Methods

Annotating Large Genomes With Exact

Word Matches

John Healy,'-* Elizabeth E. Thomas,' Jacob T. Schwartz,? and Michael Wigler'
"Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; >Courant Institute of Mathematical Sciences, New

York University, New York, New York 10003, USA

We have developed a tool for rapidly determining the number of exact matches of any word within large, internally
repetitive genomes or sets of genomes. Thus we can readily annotate any sequence, including the entire human
genome, with the counts of its constituent words. We create a Burrows-Wheeler transform of the genome, which
together with auxiliary data structures facilitating counting, can reside in about one gigabyte of RAM. Our original
interest was motivated by oligonucleotide probe design, and we describe a general protocol for defining unique
hybridization probes. But our method also has applications for the analysis of genome structure and assembly. We
demonstrate the identification of chromosome-specific repeats, and outline a general procedure for finding
undiscovered repeats. We also illustrate the changing contents of the human genome assemblies by comparing the

annotations built from different genome freezes.

Any genome can be conceptualized as a string of letters. Every
word composed of those letters has a certain number of exact
matches within the genome, its word count. Knowledge of word
count is useful for probe design, discovery of repeat elements,
genome annotation, and mathematical modeling of genome
evolution. The tools available for sequence homology analysis,
such as BLAST and FASTA (Pearson and Lipman 1988; Altschul et
al. 1990) were not designed for this purpose, and are unneces-
sarily cumbersome. We therefore sought a new tool for finding
the word counts for words of arbitrary length in any given ge-
nome.

Our interest in this problem has its origins in microarray
hybridization analysis. We have developed methods using oligo-
nucleotide probes for detecting gene copy number changes in
mutant and normal genomes (Lucito et al. 2003). We require our
probes to be highly unique in the genome. Our approach, like
that others have taken, is to count the exact matches of probe
substrings, or words, to the rest of the genome (Li and Stormo
2001). When such words have lengths below 16, this task can be
accomplished using a simple tabulation of words and their
counts. When the word length exceeds 15, such directly addres-
sable structures become impractical. More robust data structures,
such as the suffix array and suffix tree, could easily provide us
with optimal or nearly optimal theoretical time bounds for word
count determinations. However, in practice, these too proved to
be impractical solutions for the case of the human genome for
reasons that we will detail. We solved this problem by applying
and building upon a Burrows-Wheeler transform of the entire
human genome sequence.

The tool we created is capable of rapidly annotating any
sequence, even the entire genome, with the counts of its con-
stituent words. We quickly realized that this method has other
applications beyond probe design. In this article we describe our
algorithm, provide some implementation details, and then dis-
cuss the relationships between our implementation and pre-
existing tools and data structures. Lastly, we illustrate some ap-
plications to the analysis of genome structure and assembly.

3Corresponding author.

E-MAIL healy@cshl.edu; FAX (516) 367-8381.

Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.1350803. Article published online before print in September 2003.

2306 Genome Research
www.genome.org

METHODS

Fundamentals

To determine word counts rapidly, we sought to minimize the
number of computations per word and to eliminate time-
consuming disk access operations. We achieve this by creating a
data structure that we can efficiently query and that can also
reside entirely in random access memory (RAM). Our solution
depends upon the Burrows-Wheeler transform, a method used
to create a reversible permutation of a string of text that tends to
be more compressible than the original text (Burrows and
Wheeler 1994). It is also strongly related to the suffix array data
structure (Manber and Myers 1993) in ways that will be made
apparent.

First, given a genome G of length K, we create a new string
G$ of length K+1 by appending a “$” to the end of that genome.
(We assume a single strand, reading left to right.) We then gen-
erate all K+1 “suffixes” of G$, where the suffixes are the sub-
strings that start at every position and proceed to the end. We
next associate with each suffix the letter preceding it. In the case
of the suffix that starts at the first position, we associate the new
$ character and assume that “$” has the lowest lexicographical
value in the genome alphabet. The string of antecedent letters, in
the lexicographical order of their suffixes, is the Burrows-
Wheeler transform of the G$ string, which we refer to as the
“B-W string” or the “BWT".

For example, if the genome were simply “CAT”, our G$§
string would be “CATS$”. Then the suffixes of the genome in
sorted order would be: “$”, “AT$”, “CAT$”, and “T$”. The Bur-
rows-Wheeler transform of this particular G$ would be the letters
that “precede” each of those suffixes taken in the same order,
specifically “TC$A”. In practice, the sort operation is performed
on the integer offsets, or pointers, into the original string based
on the suffix that starts at that position. To continue the ex-
ample, the list of pointers taken in the order of the sorted suffixes
would be [3,1,0,2]. This list of pointers is in fact the suffix array
for the string “CATS$”.

We could use the suffix array to compute word counts using
a binary search (Manber and Myers 1993). However, the suffix
array for the human genome, at approximately 12 gigabytes (3
billion, 4-byte integers), is too large to fit in RAM for any of our
machines. We would also need access to the entire genome in
order to perform such a binary search, adding another 3 gi-

13:2306-2315 ©2003 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/03 $5.00; www.genome.org

Annotating Large Genomes With Exact Word Matches

gabytes uncompressed. On the other hand, the B-W string is
alone sufficient to determine word counts. Recall that it is no
larger than the original genome and, like any other string of
characters, it can be compressed using any of a variety of text
compression techniques. Furthermore, in our implementation,
all but a negligibly small portion of the compressed form can
remain so throughout execution. Together with auxiliary data
structures that enable the B-W string to be rapidly queried, the
entire structure for the human genome can be compressed into a
little over 1 gigabyte of RAM.

The Basic Algorithm

Heuristically, the B-W string can be viewed as a navigational tool
for a “virtual” Genome Dictionary, an alphabetical listing of all
the suffixes of the human genome. Suppose we wish to know
whether a substring occurs in the genome, and if so, in how
many copies. Let us first consider the case where the substring is
a single character, X. We can view all the occurrences of X in the
Genome Dictionary as a block where Fy and Ly are the indices of
its first and last occurrence, respectively. The size of this block,
ky=Lx — Fx+ 1, is the number of occurrences of X, and is
readily determined by counting the number of occurrences of X
from the beginning to the end of the B-W string.

