
The goal of this step is to generate a cluster of sequences that are
globally homologous to the seed, in order to generate the initial
HMM to reflect the seed’s domain arrangement.

The seed is used to query the NR database (filtered to remove
fragments and mutants, as above) using BLASTP. A sequence
“hit” is accepted into the initial cluster if (1) it has an E-

Figure 5 Distribution of amino acid scores (aaPEC) for different missense SNP alleles in HGMD
and dbSNP. (A) The distribution from HGMD shows that >40% of the disease-associated mutant
alleles (hatched bars) are rare (aaPEC < �3) in alignments of related sequences, whereas >70%
of the wild-type alleles (black bars) are the most common allele across evolutionarily related
sequences (aaPEC = 0). (B) The distribution from dbSNP (presumably randomly sampled SNPs)
is very different from A, containing four times fewer evolutionarily rare alleles (aaPEC < �3) and
more than one-third fewer evolutionarily most common alleles (aaPEC = 0).
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value < 10�5 and (2) the length of the BLASTP alignment is at
least 70% of both the query and hit sequences. This is important
because each cluster must contain related proteins that are all of
roughly equal length, so that they are likely to share the same
domain structure. All related sequences passing these thresholds
are brought into the initial cluster (up to 500, sorted by E-value,
for computational efficiency), and any sequences that are exact
subsequences of another sequence in the cluster are removed
(these are likely to be fragments).

The initial cluster is used as input into the buildmodel
procedure of the UCSC SAM 2.1 package using the Dirichlet mix-
ture prior parameter file -prior_library uprior9.plib. This cre-
ates a temporary HMM that is used to provide (1) an alignment
that can be used to estimate the weights of the sequences in the
initial HMM (using the SAM align2model procedure with the
-sw2 option), (2) the length of the region conserved among
the sequences in the family (using the “surgery” option in build-
model). Sequences are weighted relatively using the Henikoff
weighting scheme (Henikoff and Henikoff 1994), and given an
absolute weight using the formula nseq

(1�〈 Pmax〉 ), where nseq is the
number of sequences in an alignment and 〈 Pmax 〉 is the average
probability for the most common amino acid at each position
(Karplus et al. 1997). If >3.0, the absolute weight (i.e., number of
independent counts) for all sequences is scaled to equal 3.0; oth-
erwise, the HMM parameters will contain negligible contribu-
tions from the priors. The intial (weighted) HMM is built by
using the resulting sequence weight file and the initial cluster file
as input into buildmodel along with the following parameters:
-nsurgery 0, -nmodels 1, and -modellength 0. These particu-
lar parameters are used so that the model length is constrained to
remain the same as in the temporary HMM (this is done to reduce
the computation time). The sequences in the initial cluster are
then aligned to the initial HMM to produce an initial MSA.

QA on Initial MSA
It is essential that the MSA be of high qual-
ity; otherwise, the resulting tree structure is
unlikely to accurately reflect functional re-
lationships. We have observed empirically
that potentially poor alignments can be re-
liably identified by calculating the average
pairwise identity over the regions of the se-
quences that align to the HMM. If an MSA
has an average pairwise identity of <27%,
the family-building process is restarted
around the seed using a more stringent
BLAST E-value cutoff (10�20). We find that
∼ 5% of the PANTHER Version 3.0 families
fail this first QA step and must be rebuilt.

Extended Cluster Building
The goal of this step is to extend the clusters
to include as many related sequences as
possible. This will (1) make the resulting
HMMs much more powerful because there
will be more “observed” sequences to pro-
vide residue substitution statistics, and (2)
bring more sequences into the family trees,
providing as much information as possible
about relationships that biologist curators
can use to infer function.

We use the initial family HMM to
search for new cluster members. Because it
would be computationally prohibitive to
score the resulting HMMs against the entire
NR protein set, we need to define a smaller
“search set” of proteins that are potentially
related to the seed. We take the seed and
run PSI-BLAST for three iterations (using an
E-value cutoff of 10�5), and define the
search set as the set of all proteins that ap-
pear in any of the PSI-BLAST iterations (not
just the final iteration, because for some

seed sequences PSI-BLAST can “wander” to very different protein
families). For this step, we filter out mutants from NR, but we
allow fragments as they can provide additional observations to
refine the HMM parameters.

