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Abstract

Protein farnesylation and geranylgeranylation, together referred to as prenylation, are lipid post-

translational modifications that are required for the transforming activity of many oncogenic

proteins, including some RAS family members. This observation prompted the development of

inhibitors of farnesyltransferase (FT) and geranylgeranyltransferase 1 (GGT1) as potential

anticancer drugs. In this Review, we discuss the mechanisms by which FT and GGT1 inhibitors

(FTIs and GGTIs, respectively) affect signal transduction pathways, cell cycle progression,

proliferation and cell survival. In contrast to their preclinical efficacy, only a small subset of

patients responds to FTIs. Identifying tumours that depend on farnesylation for survival remains a

challenge, and strategies to overcome this are discussed. One GGTI has recently entered the clinic,

and the safety and efficacy of GGTIs await results from clinical trials.

Interest in developing inhibitors of farnesylation as anticancer drugs was prompted by the

realization more than 20 years ago that a sizable proportion of some, but not all, human

cancers harbour activating oncogenic mutations in the RAS genes (between 8% and 93%,

depending on the tumour type)1, and that RAS GTPases require this lipid post-translational

modification (PTM) for their malignant transforming activity2. Furthermore, many of the

signal transduction pathways that are activated by RAS involve proteins that require
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farnesylation or geranylgeranylation (together referred to as prenylation) for their ability to

mediate tumour cell survival, growth, proliferation, migration and metastasis (FIG. 1). This,

coupled with the fact that it has notoriously been difficult to design small GTPase inhibitors

per se3, prompted a global quest to develop farnesyltransferase (FT) inhibitors (FTIs) and

geranylgeranyltransferase 1 (GGT1) inhibitors (GGTIs) (together referred to as

prenyltransferase (PT) inhibitors (PTIs)) as potential anticancer drugs.

Preclinical studies in the 1990s demonstrated that FTIs are highly successful in killing

cancer cells in vitro and in animals with very little toxicity, thus generating much excitement

and raising the hope that, finally, a RAS inhibitor may be developed as a novel anticancer

drug. Contrary to expectations, however, responses to FTIs, whether in cells, animals or

human patients, do not seem to depend on RAS mutations; and the inhibition of KRAS

farnesylation leads to its geranylgeranylation (discussed below). Furthermore, in most

clinical trials FTIs have not been as successful as expected, with no survival advantages, for

example, to patients with advanced solid cancers4–6 or with acute myeloid leukaemia

(AML)7. However, monotherapy with FTIs demonstrates antitumour activity in a subset of

cancer patients, particularly those with haematological malignancies, whereas combinations

of FTIs with cytotoxic agents improve the responses of patients with locally advanced breast

cancer or other advanced solid tumours8–11. At present, we do not understand why some

tumours are resistant while others are sensitive to FTIs. Clearly, the identification of the

farnesylated proteins the inhibition of which is responsible for the antitumour effects of FTIs

will lead to a better understanding of their mechanism of action and to the selection of

patients whose tumours are sensitive to FTI treatment.

GGTIs as potential anticancer agents were developed for several reasons. First, KRAS

(predominantly the alternatively spliced KRAS4B variant), which is the most frequently

mutated isoform of RAS1, and NRAS become geranylgeranylated and remain fully

functional when cells are treated with FTIs12–15. Second, in some human malignancies, such

as pancreatic cancer with KRAS mutated in 90% of patients1, pathways that are mediated by

geranylgeranylated proteins downstream of RAS, such as RALA and RALB, may be more

relevant to oncogenesis than those mediated by MEK or AKT16,17. Third, the exclusively

geranylgeranylated RHOC has an essential role in metastasis18,19. Fourth, the small

GTPases cell division cycle 42 (CDC42) and RAC, which are exclusively

geranylgeranylated, are crucial downstream targets for RAS-dependent transformation in

rodent fibroblasts20,21. Furthermore, RAC1 is required to induce KRAS-driven lung cancer

in mice22. Thus, GGTIs should be more efficient in cancer cells that are addicted to

geranylgeranylated proteins, whereas FTI–GGTI combinations or dual prenylation inhibitors

might be required to combat KRAS-dependent human tumours23. Similar to FTIs, GGTIs

have shown promising results in vitro and in animal models, and one GGTI (GGTI-2418)

has recently entered Phase I clinical trials24.