In order to consider the case for longer words, we first need
to determine Fy, Ly, and ky for each character X of the genome
alphabet. The sizes of each block, the ks, are easily determined
by counting the instances of X in the B-W string. Fy is one plus
the sum of the sizes of all antecedent blocks beginning with V,
where V is any character occurring lexicographically before X. Ly
is one less than the sum of kyx and Fy. We store the Fy and Ly for
each letter X in an auxiliary data structure called “alphabounds”.

We can now proceed inductively to find the count for a
word Z. Suppose W is a suffix of Z, W exists in the genome, and
we know the indices F,, and L,, of its block in the Genome
Dictionary (Fig. 1A). To continue the induction we need to know
whether XW exists as a substring, where X is the character pre-
ceding Win Z, and we need to know the indices of the XW block,
Fxy and Ly, in the Genome Dictionary.

If and only if X occurs in the B-W string between F,, and Ly,
then XW exists as a substring of the genome (Fig. 1A). Further-
more, the number of X's in the “W block” of the B-W string, kx,
is the copy number of the substring XW in the genome. Finally,
the indices of XW are easily computed, namely:

1. Fxy =Fx + bxy, and
2. Lyw=Fxw+kxw — 1

where by, is the number of words beginning with X in the Ge-
nome Dictionary that occur before XW. Recall that Fy has been
determined for each character X of the alphabet. by, can be
determined by counting the number of X’s that occur before the
W block of the B-W string (Fig. 1A).

We reiterate this procedure, lengthening the suffix one char-
acter at a time, stopping if the suffix does not exist in the Ge-
nome Dictionary. If the suffix W encompasses the entire word Z,
kyy is the number of occurrences of Z in the genomic string. An
outline of this procedure in pseudocode is displayed in Figure 1B.

The basic algorithm transforms a pattern matching problem
into a counting problem. Counting thus becomes the rate-
limiting step, and therefore we facilitate it in ways described be-
low.

Preprocessing and Database Construction
To count exact matches of words our method requires only the
B-W string, but to build the string we still need to create a suffix

B-W
String Genome Dictionary
byxw
s w <= Fy
Kk w
Xw i
L w <= Lw
«-F
X X :| bxw
| Xw <= Fxw :|
Xw kxw
XW <= Lxw
B

Find-Word-Count (Z, alphabounds, BW String)
where Z is a string of length N, composed of characters
from the genome alphabet, and alphabounds contains the
indices of the first and last occurrences in the genome
dictionary for each character in the genome alphabet.

1. W< ZIN]

2. Fy, Ly < alphabounds(W)

3. kw < Ly-Fy+l

4. if N=1, return kyy

5. foriin1toN-1

6. X « Z|[N-i]

7. kxw < count of X’s between Fyy and L,
inclusive, in BW String

8. if kyw =0, return 0

9. byw « count of X’s before Fy, in BW String

10. Fx, Lx <« alphabounds (X)

11. Fxw < Fx+byxw

12, Lyw < Fxw + kxw-1

13. Fw « wa
14. Lw « wa
15. return kyy

Figure 1 Our algorithm for rapidly determining the exact word counts
in a large string for any length word. (A) Graphically defines the variables
and data structures used in the algorithm. (B) A pseudocode representa-
tion of the algorithm itself.

array for the genome. Although the suffix array is not needed to
determine word frequency, and is much too large to be held in
RAM, it should be retained on disk, because it can also be used to
find the coordinates of matches.

Building a suffix array can be reduced to a “sort in-place”
operation. For a string of the size of the genome, we imple-

Genome Research 2307
www.genome.org

Healy et al.

mented a parallel radix sort using a 16-node cluster. The genome
was divided into 100 equal-size substrings, each overlapping by
seven nucleotides. The offsets into the genome (i.e., the “ge-
nome” coordinate) within each substring were then assigned to
one of 57 “prefix” bins according to the 7-mer at each offset. (The
genome alphabet was A, C, G, T, and N.) The offsets within each
prefix bin were then sorted based on the sequence following the
7-mer prefix, creating the suffix array.

For the human genome, we made a special case for N’s. The
human sequence contains about 6*10® N’s, mainly in large
blocks ranging from 200 kb to 30 Mb in length. The presence of
these long blocks increased sort time by a factor of 10, so we
decided not to sort coordinates with 7-mer prefixes containing
N’s. As long as the constituencies of blocks bounded by prefixes
containing N’s are correct, their internal order is irrelevant for
determining counts of N-free words. Thus, all queries with se-
quences containing no N'’s are still valid. We refer to this variant
as the “N-incomplete” Burrows-Wheeler transform.

The first character preceding each offset, taken in the order
of the sorted offsets, constitutes the B-W string. The B-W string is
still three gigabytes, too large for our workstations. To compress
the string further, we used a simple dictionary-based compres-
sion scheme, where one of 125 distinct single byte codes repre-
sents one of each of the 5% possible three-letter substrings. We
chose this compression scheme, even though greater compres-
sion can be achieved, because it has a constant compression ra-
tio, 3:1, and allows us to count characters, for the most part,
without decompressing.

In the pseudocode for our counting algorithm, all steps are
rapid “look-ups” or simple computations except for steps 7 and 9
(Fig. 1B). These steps involve counting the B-W string over po-
tentially large blocks of characters. In order to speed counting, we
created an auxiliary data structure, the “K-interval counts”,
where K is an integer multiple of the compression ratio, by pre-
counting on the B-W string. We determine the cumulative
counts for each character and record them for every K™ position.
To carry out counting steps, therefore, we need only count the
particular character in the string from the relevant position to
the nearest position that is a multiple of K. The number of char-
acters that needs to be counted in any step is thus no more than
K/2. In our implementation we set K equal to 300 characters, or,
equivalently, 100 compressed bytes.