We then score the initial HMM against the search set using
SAM hmmscore (with the local alignment parameter -sw2).
There is no length restriction to hits here—any protein is brought
into the cluster if it shares even a local (partial) match to the
HMM as long as the resulting alignment is of high quality. Em-
pirically, we find that for most families, a related protein that has
a SAM (NLL-NULL) score better than �100 (units are natural
logarithms or “nats”) has a high-quality alignment, and se-
quences scoring better than this cutoff are added to the initial
cluster to define the extended cluster.

Removing Overlapping Clusters
The family clustering procedure described above naturally pro-
duces overlapping clusters for many protein superfamilies. Our
goal for clustering was to span protein space well, not necessarily
to partition it such that each sequence can appear in only one
family. Because of the domain arrangement of proteins, as well as
the broad evolutionary distances spanned by some families, the
rigorous partitioning approach does not provide as much context
as the spanning approach. However, we do want to remove any
clusters that are essentially completely contained in other clus-
ters, biasing our set toward larger clusters. To do this, we sort the
clusters from largest to smallest, and then go down this list to
choose which clusters are accepted into the library. The largest
cluster is automatically accepted. The next largest cluster is ac-
cepted if <90% of its sequences are contained in the set spanned
by all accepted clusters; this step is iterated until all clusters have
been either accepted or rejected. Because we allow up to 90%

Figure 6 Predicting whether a missense SNP will have an effect on protein function: comparison
between position-specific scores (subPEC) and “average” substitution scores. Position-specific
scores from PANTHER HMMs (blue line) make a larger number of correct predictions (true positives
shown on Y-axis) for a given number of errors (false positives shown on X-axis) than scores from the
two most commonly referenced substitution scores: the Grantham scale (green line) and the
BLOSUM62 substitution matrix (red line). The black line shows the curve for a random prediction,
as a reference. HGMD mutations are used to approximate a set of functionally impaired proteins,
and dbSNP variations are used to approximate a set of functional proteins (see text for more
details).

A Database for Protein Functional Classification

Genome Research 2137
www.genome.org



overlap in sequence clusters, there are several examples of over-
lapping PANTHER families (Fig. 2).

Family MSA Building and HMM Re-estimation
The goal of this stage is to obtain a multiple sequence alignment
for the extended cluster, and to re-estimate the parameters of the
family HMM given all of the new sequences brought into the
cluster during the extension step.

The final multiple sequence alignment for the family (the
sequences in the extended cluster) is then created. Sequences are
aligned (using SAM align2model) to the HMM from the initial

cluster to produce a multiple sequence alignment. Recall that the
extension process can bring in proteins that only match locally
(over a single region, such as a domain) if the match is close
enough to pass the score threshold. Therefore, it is critical that
this alignment step be a local–local, or Smith-Waterman, type of
alignment. Sequences are then reweighted as above, and these
weights are used to re-estimate the family HMM parameters from
the final multiple sequence alignment (usingmodelfromalign).
Note that, unlike for the initial temporary HMM, the model
length is constrained to remain the same as in the initial model.
Because the extended alignment is local, poor or truncated sta-
tistical models can often result if the model length is allowed to
vary during this step.

Sequence-Based Family Tree Building
Once all family clusters are obtained and the highly overlapping
clusters removed, each remaining family MSA is used to build a
tree representation of the sequence relationships between family
members. The TIPS (Tree Inferred from Profile Scores) algorithm
is described elsewhere (K. Diemer, B. Lazareva-Ulitsky, T. Hatton,
and P.D. Thomas, in prep.). In overview, the method follows an
agglomerative clustering process. For each cluster at any step in
the process, a statistical profile is built that describes those se-
quences. The two most similar clusters are joined at each step.
The similarity S between any two clusters K and M is defined by
the equation:

S(K, M) = 〈 f(Ki) * log[p(Mi)/pnull] + f(Mi) * log[p(Ki)/pnull]〉 ,

where the average is taken over all columns i that belong to the
overlap of two alignments K and M, f(Ki) is the frequency vector
of amino acids in the i-th match position in the alignment in
cluster K, p(Ki) is the Dirichlet mixture profile vector built
around sequences in cluster K in that position, and pnull is the
background distribution (average probabilities of observing dif-
ferent amino acid types). In the above formula, we use a short-
hand notation for the vector-derived quantities, where

f * log[p/pnull] = ∑ [fn * log(pn/pnull,n)]

summing over the 20 amino acid types n. It should be noted here
that both profiles p and frequencies f are calculated from
weighted sequences using Henikoff-style sequence weighting.