A better understanding of the aberrant signalling pathways that a given tumour is addicted to

and the effects of PTIs on these pathways will lead to strategies that exploit the

vulnerabilities of individual tumours and ultimately to predicting which patient populations

are most likely to respond to PTIs, either alone or in combination. Work has begun in

pursuing this goal with the identification of a two-gene expression ratio that potentially
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predicts the response of patients with AML to the FTI tipifarnib (also known as

R115777)25,26 (discussed below).

General aspects of protein prenylation

The importance of FT and GGT1 for normal physiology and tumorigenesis: lessons from
knockout mice

The biochemistry of prenylation and pioneering findings in the field of prenylation research

are summarized in BOX 1 and the TIMELINE, respectively. Protein prenylation is required

for the membrane localization of otherwise cytosolic proteins. Studies in yeast27 and

mammalian cells28 suggest that protein prenylation is also required for the normal function

of at least some proteins. Additionally, defective prenylation has been attributed to the

pathogenesis of several diseases other than cancer (BOX 2) Contemporary reviews have

estimated that several hundred proteins are subject to prenylation29,30. Therefore, the

inhibition of FT activity probably prevents many proteins from functioning properly, and it

is perhaps not surprising that genetic disruption of the catalytic FT β-subunit (Fntb) in mice

causes embryos to die very early in development31 (TABLE 1). Whether the constitutive

ablation of GGT1 activity in mammals is also embryonically lethal has not yet been

determined. However, studies conducted in Saccharomyces cerevisiae32, Drosophila

melanogaster33 and mouse embryonic fibroblasts34, as well as the fact that more proteins

are geranylgeranylated than are farnesylated35, suggest that GGT1 function is essential for

survival and development, and that the functions of FT and GGT1 are not redundant.

More interesting in this context are the results obtained with conditional PT deletions. The

first such study by Barbacid and colleagues31 suggested that FT is not required for tumour

initiation in mice, either in mice developing KRAS-G12V-induced lung adenocarcinoma or

in mice subjected to carcinogen-induced skin carcinoma, but that it is required for tumour

progression and maintenance31. The study also suggested that adult mice lacking Fntb show

normal tissue homeostasis except for slight defects in wound healing or liver regeneration.

Finally, in these conditional FT-knockout mice, the authors suggested that wild-type HRAS

still associates with cellular membranes31. Recently, these unexpected results have been

called into question by Yang et al.36 who re-analysed the conditional Fntb-null allele

generated by the Barbacid laboratory: it produced a transcript that encoded a protein with a

short in-frame deletion rather than, as expected, a transcript with a frameshift mutation that

resulted in a true null allele. Thus, the results described above may have been due to a

‘leaky’ null allele that permitted the expression of partially active FT.

Two other recent studies by Bergo and colleagues have shown that conditional Fntb

deficiency37 or conditional Pggt1b (which encodes the catalytic β-subunit of GGT1)

deficiency34 reduces the formation of KRAS-G12D-induced lung cancer in mice.

Furthermore, simultaneous knockout of both Fntb and Pggt1b has a far greater effect on

KRAS-G12D-induced lung tumour onset and progression than either deletion alone37. Also,

loss of both Fntb and Pggt1b significantly extends the lifespan of mice that express

activated KRAS-G12D in their lungs, which validates FT and GGT1 as important targets for

cancer therapy. In contrast to the earlier study by Barbacid et al.31, Bergo and colleagues
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demonstrated that Fntb transcripts were not detectable, and HRAS does not associate with

cell membranes in the absence of FT37, confirming earlier cell-based studies.

Bergo and colleagues have also recently described the effect of GGT1 deficiency in the

haematopoietic system38. Mice harbouring an inducible KrasG12D oncogene in

haematopoietic cells develop a lethal myeloproliferative disease (MPD), and up to one-third

also develop acute lymphoblastic leukaemia (ALL). Whereas the absence of GGT1

markedly reduced the severity of MPD, it had no effect on ALL38. As KRAS can be

farnesylated in the absence of GGT1, the antitumour effects of GGT1 depletion with regards

to MPD can be attributed to defective prenylation of other GGT1 targets38 that are

downstream of KRAS, such as RALA and RALB.