We have also experimented with the notion of subintervals
of size K* within each interval K. At every KA position within
each K-interval, we record how many instances of each character
we have seen since the beginning of the encompassing interval.
If we limit the size of K to be <28, for example, then the counts for
each letter at every K-interval can be recorded using a single byte.
This allows us to increase the “density” of the counting index by
a factor of K/K” while increasing the space requirements for the
K-interval counts by a factor of only [(K/K”)/4]. We have imple-
mented a variant of our data structure that utilizes this hierar-
chical indexing scheme. Depending on the choices of K and K*,
we have seen a three- to fivefold increase in query execution
speed while maintaining a memory requirement of less than two
gigabytes for the human genome. Full details of this variant are
provided at our Web site (http://mer-engine.cshl.edu).

To further speed the counting process we introduce a final
data structure, the “dictionary-counts”. Recall our simple 3:1
compression scheme, where bytes O through 124 decompress to
“AAA” through “TTT” respectively. The dictionary-counts struc-
ture is a small two-dimensional array that can be thought of as a
matrix with 125 rows and five columns. Each row corresponds to
one of the compression dictionary entries, and each column cor-
responds to each letter of the genome alphabet, A through T. Let
us assume, for instance, that we are in the process of determining

2308 Genome Research
WWW.genome.org

the number of A’s in step 9 of Figure 1B. Using the K-interval
counts structure described above, we can “jump” to within at
most 50 bytes of our current F,, in a single look-up. Let us also
assume that this F,, is pointing to the third “T” in a compressed
“ATT” which is in turn at the 49th byte of the interval. For each
of the 48 preceding bytes, we simply use the byte as the row
number in our dictionary-counts array and the letter of interest,
“A”, as our column “number”. At those coordinates we will find
the number of times that the letter “A” appears in that com-
pressed byte. Therefore we must perform 48 look-ups in this
small directly addressable table. Finally, we must decompress the
49th byte with another simple table look-up, and examine the
first two letters “AT”. The dictionary-counts may seem like a
minor component. However, when it is combined with the K-
interval counts structure, the act of counting any number of
characters requires only K/6 +1 table look-ups, plus two character
comparisons in the worst case. In actuality this structure requires
approximately 65 kilobytes of memory. It is also the data struc-
ture used for the majority of all computations in any single it-
eration of our algorithm.

We refer to the joint data structures and search protocols as
the “mer search engine” or simply the “mer-engine”.

Validation for the Human Genome

The most rigorous way to validate all the data structures and
protocols we have just described is to perform a reverse trans-
form. Starting with the position in the B-W string corresponding
to the last character of a genome, and using the protocols and
data structures just described, one should be able to reconstruct
that genome sequence. However, the N-incomplete transform of
the human genome is not a proper Burrows-Wheeler transform
string, and hence the full genomic string cannot be reconstructed
from it.

Therefore to validate our human mer search engine, we
picked at random a million words of varying lengths, from three
to 1000 characters. We determined the word count and coordi-
nates of each by scanning the genome text. We compared the
word counts with those returned by the “mer search engine”, and
in each instance there was complete concordance. We also re-
ferred to the suffix array to obtain coordinates, and they agreed
perfectly as well.

Performance for Genomes
The time complexity of a query for a particular word is linearly
proportionate to the length of the word and to the size of K for
the K-interval counts. We have tested our implementation on a
Dell PowerEdge 1650 with dual 1GHz Pentium III processors and
4GB of physical memory running Linux. Importing a human
chromosome from disk, annotating with counts of all overlap-
ping words of length 24 (for both sense and antisense), and writ-
ing the results to disk takes an average of 1 min per megabase.
This hardware configuration is now over 2 yrs old, and we expect
significantly faster execution times on machines purchased to-
day. Furthermore, we expect that our “dictionary-counts” data
structure, requiring a mere 65 kilobytes, will take advantage of
the so-called Level 1 cache of present day CPU architectures.
These statistics do not take into account the addition of the sub-
intervals of size k. We have experienced reductions in time re-
quirements of up to fivefold through this simple modification.
The disadvantage of this variant is the additional space require-
ment of roughly 750 MB.

The time required for the preprocessing stage is dominated
by the construction of the suffix array. This operation requires a
sort of all of the cyclical permutations of the genome. Therefore

Annotating Large Genomes With Exact Word Matches

»chr19:52473037-52489036

100

c O 15
i = | 18
Vs @ 21
S | 24
0
0
Repeats
Exons —
NM_001985 exonl
C O 15
i | 13
y O a1
3 | 24
BS 300 as0 1000] 1050 1100] 1150) 1200 1250 1300 ' 1350 1400 1450 1500 1550 150!] 1650
Repeats
Exons T ————
NM_001985 exon2
100
c O 15
75
g | 13
¥ 50 | | O 21
S q “ | 24
i i p 1! : 1 b ...*ﬁ.a_‘, *ﬂ S5
1700 1750 1500 1850 1800 1950 2000 2050 2140 2150 2200 2250 2300 2350 2400 2450 2500
Repeats
MIR
Exong s
NM_001985 exonZ
c O 15
o (= I
: m 21
8 b U = 24
2550 2600 2650 2700 2750 2500 2900 3300 3350
Repeats - -
Charlieb ALuSx LiMALO Aludo LiMALO (CARADN
Exons
100 I | m
¢ 7 l @ 15
oE e , | 18
Noos I b | o 21
A oA R -
| KL LA Tl AL AL A UTEAP N WLl e
3400 3450 3500 3550 3600 3650 3700 3750 3350 4000 4050 4100 4150 4200
Repeats wem = — .
(CARAIN Charlied MER47A Charlie5 Alulb
Exons
100
c O 15
i = | 18
P o o 2t
S i \ | 24
4250 4300 4350 4400 4450 4500 4550 4600 46510 4700 4750 4300 4550 4500 4450 S000 5080
Repeats) ——
Rlulb AluSx Charlie5 L2 L3
Exons

e S)
NM_001985 exon3

Figure 2 Word count terrain from a 5-kb region on chromosome 19. The coordinates of this region in the June 2002 assembly of the human genome
are at the top. Along the x-axis is the relative position of a given word within the region; along the y-axis is the absolute word count, with counts for
different lengths drawn in different colors, according to the legend. Word counts are capped at 100. Underneath the terrain, repeats detected by
RepeatMasker are annotated in orange. Exons from the RefSeq data set are indicated in purple. In this case, the word counts are derived from the June
2002 assembly of the entire human genome.