In words, this translates to defining the similarity between
clusters K andM as the average score of the sequences in K versus
the profile for M, added to the average score of the sequences in
M versus the profile for K (note that the profile score is effectively
the HMM score, except that only aligned positions, and not in-
sertions and deletions, are considered). The two clusters that
have the maximum value of this function are joined. If the se-
quences in group K all score well against the profile for M, and
vice versa, then the groups have similar residue conservation
patterns and should be joined. Branch lengths for the join are
estimated using symmetrized total relative entropy (Sjolander
1998). Note also that the similarity function is scaled according
to the length of the match between a sequence and a profile, and
therefore does not penalize partial (local) alignments.

Biologist Curation
After the family trees are built, they are reviewed and annotated
by a team of expert curators. Unlike any other approaches toward
curation that we are aware of, curation is performed in the con-
text of a tree; that is, a family of sequences is annotated in the
context of the set of related proteins. This allows curators to
make inferences that could not be made if they were looking at a
single sequence at a time, as well as perform consistency checks
on the incoming data as well as the annotations they make them-
selves. Also, most families are reviewed by curators who have
expert knowledge of the relevant family, molecular function, or
biological process.

One of the curator’s tasks is to decide how to divide the tree
into subtrees, or subfamilies. This is done using software called a
“tree-attribute viewer,” that shows a table of annotations (at-

Figure 7 Schematic illustration of the process for building PANTHER
families.
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tributes) for sequences in a tree (Thomas et al. 2003), allowing for
rapid curation. Each subtree should be the largest possible sub-
tree for which all of the sequences in the subtree share the fol-
lowing properties: (1) the same name (or a consistent name that
can be applied to all sequences in the subtree); (2) the same
molecular function(s); and (3) the same biological process(es).
Note that not all sequences must be individually annotated in
GenBank in exactly the same way for the curator to decide that
they all, in fact, are likely to share the same attributes. In fact, the
lack of standards for nomenclature, the wide range of annotation
quality, and the years of transitive sequence annotation have
made biologist interpretation an imperative. The curator’s ability
to infer the functions of proteins that are either incorrectly or
inadequately annotated is precisely what we wish to exploit. The
tree representation is a powerful means of grouping sequences
together—each subtree is a possible subfamily. If an unannotated
sequence is placed deep within a branch of sequences known to
have a particular function, it is very likely that this unannotated
sequence shares that function as well.

Naming the Families and Subfamilies
After deciding which subtrees should be designated as distinct
subfamilies, the biologist curators give each subfamily a biologi-
cally meaningful name. In some cases, because all sequences
within a subfamily have the same definition, naming the sub-
family is trivial. Often, different synonyms may have been used
for each of the sequences in a subfamily. In that case, curators
will use their expert knowledge to pick the most informative
name. If a SWISS-PROT (Bairoch and Apweiler 2000) sequence is
present in a subfamily, that name is often chosen because of its
high quality.

Often there are subfamilies in which none of the individual
sequences has a clear function. However, that subfamily is pres-
ent in a family because there is significant sequence similarity
with other subfamilies. The convention used for naming these
subfamilies is to determine the closest subfamily whose function
is clear (X), and to name the uncertain subfamily X-RELATED.
Information about the organisms from which the sequences de-
rive is also useful in naming subfamilies. It is not uncommon for
a tree to contain orthologs from a wide variety of organisms. In
this case, the protein names are often inconsistent (often because
of organism-specific naming conventions), but it is clear from
the MSA and tree that all sequences are orthologs. In many cases,
a single name is selected (the most biologically informative,
sometimes biased toward nomenclature for human gene prod-
ucts). This rule is not applied universally because sometimes
there can be well-known names in different species that the cu-
rator is uncomfortable overwriting.

Biologically meaningful names are also given to each of the
families. Occasionally, a family will consist of a single subfamily:
that is, given the present state of biological knowledge, all se-
quences have the same name and functions. More often, there
are several different functions across subfamilies of an evolution-
arily conserved protein family. If the protein family has a well-
established name, then the PANTHER family is given that name
(e.g., ANTP/PBX FAMILY OF HOMEOBOX PROTEINS). Often
there is no well-established name. In this case, the curator either
gives the protein a more general name that applies to all proteins
in a family (e.g., NUCLEAR HORMONE RECEPTOR) or finds the
largest subfamily name (Y) and names the family Y-RELATED.