Regulation of PTs

Given the importance of PTs, it is surprising that their regulation in response to external

signals has not been investigated in great detail. The α-subunit of FT and GGT1, FNTα, has

been shown to be phosphorylated in a transforming growth factor-β (TGFβ)-dependent

manner, which either does not affect39 or decreases FT activity40. FNTβ was also shown to

be phosphorylated41, raising the possibility that both of these events are necessary to

modulate FT activity. Furthermore, insulin stimulates activating phosphorylation of FNTα
by a member of the RAF1–MEK–MAPK pathway42.

FNTα is cleaved by caspase 3 during apoptosis43, suggesting that some signals may induce

apoptosis by indirectly inhibiting the prenylation and the function of proteins that are

involved in cell survival. Interestingly, dietary fish oil, which contains high levels of Ω3

polyunsaturated fatty acids, inhibits the expression of FT and colon tumorigenesis in rats44,

which is consistent with the observation that FT activity is increased in human colon

cancer45. These findings also raise the possibility that FTIs may function as

chemopreventive agents, an idea that has received experimental support in mouse models of

lung cancer46,47.

Mechanism of action of FTIs

The observation that FT and GGT1 may be dispensable for adult tissue homeostasis, but

may be required for KRAS-driven tumorigenesis34,37, further validated the concept of

developing PTIs as novel anticancer drugs. Several strategies, including structure-based

drug design and high-throughput screens, were used to identify a variety of PTIs (see

Supplementary information S1 (table) for structures and potencies of representative

compounds).

Depending on the context, the treatment of cancer cells with FTIs results in the induction of

apoptosis, cell cycle arrest and the inhibition of anchorage-dependent and anchorage-

independent cell proliferation, cell migration and angiogenesis (see Supplementary

information S2 (table)). The exact mechanisms by which FTIs induce the antitumour effects

described above are unknown mainly because the identity of the crucial farnesylated

proteins, the inhibition of which mediates these FTI effects, is unknown (discussed further
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below). However, several studies have shown that FTIs affect oncogenic and survival signal

transduction pathways, which can explain some of their antitumour effects.

Cell proliferation

FTIs inhibit signalling pathways that are involved in anchorage-dependent and anchorage-

independent proliferation. In well-defined systems in which mutant HRAS drives the

transformation of NIH3T3 cells, FTIs inhibit the farnesylation of HRAS, prevent its

association with the plasma membrane, inhibit downstream signal transduction pathways

such as RAF–MEK–MAPK48 and inhibit tumour growth15. In human tumour cell lines with

multiple genetic alterations, FTIs inhibit PI3K–AKT signalling, particularly in ovarian and

pancreatic cancer cells that overexpress AKT2 (REF. 49), although this seems to be context-

specific, as, in lung cancer cells with low or undetectable levels of phospho-AKT, lonafarnib

(also known as SCH66336)-induced apoptosis does not rely on AKT inhibition50. In nude

mice, many FTIs inhibit the growth of human tumours harbouring a variety of genetic

alterations, including KRAS mutations, TP53 deletions and silenced cyclin-dependent kinase

inhibitor 2A (CDKN2AINK4A)51. Similarly, in transgenic mice that express mutant KRAS or

that overexpress wild-type NRAS, FTIs only inhibit tumour growth and do not induce

tumour regression52,53. However, in mutant Hras-transgenic mice, FTIs cause tumour

regression (see below) (see Supplementary information S3 (table)).

Cell cycle progression

FTIs primarily accumulate cells at prometaphase by preventing bipolar spindle formation

and chromosome alignment54,55, which may rely on the inhibition of the farnesylation of the

centromere-associated protein E (CENPE) and CENPF56,57, as well as phosphatase of

regenerating liver (PRL) protein tyrosine phosphatases (PTPs)58. However, in some human

cancer cell lines FTIs can induce G1 phase arrest. For example, L-744,832 induces p21

accumulation and inhibition of RB phosphorylation59. Similarly, in Rat1 fibroblasts

transformed with HRASG12V, the FTI HR-12 causes the accumulation of p27, which results

in the inhibition of cyclin-dependent kinase 2 (CDK2) and subsequent G1 arrest60. This

compound inhibits both anchorage-dependent and anchorage-independent cell growth and

blocks cell motility in wound healing assays. Rat1 cells transformed with myristoylated

HRASG12V are resistant to HR-12 (REF. 60), indicating that the inhibition of HRAS

farnesylation is responsible for HR-12 effects.