Genome Research 2309
www.genome.org

Healy et al.

the time complexity of the preprocessing stage in its entirety
reduces to O(n lg n) where n is the size of the genome. For this
process we make use of every node in our cluster, with a total
execution time of approximately 6 h for a single assembly of the
human genome.

Although there are a variety of ways for enhancing perfor-
mance, the operating times both for preprocessing and annota-
tion are reasonable with our current implementation.

Relation to Existing Tools

In the context of genome research, we are inclined to view our
algorithm as a companion to methods or tools built around ap-
proximate homology searching such as BLAST and BLAT. In gen-
eral we found that in pursuits such as repeat discovery and in
particular probe design, our method reduces greater than 98%
of the work to a simple and rapid “scan” operation; namely
that of word-count annotation. The final analysis is then per-
formed using a low-stringency approximate homology search
on a vastly reduced set of “candidate” entities. In our probe de-
sign protocol described below, greater than 99% of our candi-
dates already satisfied our full requirements prior to this final
analysis. In this same sense, and rather appropriately, both of the
approximate homology-based tools mentioned here use exact
matches as their first-pass criteria before performing a more rig-
orous sequence alignment. It is feasible that our data structure
could act as an alternative exact-matching “core” for variants of
these tools.

We find that approximate homology tools alone are insuf-
ficient and impractical in such pursuits when performed at the
whole-genome or multiple-genome scales. BLAST in particular,
we find, tends to greatly multiply the amount of data that must
be processed. For instance, when attempting to design unique
probes within a large subset of the repeat-rich human genome,
many of the candidate regions will have homology among them-
selves as well as within the entire genome. The resulting output
contains the cross-products of these homologies. Furthermore,
the best local alignments are reported, not all alignments. The
output is therefore inadequate as an estimate of possible cross-
hybridization in microarray experiments. BLAT, on the other
hand, sacrifices completeness for speed; it cannot find matches
for sequences that have a number of occurrences above a prede-
termined cutoff. Neither of these tools can readily yield a statistic
that can be used as a measure of predicted cross-hybridization,
such as an aggregate of counts for all constituent 15-mers.

REPuter (Kurtz and Schleiermacher 1999) is an existing pro-
gram which can be used for repeat analysis and discovery as well
as finding areas of uniqueness. It relies on exact pattern matching
algorithms used for the traversal of its underlying data structure,
which is a suffix tree. This program is a complete software solu-
tion for genome research in that it enables one to perform ex-
haustive repeat analysis, detection of unique substrings, and ap-
proximate alignments with statistics, all within a graphical user
environment (Kurtz et al. 2001). Its usefulness in the context of
the entire human genome and beyond, however, is limited due
to tremendous memory requirements necessitated by the reli-
ance on a suffix tree. We provide further detail of this issue in the
following section.

Relation to Existing Data Structures

Our data structure could be described as a compressed index into
a suffix array. The query process is essentially an attempt at a
partial reverse Burrows-Wheeler transform of the query word
within the context of the genome. A necessary component of this
query process is a set of pointers into the suffix array, namely F,,

2310 Genome Research
WWW.genome.org

and L,,, which is carried through each iteration. In this way, the
algorithm is an alternative to performing a binary search using
the entire suffix array along with the entire genome. It is this
freedom from the need to refer to coordinates of suffixes during
search that allows us to achieve our tremendous space reduction.
If there is further interest in retrieving the coordinates of every
exact match, then the suffix array can be accessed as it normally
would be; either from disk or active memory depending on avail-
able resources. It is worth noting, however, that there is a simple
extension to our query algorithm that enables the retrieval of
coordinates for all matches using only a small subset of the entire
suffix array. Because our primary interest lies in the word count
determinations alone, we refer the interested reader to our Web
site for a full description of this extension (http://mer-
engine.cshl.edu). In all comparisons made in this section, we
assume this exclusive interest in word count queries within ge-
nomes.

A binary search through a suffix array can determine the
count ¢ of a word of length p within a genome of length n in O(p
Ig n) time while requiring O(n 1g n) + O(n) bits of storage (Manber
and Myers 1993). In practice, the suffix array for the human
genome of length n > 23! requires a total of 51 bytes of storage;
4n bytes are required for the suffix array itself plus n bytes for the
original string, all of which must be referenced throughout a
search. If the hardware in use does not have sufficient RAM, then
the search procedure is dominated by disk I/O operations. Disk
retrievals are slower than active memory retrievals by many or-
ders of magnitude. Our algorithm can perform a similar word
count query in O(pK) time requiring O[(n/K) 1g n] + O(n) bits of
storage. In practice, our data structures for the human genome
require (1/3 + {20 [n/(K/3)]}) bytes of storage where K is the size of
the intervals in our K-interval counts structure. Herein lies the
versatility of the mer-engine: K can be increased or decreased
depending upon the requirements and available resources. If
RAM is scarce then K can be increased by Q, resulting in a linear
decrease in space requirements and similar increase in execution
times, both proportional to Q.