Creating the PANTHER/X Abbreviated Ontology
The PANTHER/X ontology comprises two types of classifications:
molecular function and biological process. The molecular func-
tion schema classifies a protein based on its biochemical proper-
ties, such as receptor, cell adhesion molecule, or kinase. The biologi-
cal process schema, on the other hand, classifies a protein based
on the cellular role or process in which it is involved, for ex-
ample, carbohydrate metabolism (cellular role), signal transduction
(cellular role), TCA cycle (pathway), neuronal activities (process), or
developmental processes (process). Oncogenesis is, in fact, a patho-
logical process, but because it is such an important field, it is
included in the PANTHER/X biological process schema.

There are no more than three levels of categories in either
PANTHER/X schema. Level 1 categories are broad and general
functional terms, such as receptor, protease, or transcription factor
in the molecular function schema, and carbohydrate metabolism,
signal transduction, or developmental processes in the biological
process schema. Level 2 and 3 categories are subcategories of lev-
el 1 categories, and are more specific functional terms, such as
G-protein-coupled receptor, serine-type protease, or zinc finger tran-
scription factor in the molecular function schema, and glycolysis,
MAPKKK cascade, or neurogenesis in the biological process
schema. Under parent categories having more than one child, we
have introduced an “other” category, such as other receptor or
other carbohydrate metabolism process, to avoid generating an exces-
sive number of categories with few subfamilies classified in them.

One important point is that, properly speaking, the ontol-
ogy is a DAG (directed acyclic graph) rather than a true hierarchy.
In practice, this means that a given category can have more than
one parent. For simplicity, we have attempted to minimize the
number of instances in which the schema deviates from a hier-
archy, but there are still several cases in which a child category
has multiple parents. Unlike the full GO schema, a child must
appear at the same level under each parent so that depth has a
consistent correlation with specificity. For example, nuclear hor-
mone receptor (level 2) is classified under the parents receptor (level
1) and transcription factor (level 1).

Associating Families and Subfamilies With Ontology Terms
This step is performed by a biologist curator. Curators use many
different pieces of information while performing the classifica-
tion, such as textbooks, PubMed abstracts, SWISS-PROT key-
words and definitions, OMIM records (http://www.ncbi.nlm.
nih.gov/omim/), GenBank records, and their own expert knowl-
edge of the field. Because they are curating in the context of the
family tree, they may also infer function based on what is known
about adjacent subfamilies. Curators may only place subfamilies
into existing PANTHER/X categories; they may not create a new
category unless it is cooperatively decided that there is a com-
pelling reason to do so.

Proteins having related sequences also generally have a
common biochemical (molecular) function. The same is often
not the case for proteins participating in the same biological
process—that is, most pathways are comprised of a series of dif-
ferent biochemical reactions. In general, then, molecular func-
tion tends to change less dramatically within a family than does
the biological process. Therefore, inferences about molecular
function can more often be made than can inferences about bio-
logical process. Again, knowledge of the biological context is im-
portant. For example, an expert may be hesitant to infer the
biological process of a serine/threonine kinase, but not that of
citrate synthase. The number of pathways a biochemical reaction
is used in affects one’s ability to infer biological process.

After the subfamily-level classification was completed, cat-
egories were associated with the family-level models. Because
many families contain subfamilies with diverse functions, only
the categories that were common to all subfamilies were associ-
ated with the families. It is therefore possible for a family to have
no function association at all, even if all of the subfamilies are
associated with functions.

Quality Control of Ontology Associations
After the initial classification effort, all the ontology associations
underwent a two-step quality control process: (1) validation and
(2) consistency check. During the validation step, biologist cura-
tors reviewed all subfamily assignments in each category. That is,
rather than making classifications family by family as in the ini-
tial assignment process, classifications were checked category by
category, generally by experts with knowledge of the relevant
area. In cases that were not obviously correct, textbooks,
PubMed, as well as other available tools were used to resolve
discrepancies. If a subfamily was incorrectly classified, or was not
classified in a category it belonged in, reviewers were encouraged
to provide reclassifications. These classifications were reviewed
by our internal team. After the validation step was completed, a
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consistency check was performed. Subfamilies that shared com-
mon sequences but had not been consistently classified across
different families were reviewed. Depending on the context of
the subfamilies, the reviewer would decide whether to make
them consistent. For example, if 4 sequences were shared by two
subfamilies with 5 sequences each, these two subfamilies should
have basically the same classification. However, if 4 sequences
were shared by two subfamilies of very different size, say with 5
and 200 sequences, the functional classification of these two sub-
families could be different (the smaller subfamily might be much
more specific as it spans fewer sequences).