Apoptosis

FTIs cause breast tumour regression very effectively in mutant Hras-transgenic mice61 that

express Myc or that lack Trp53, but not in Erbb2-transgenic mice62, suggesting that these

drugs may induce apoptosis, which was confirmed by studies in cultured cells. For example,

FTIs inhibit integrin-mediated and growth factor-mediated activation of the PI3K–AKT

pathway, which results in the dephosphorylation of AKT substrates, including the pro-

apoptotic BCL-2 family member BCL-2 antagonist of cell death (BAD), which leads to its

activation. In this setting, overexpression of constitutively active AKT2 rescues FTI-induced

apoptosis49. However, in other cells, FTIs induce apoptosis only when deprived of growth

factors or of substratum attachment, suggesting that growth factors and integrins can rescue
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FTI-induced apoptosis63–65. FTIs can also induce apoptosis by enhancing death receptor

signals66 or by inhibiting nuclear factor-κB (NF-κB)-dependent induction of cyclin D1,

survivin, inhibitor of apoptosis proteins (IAPs) and BCL-2 (REF. 67). Another FTI that has

been explored in preclinical and clinical studies, BMS-214662, has pro-apoptotic activity

and induces tumour regression in nude mouse xenografts, but this seems to be related to the

inhibition of GGT2 and not FT or GGT1 (REF. 68).

Angiogenesis

Lonafarnib inhibits angiogenesis in lung and head and neck tumour cells by decreasing

hypoxia and insulin-like growth factor 1 (IGF1)-stimulated hypoxia inducible factor 1α
(HIF1α) expression69. This study also showed that lonafarnib inhibits vascular endothelial

growth factor A (VEGFA) production by inhibiting HIF1α binding to heat shock protein 90

(HSP90), which results in the degradation of HIF1α. Consistent with this, other FTIs, such

as L-744,832 (REF. 70) and tipifarnib71, affect angiogenesis, possibly by inhibiting HIF1α
expression and hypoxia. Finally, another FTI, LB42708, inhibits angiogenesis, possibly by

inhibiting pathways that are mediated by MAPK and AKT72.

Combinations

In cell culture, structurally unrelated FTIs can enhance the growth inhibitory and apoptotic

effects of radiation73, taxanes74,75, cisplatin76,77, 5-fluorouracil78, MEK inhibitors79, CDK

inhibitors80 and the breakpoint cluster region (BCR)–ABL inhibitor imatinib (also known as

STI-571)81. In nude mouse xenografts, beneficial combinations have been reported for

lonafarnib and cytotoxic agents such as cyclophosphamide, 5-fluorouracil, vincristine82 and

paclitaxel83, or for FTI-2148 and paclitaxel, cisplatin and gemcitabine84. We have recently

found that a combination of tipifarnib and the inhibitor of AKT activation triciribine

phosphate (TCNP)85 (but not the single agents alone) causes breast tumour regression in

Erbb2-transgenic mice86.

Several studies by Giannakakou and colleagues have recently provided a mechanistic

explanation for the commonly observed synergy between FTIs and taxanes. First, they

showed that lonafarnib in combination with paclitaxel enhances tubulin acetylation more

than the effect of either drug alone, and that this is due to the inhibition of histone

deacetylase 6 (HDAC6)87, an enzyme that functions as a tubulin deacetylase and that is

involved in stress response, microtubule stability and cell migration. FTIs increase the

amount of microtubule-bound paclitaxel, even in cells that are resistant to paclitaxel alone,

and this is dependent on functional HDAC6 (REF. 88). Finally, FT and HDAC6 physically

associate with each other at microtubules, and FTIs induce the dissociation of FT from

microtubules, resulting in the inhibition of HDAC6 activity, an effect that was duplicated by

stable knockdown of FNTα using short hairpin RNA (shRNA)89. Most interestingly,

HDAC6 does not contain a carboxy-terminal CaaX motif and is thus a very unlikely FT

substrate. It is possible that other FT targets that are present in the microtubule–protein

complex mediate FT regulation of HDAC6.
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GGTI effects in cultured cells and in vivo