Another data structure that is commonly used for exact pat-
tern matching is the suffix tree. We refer the reader to Gusfield
(1997) for a detailed description of suffix trees and the many
possible variations on their construction and use in problems of
exact and approximate pattern matching. A suffix tree requires
O(n 1g n) + O(n) bits of storage and O(p) time to perform a word
count for any word of length p which occurs ¢ times within
a genome of length n. Unfortunately these expressions, particu-
larly the space requirement, do not translate directly to expected
performance in modern computer architectures. Recall that
the program REPuter uses a suffix tree as its underlying data
structure (Kurtz and Schleiermacher 1999). The authors of that
program present a method for reducing the space requirements
of a suffix tree (Kurtz 1999), which is used by the REPuter pro-
gram (Kurtz et al. 2001). However, REPuter is said to still require
12.5n bytes of storage for a suffix tree of a genome of length n
(Kurtz and Schleiermacher 1999). This requirement is several
times larger than the complete memory requirements of a suffix
array. It is likely to be prohibitively large for all but the most
expensive hardware platforms when applied to the entire human
genome.

An “opportunistic data structure” based on the Burrows-
Wheeler transform has been described (Ferragina and Manzini
2000) and is referred to as the “FM-Index”. The core search algo-
rithm for the FM-Index is nearly identical to the one described in
our pseudocode and is used to perform word count queries.
Through a very clever compression and indexing scheme, the
FM-Index achieves space requirement bounds of O[(n / 1g n) 1g 1g
n] bits of storage while being capable of performing word count

Annotating Large Genomes With Exact Word Matches

queries in O(p) time for any word of length p within a genome of
length n. This is true given the authors’ assumption that their
variable for the “bucket size” is assigned the value of 1g n. We'll
refer to this parameter hereafter as b. This variable plays a role
similar to that of our variable K in that it subdivides the trans-
form string for better index performance. Note that for K > (lg
2n /1g 1g n) our implementation requires less space. If one in-
creases the value for b beyond 1g n, particularly in the case where
n = 232, they run the risk of dramatically increasing the space
requirements for the FM-Index. More specifically, the structure
referred to by the authors as “S” has space requirements bounded
by the term b2”", where b” is the maximum size of any one of the
(n/ b) compressed buckets and has an upper bound of ¢ Ig n
where ¢ < 1. This means that the actual space requirements are
dependent upon local properties of the transform string. Our
space requirements are dependent only upon K and n (the alpha-
bet size for genomes is negligibly small; however, it is a factor in
practical space requirements for both the mer-engine and the
FM-Index). If one decides to reduce b to avoid this risk, then our
space requirement advantage increases.

The O(p) time complexity for the FM-Index derives from the
fact that within any iteration of the search procedure, where one
iteration is performed for each of the p characters of the query
word, counting is accomplished via look-ups within at least
seven directly addressable data structures. Each of these look-ups
requires constant theoretical time, so their combined time re-
quirement reduces to O(1). Recall the mer-engine variant in
which subintervals of size K*, where K* < K and K < 28 are intro-
duced. Assume, for example, we choose values of K =240 and
K* =15. Then this mer-engine variant would require four table
look-ups plus two character comparisons for each iteration of the
search algorithm in the worst case. We believe this practical
worst-case very nearly approximates a theoretical time complex-
ity of O(p) and has space requirements of roughly 60% of the
original genome size n, including the compressed transform
string, regardless of n. Furthermore, the last four steps of each
iteration are isolated to accessing a structure that requires only 65
kilobytes of memory, again, regardless of n.

We could not locate any performance data for the imple-
mentation of the FM-Index referenced above. However, word
count query performance for the Escherichia coli genome FM-
Index has been analyzed for an implementation variant (Ferra-
gina and Manzini 2001). The mer-engine for the human genome
performs word count queries for words between eight and 15
nucleotides in length ~150 times faster than the E. coli imple-
mentation described therein. This does not take into account the
speed-up that we observe with the introduction of subintervals to
our K-interval counts structure. We believe this discrepancy may
be accounted for by any combination of the following: difference
in CPU clock speed, the fact that not all “buckets” remain in
active memory for the duration of the test, and the requirement,
in this particular variant, of complete decompression of buckets
prior to the final counting stage. The authors Ferragina and Man-
zini (2001) do not mention any specific application of the FM-
Index to genome research.

Alternative algorithms and data structures based on the Bur-
rows-Wheeler transform have been defined (Miller 1996; Sada-
kane 1999). One algorithm relies heavily upon an additional
“transformation matrix” which maps a character’s position in
the sorted list of all characters to its new position in the trans-
form string (Miller 1996). The challenge with this strategy is find-
ing a succinct way to store this transformation matrix, which
starts out at exactly the same size as the suffix array for the same
string. The other algorithm is simply a compressed form of a
suffix array, which is entirely decompressed before performing a
search (Sadakane 1999).

Availability

Our code for executing the Burrows-Wheeler transform is highly
platform-dependent. That is to say, it was optimized for our par-
ticular cluster configuration and will likely require revision for
general use. However, this code will be made available upon re-
quest, and all the information required for building the BWT is
provided in the text above. To accommodate readers who wish to
perform mer analyses without having to perform the Burrows-
Wheeler transform, several preprocessed mer-engines are avail-
able. We have placed the BWT of the genomic strings for S.
pombe, C. elegans, and Fugu rubripes, as well as the N-incomplete
BWT of the June 2002 assembly of the genomic string for human
chromosome 1 and the entire genome, and their auxiliary data
structures, on our public Web site (http://mer-engine.cshl.edu)
for downloading. Additionally, we have supplied C++ code that
enables mer frequency queries from any of these strings residing
either on disk or in RAM, and have provided the Perl code for
visualizing the resulting C++ output (Fig. 2).

RESULTS AND DISCUSSION

Annotating Sequences With Word Counts

Using the above tools, any region of the genome can be readily
annotated with its constituent mer frequencies. We have de-
picted annotations of a 5-kb region of chromosome 19 as a his-
togram in Figure 2, using four mer lengths, 15, 18, 21, and 24
bases. We call such annotations “terrains”. For each coordinate
and each word length, we determined the count of the succeed-
ing word of the given length, in both the sense and antisense
directions. We then plotted these counts on the y-axis, with each
pixel on the x-axis corresponding to a coordinate. The heights of
counts exceeding 100 are truncated, and each word length is
color-coded (see Fig. 2 legend).