Using HMMs to Classify Sequences
Query sequences can be scored against the PANTHER library of
HMMs. The search takes advantage of the hierarchical structure
of the library. Instead of scoring every sequence against all
∼ 35,000 family and subfamily HMMs, a sequence is first scored
only against the 2236 family HMMs. Only if the family HMM
score is marginal or significant (we use an NLL-NULL score cutoff
of �20) is the sequence scored against the subfamily HMMs for
that family. The PANTHER database at Celera stores all HMM
scores (family or subfamily) more significant than �20. For the
purposes of classification, however, the highest scoring HMM
(either family or subfamily) is used. One of the key advantages of
PANTHER is that a protein can be recognized as being a close
relative of training sequences (subfamily member), or a more
distant one (family member), and that these two cases can mean
very different things for the purposes of function prediction. For
example, a novel serine/threonine kinase receptor family mem-
ber can only be inferred to have only the general function of a
protein kinase, whereas a member of the BMPR1 subfamily of S/T
kinases can be inferred to be involved in the specific biological
process of skeletal development.

Comparing GO and PANTHER/X Associations
for LocusLink
LocusLink GO associations were taken from the file LL_tmpl.gz
downloaded from NCBI at ftp://ftp.ncbi.nih.gov/refseq/LocusLink/
(May 20, 2003). The sources of the GO associations were GOA
and Proteome for human, and MGD for mouse.

In the LL_tmpl file, 6925 LocusLink entries are associated
with at least one GO term each. For the high-level overview pre-
sented in Figure 4, A and C, each GO term was converted to its
most general (top-level progenitor) category (or categories) in GO
(May 5, 2003, Molecular function Revision 2.679, Biological pro-
cess Revision 2.762) by tracing it up the DAG structure. For ex-
ample, long-chain acyl-CoA dehydrogenase (GO:0004466) traces to
enzyme activity (GO:0003824), and both angiotensin II receptor ac-
tivity (GO:0004945) and hormone activity (GO:0005179) trace to a
common progenitor, signal transducer activity (GO:0004871) in
the molecular function ontology. Likewise, fatty acid metabolism
regulation (GO:0006632) traces to cell growth and/or maintenance
(GO:0008151) in the biological process ontology. If two GO as-
sociations for the same LocusLink entry were converted to the
same top-level progenitor, the top-level category is counted only
once. To derive the equivalent PANTHER/X associations, all
LocusLink GO terms were first mapped to PANTHER/X terms.
The mapping file is available as Supplemental Material (http://
panther.celera.com/publications/gr7724_03=suppl). The
PANTHER/X terms were then traced up the DAG to their top-
level progenitor categories. Note that because both GO and
PANTHER/X are DAGs, a given LocusLink association can have
more than one top-level progenitor in either ontology.

Predicting the Effect of Missense SNPs on
Protein Function
The PANTHER/LIB HMMs were used as a statistical method for
scoring the “functional likelihood” of different amino acid sub-
stitutions on a wide variety of proteins. The set of missense SNPs
associated with Mendelian diseases was taken from the Human
Gene Mutation Database (HGMD; Krawczak and Cooper 1997;

Cooper et al. 1998; release date March 11, 2003). The set of mis-
sense SNPs representing “normal” variation were taken from
NCBI’s dbSNP, which provides a mapping to RefSeq protein se-
quences (Sherry et al. 2001; release date May 20, 2003). A smaller
but fully validated set of missense SNPs sampled from healthy
individuals was taken from resequencing data generated by Car-
gill et al. (1999).

For missense SNPs in these sets, the protein sequence con-
taining the missense SNP was scored against the PANTHER family
HMMs using the UCSC SAM package (Baum-Welch scoring, lo-
cal–local alignment sw2). The HMM with the most significant
score was selected for the analysis, if the NLL-NULL score was less
than �100. For missense SNPs associated with multiple proteins,
the analysis was performed on the protein with the most signifi-
cant HMM score. Proteins were then aligned to the most signifi-
cant HMM using the UCSC SAM package (local–local alignment).
Proteins that scored greater than �100 against all PANTHER
HMMs were excluded from the analysis, as the alignments are
less reliable. The position of the missense SNP in the protein
determined the corresponding position in the aligned HMM
model. If the missense SNP position aligned to an insert state,
then it was excluded from our analysis. If it aligned to an HMM
“match state,” then that position is represented by a vector of 20
probabilities, one for each amino acid. The appropriate amino
acid probabilities were then inserted into equations 1 and 2 (see
Results section) to generate position-specific evolutionary con-
servation scores aaPSEC and subPSEC. All aaPSEC and subPSEC
scores are available as Supplemental Material.
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