This region was picked somewhat arbitrarily, but it illus-
trates some major themes. We have taken repeat and exon an-
notations of this region from the human genome browser at
UCSC (Karolchik et al. 2003) and aligned them to our terrain.
There is significant discordance between annotated repeats and
high terrain. We note that several regions annotated as repeats by
the UCSC browser in fact have very low word counts, even with
15-mers. This is not unexpected, as our method is based on exact
matches, and some repeats are very ancient and highly diverged.
The relatively unique regions within repeats may nevertheless be
useful for probe design, and the exact count method readily finds
such regions.

To us, one of the most striking features of the terrain is the
presence of narrow spikes in 15-mer counts. This is a virtually
universal property of all regions of the human sequence we have
examined, including coding exons. To develop a better under-
standing of this phenomenon, we decided to examine what the
word count annotation of this region would look like if the ge-
nome were instead a randomly generated sequence, but with the
same size and dinucleotide frequency distribution as the human
genome. The terrain is still rough, but there are very few spikes.
We hypothesize that these spikes result from the accidental co-
incidence of 15-mers in ordinary sequence with 15-mers present
in high-copy-number repeats. Such high-copy-number se-
quences are not as frequently found in a random genome.

Computations on Subsets of the Genome

We also encounter regions of high terrain that are not annotated
as repeats by RepeatMasker (http://ftp.genome.washington.edu/
RM/RepeatMasker.html). RepBase (Jurka 2001), the database of
repeats used by RepeatMasker, does not include region-specific or
chromosome-specific repeats. With our method, such repeats are

Genome Research 2311
www.genome.org

Healy et al.

A

>chrl:146530257-146546087

100

c O 18gen
5
o H 18chrl
N
T 50
S
25
4250 4300 4350 4400 4450 500 4550 as00 4650 4900 4950 sh0n 5050
Repeats
Exons E—
NM_015383 18
100
c O 18gen
P H 18chrl
N
L U
s
25
5100 51510 5200 5250 5300 5350 5400 5450 5500 5750 5500 5550 5900
Repeats —
o GA-rich
Exons
NM_015383 17
100
c O 18gen
R H 18chrl
N
TS
s
25
5950 8000 = 6100 5150 G200 6250 = 6351 Ge00 4650 6708 6750
Repeats
Exons —
NIM_015383 16
c O 18gen
8 W 18chrl
N
T
s
6500 6350 &300 6950 7000 7050 7100 7450 7500
Repeats
Exons
NM_015383 15
100
c O 18gen
75
g B 18chrl
N
T8
s
25
7650 8300 #5850
Repeats
Exons I []
NM_015383 14 NM_015363 13
C O 18gen
a E 18chrl
N
T
s
a500 8550 |900 91510 9200 300
Repeats — —_—
P (GAIN CT-rich
Exons

NM_045383 13

Figure 3 (Continued on facing page)

2312 Genome Research
www.genome.org

—
NM_015383 12

Annotating Large Genomes With Exact Word Matches

UCSC Genome Browser on Human June 2002 Freeze

move <<<| <<| < | > | >> |>>> |zoom in 1.5x| 3x | 10x|zoom out 1.5x| 3x ‘ 10x|

position [chr1:1-246874334

size 246,874,334 image width [800 _jump |

Base Position S0080000]

family | 1

J RepeatMasker G

1600088000]
one family of chromosome specific repeats

‘ ! RefSeq Genes
= rRefsec Genes [l | INNET T CIRELCO0D TR 10NN WONU 10 NOUE N D IIIIRII NIRRT DR

epeating Elements by RepeatMasker

156000006] 200600060

O COTDS SIS, (FOVURN VSRRT O AN N OO TN NN T

Figure 3 A chromosome 1-specific region. (A) This region was selected in the following way: 18-mers were identified whose chromosome 1 counts
were =90% of their whole genome counts. These 18-mers were strung together to create “chromosome-specific repeats” as long as the space between
them was less than 100 bp. At the top of the figure are the coordinates of this region in the June 2002 assembly. Along the x-axis is the relative position
of a given 18-mer within these coordinates. Along the y-axis is the absolute word count, with whole-genome counts drawn in gray and chromosome
1 counts in blue. Word counts are truncated at 100. Underneath the terrain, repeats detected by RepeatMasker are annotated in orange. Highlighted
in purple are RefSeq exons that overlap this region from RefSeq gene NM_015383. (B) The chromosome-wide distribution of this family of chromosome-
specific repeats, as viewed in the UCSC Genome Browser. The entire length of chromosome 1 is shown, with the purple “family” track indicating
recurrences of this repeat. Below the family track are tracks that indicate both the positions of RefSeq genes and RepeatMasker annotations along

chromosome 1.

easy to find because exact match counting can form the basis for
a set algebra of the genome. In particular, we can make transform
strings from subsets of the genome and examine the partition of
words between these sets. Here we illustrate the use of this con-
cept to find chromosome-specific repeats.

We made a transform string from chromosome 1 and anno-
tated it with the word counts from itself and from the entire
genome. We then looked for contiguous regions of chromosome
1, at least 100 bp in length, with high 18-mer counts in which the
exact matches were found to derive mainly from chromosome 1.
We readily found such regions, ranging in length from 100 bp to
35 kb. Focusing on one such region, we observed that its mer
terrain was nearly a step function, composed of shorter se-
quences each with a signature modal frequency and length. We
collected all of the chromosome-specific regions containing one
of these signature regions and quickly identified a family of chro-
mosome 1-specific sequences. Figure 3A illustrates the mer ter-
rain for a portion of one of these family members; Figure 3B
portrays the location of its recurrences on chromosome 1. At
least one instance of this repeat has been annotated as overlap-
ping a RefSeq gene (accession no. NM_015383), with many exons
that together encode a large predicted protein sequence having
low homology to myosin.

This is the first such repeat that we have investigated in any
depth, and we expect to find other examples that merit atten-
tion. The same process by which we identify chromosome-
specific repeats can be applied to finding repetitive DNA
throughout the genome that is not recognized by RepeatMasker
or other programs. One merely creates a mer-engine from the
subsets of repeat sequences recognized by any pre-existing repeat
analysis software of choice, and compares annotations from the
whole genome mer-engine and the known repeat mer-engine to
find unknown repeats.

Probe Design

Probes are generally useful for their ability to hybridize specifi-
cally to complementary DNA, and therefore one of the primary
objectives in probe design is to minimize cross-hybridization.
Some investigators have used repeat masking to exclude repeat
regions from consideration for probe design. As we have de-
scribed above, this is not a perfect solution, in that it does not
protect the investigator from all regions that are repetitive, for

example, chromosome-specific repeats, and it excludes “repeti-
tive” regions that are quite unique in actuality.

Although the rules for hybridization between imperfectly
matched sequences are not well understood, it is clearly sensible
to avoid probes that have exact “small” matches to multiple re-
gions of the genome. Using a directly addressable data structure,
such as a hash table, it would be a simple matter to store and
retrieve counts for words as large as 14-mers. We could then
attempt to minimize aggregate exact 14-mer match counts, but
for genomic probes we think this method is inadequate. First, it
is unclear that exact matches of 14-mers have any effect on hy-
bridization under normally stringent annealing conditions. Nor
do 14-mer counts predict homology, let alone uniqueness in the

Table 1. Size Distribution of Fragments Lost Between
Assemblies of Chromosome 10
Length of
Fragment largest Percentage of
length Percentage fragment in interval
interval (bp) of total interval (bp) remapped
30-100 54 99 21
101-200 8 199 29
201-400 15.5 400 16
401-800 15.5 797 14
801-1600 53 1507 20
1601-3200 0.5 3008 100
3201-6400 0.6 5789 100
6401-12800 0.5 12293 100
12800+ 0.1 21104 100

The fragments included in this distribution were chosen in the fol-
lowing way: the December 2001 assembly of Chromosome 10 was
annotated with 18-mer counts within the entire December 2001 as-
sembly as well as within the June 2002 assembly. We stored the
coordinates of runs of at least 13 consecutive 18-mers whose counts
transitioned from 1 to 0 between assemblies. These 18-mers were
further clustered into “dropout fragments” as long as the gaps be-
tween them were not greater than 100 bp, and no more than 35% of
the fragment length was composed of gaps. A homology search using
BLAST was performed to compare the dropout fragments with the
vector database; no homology to vector sequence was found. Ap-
proximately 800 dropout fragments were found, ranging from 30 bp
to 21 kb in length with a combined length of approximately 300 kb.

Genome Research 2313
Www.genome.org

Healy et al.

genome. We have compared 16-mer counts to the geometric
mean of counts from their constituent 14-mers, and we do not
see a good correlation between the two for sequences that are
essentially unique (data not shown).

We propose the following general protocol for probe design.
First, choose the shortest length such that when the genome is
annotated with mer-counts of exact matches of that length, suf-
ficiently long stretches of uniqueness are found. Second, choose
a shorter length such that exact matches of that length represent
stable hybrids under the appropriate stringency conditions.
Then, from the regions judged to be unique at the first length,
choose probes that minimize the aggregate mer-counts of the
second length. This protocol can be executed using the mer-
engine tools we described in the previous section.

We followed this protocol in the accompanying article to
select 70-mer probes from small BglIl fragments (Lucito et al.
2003). We required uniqueness in the space of 21-mer counts,
and then within these regions selected a 70-mer with the lowest
sum of 15-mer counts, with a cut-off value of about 900. We
added a few additional requirements, to eliminate runs of single
nucleotides and severe base composition bias. Almost all probes
picked by these protocols, and synthesized and printed on glass,
in fact performed well under our microarray hybridization con-
ditions.

We used BLAST to test whether probes picked by this pro-
tocol are indeed unique in the published genome sequence. We
queried 30,000 such probes against the genome using the default
parameters for MegaBLAST (filtration of simple sequence was
turned off). More than 99% of our probes were unique over their
entire length. However, for completeness, we suggest adding a
final step to the probe design protocol, whereby all remaining
candidates are subjected to a low-stringency approximate homol-
ogy search against the genome in a best-first order.

Monitoring Genome Assemblage

As the human genome project progresses, new assemblies, based
on freezes, are periodically released. We assume that each new
assembly is an improvement upon the ones that came before.
Because our probes derive from the December 2001 and April
2002 assemblies, downloaded from the UCSC Genome Browser,
we have remapped the probe set to subsequent assemblies using
BLAST and BLAT (Kent 2002). We also annotate them with the
mer-engine built from each assembly because we have greater
confidence in the hybridization ratios found for probes with
stable copy number and map location.

An unexpected result of this process was that 1.2% of our
probes vanished from the June 2002 assembly. That is to say that
for 1.2% of our probes, all of their constituent 21-mers went from
copy number one in their original assembly, to copy number zero
in a subsequent assembly. Yet these probes behave as expected in
our microarray experiments: They have good signal and hybrid-
ize to fragments with the restriction endonuclease profile pre-
dicted from their original assembly (Lucito et al. 2003).

Our surprise at this outcome prompted us to investigate the
extent of this phenomenon on a larger scale. The mer-engine is
the appropriate tool for this exploration. We decided to look for
all unique sequences within a single chromosome within an as-
sembly that were lost between that assembly and a subsequent
one.

In particular, we annotated all of chromosome 10 from the
December 2001 assembly with genomic 18-mer counts from
both the original assembly and the June 2002 assembly. We ob-
served a large number of n-to-m transitions in 18-mer counts,
where “n-to-m transitions” refers to a mer that went from n cop-
ies in the original assembly to m copies in the subsequent assem-

2314 Genome Research
WWW.genome.org

bly. Although we describe the 1-to-0 transitions in this report, we
note that they represent a small percentage of all transitions. We
call 18-mers with 1-to-0 transitions “orphans”. We stored the
coordinates of runs of at least 13 consecutive orphans. We fur-
ther clustered the orphans into “dropout fragments” as long as
the gaps between them were not greater than 100 base pairs, and
no more than 35% of the fragment length was composed of gaps.

We performed a homology search, using BLAST, to compare
the dropout fragments with the vector database to eliminate any
possible vector contaminants from our set. No homology to vec-
tor sequence was found. In total we found approximately 800
dropout fragments ranging from 30 bp to 21 kb in length, with a
combined length of approximately 300 kb. Table 1 provides a list
of the size distribution of the fragments.

At the time of this writing, we were able to perform a re-
mapping of the fragments to the April 2003 assembly, and the
percentage of fragments that returned to the assembly are pro-
vided. Although some returned, we found that new orphans were
also created (data not shown). The coordinates of the dropout
fragments in the original December 2001 assembly are available
on our Web site.

We assume that many of the dropout fragments are indeed
human sequence: They behave that way in our hybridization
experiments; they have no homology to vector sequences; and
some are conserved in mice. Although there may be technical
reasons explaining the dropout of some of these fragments, such
as difficulty in assembly or poor-quality sequence, it is also likely
that, due to insertion/deletion and order-of-sequence polymor-
phisms in humans, no fixed linear rendition of the genome is
feasible. It may initially strain credulity that a 21-kb region can
be polymorphic, but such large-sized events have been docu-
mented (Robledo et al. 2002), and the data from our accompa-
nying paper strongly suggest that much larger copy number
polymorphisms are commonplace in the human gene pool (Lu-
cito et al. 2003).

ACKNOWLEDGMENTS

This work was supported by grants and awards to M.W. from the
NIH and NCI (5R01-CA78544; 1R21-CA81674; 5R33-CA81674-
04), Tularik Inc., 1 in 9: The Long Island Breast Cancer Action
Coalition, Lillian Goldman and the Breast Cancer Research Foun-
dation, The Miracle Foundation, The Marks Family Foundation,
Babylon Breast Cancer Coalition, Elizabeth McFarland Group,
and Long Islanders Against Breast Cancer. M.W. is an American
Cancer Society Research Professor. E.T. is a Farish-Gerry Fellow of
the Watson School of Biological Sciences and a predoctoral fel-
low of the Howard Hughes Medical Institute.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.

REFERENCES

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990.
Basic local alignment search tool. J. Mol. Biol. 215: 403-410.

Burrows, M. and Wheeler, D.J. 1994. A block sorting lossless data
compression algorithm. Technical Report 124, Digital Equipment
Corporation, Palo Alto, CA.

Ferragina P. and Manzini G. 2000. Opportunistic data structures with
applications. In 41st IEEE Symposium on Foundations of Computer
Science, pp. 390-398.

. 2001. Experimental study of an opportunistic index. In
Proceedings 12th ACM-SIAM Symposium on Discrete Algorithms, pp.
269-278.

Gusfield, D. 1997. Algorithms on strings, trees, and sequences. Cambridge
University Press, NY.

Jurka, J. 2001. Repbase update: A database and an electronic journal of
repetitive elements. Trends Genet. 16: 418-420.

Karolchik, D., Baertsch, R., Diekhans, M., Furey, T.S., Hinrichs, A., Lu,
Y.T., Roskin, K.M., Schwartz, M., Sugnet, C.W., Thomas, D.J., et al.

Annotating Large Genomes With Exact Word Matches

2003. The UCSC Genome Browser Database. Nucl. Acids Res.
31: 51-54.

Kent, W.J. 2002. BLAT—The BLAST-like alignment tool. Genome Res.
12: 656-664.

Kurtz, S. 1999. Reducing the space requirement of suffix trees.
Software—Practice and Experience 29: 1149-1171.

Kurtz, S. and Schleiermacher, C. 1999. REPuter: Fast computation of
maximal repeats in complete genomes. Bioinformatics 15: 426-427.

Kurtz, S., Choudhuri, J.V., Ohlebusch, E., Schleiermacher, C., Stoye, J.,
and Giegerich, R. 2001. REPuter: The manifold applications of repeat
analysis on a genomic scale. Nucleic Acids Res. 29: 4633-4642.

Li, F. and Stormo, G.D. 2001. Selection of optimal DNA oligos for gene
expression arrays. Bioinformatics 17: 1067-1076.

Lucito, R., Healy, J., Alexander, J., Reiner, A., Esposito, D., Chi, M.,
Rodgers, L., Brady, A., Sebat, J., Troge, J., et al. 2003. Microarray
analysis of genome copy number variation. Genome Res. (this issue).

Manber, U. and Myers, E-W. 1990. Suffix arrays: A new method for
on-line string searches. Proc. 1st ACM-SIAM SODA, 319-327.

Miller, J.W. 1996. Computer implemented methods for constructing a
compressed data structure from a data string and for using the data
structure to find data patterns in the data string. United Sates Patent

6,119,120, Microsoft Corporation.

Pearson, W.R. and Lipman, D.J. 1988. Improved tools for biological
sequence comparison. Proc. Natl. Acad. Sci. 85: 2444-2448.

Robledo, R., Orry, S., Sidoti, A., Muresu, R., Esposito, D., Grimaldi, M.C,,
Carcassi, C., Rinaldi, A., Bernini, L., Contu, L., et al. 2002. A 9.1-kb
gap in the genome reference map is shown to be a stable
deletion/insertion polymorphism of ancestral origin. Genomics.

80: 585-592.

Sadakane, K. 1999. A modified Burrows-Wheeler transformation for
case-insensitive search with application to suffix array compression.
In DCC: Data Compression Conference, IEEE Computer Society TCC,
Snowbird, UT.

WEB SITE REFERENCES

http://ftp.genome.washington.edu/RM/RepeatMasker.html; Smit, A.F.A.
and Green, P., RepeatMasker documentation.

Received March 19, 2003; accepted in revised form August 1, 2003.

Genome Research 2315
www.genome.org