Similar to FTIs, GGTIs induce apoptosis and inhibit tumour cell growth, both in cultured

cells and in animal models (see Supplementary information S3 (table)). In contrast to FTIs,

GGTIs result in G1 arrest and not mitotic arrest90. Their ability to induce G1 arrest may be

due to inducing the expression of the CDK inhibitors p21 and p27, inhibition of CDK2 and

CDK4, and hypophosphorylation of RB91. GGTIs induce the accumulation of p27 in the

nucleus through the inhibition of CDK2-mediated phosphorylation of Thr187 in p27, and

this is important for their ability to induce tumour cell death92. Tamanoi and colleagues

recently described P61-A6, a GGTI that causes G1 arrest, probably (at least in part) by

inhibiting RHOA geranylgeranylation and inducing p21 expression (REFS 93,94).

Furthermore, GGTI-induced apoptosis may also depend on their ability to reduce the levels

of phosphorylated and thus activated AKT and survivin95. GGTIs can also induce apoptosis

by increasing death receptor 5 (DR5; also known as TNFRSF10B) expression, decreasing

cellular FLICE-like inhibitory protein (cFLIP; also known as CFLAR) expression and

enhancing TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human

non-small-cell lung cancer (NSCLC) cells96. In addition, GGTIs inhibit platelet-derived

growth factor (PDGF)-stimulation of PDGF receptor (PDGFR)-mediated tyrosine

phosphorylation and MAPK signalling, suggesting that PDGFR phosphorylation is mediated

by a GGT1 substrate97.

The ability of our lead GGTI, GGTI-2418 (currently in Phase I clinical trials), to inhibit

anchorage-dependent and anchorage-independent growth may also depend on its ability to

inhibit the geranylgeranylation of RALB or RALA, respectively98. In addition, GGTI-2418

effectively prevents xenograft tumour growth in nude mice and results in breast tumour

regression in Erbb2-transgenic mice92. Casey and colleagues described GGTI-DU40 (REF.

99), which is a highly potent and selective GGT1 inhibitor that inhibits the prenylation of

several cellular proteins, including RHO GTPases. In MDA-MB-231 breast cancer cells,

GGTI-DU40, but not the FTI L-744,832, inhibits thrombin-induced cell rounding. GGTIs

with novel scaffolds were recently identified by a virtual screen of 9.5 million compounds in

conjunction with quantitative structure–activity relationship modelling100.

FTIs in the clinic

Starting in 2000 (REF. 101), four FTIs have been evaluated in at least 75 clinical trials:

tipifarnib, lonafarnib, BMS-214662 and L-778123. In 64 of these studies (with 35 being

Phase I trials), the clinical response has been determined (TABLES 2,3; see Supplementary

information S4 and S5 (tables)). Sixteen years after curing transgenic mice that developed

mouse mammary tumour virus (MMTV)–Hras-driven breast tumours with FTIs61, and after

accumulating other very impressive preclinical data, it has become clear that in human

clinical trials, monotherapy with FTIs shows limited antitumour activity in haematopoietic

cancers, and generally no or very little activity in solid tumours. Thirty-eight of the 64

clinical trials (59%) concerned tipifarnib, either alone or in combination with other agents.

Eighteen of the 64 trials (28%) — all but one of which was conducted in patients with solid

tumours — reported no objective responses. Seventeen of the 18 trials (94%) with no

objective responses were conducted with FTI monotherapy. Twenty-three of the 64 trials
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(36%) conducted in both solid and haematological malignancies showed very little

antitumour activity (the rate of objective responses was <15%). The median objective

response was 2.3% for monotherapy with FTIs and 11.4% for combinations with FTIs.

Furthermore, in 28 of the 64 trials (44%), FT activity or the prenylation status of marker

proteins (most commonly HDJ2 (also known as DNAJA1) or prelamin A) was assessed to

determine whether the FTI treatment had affected its intended targets. There was no

correlation between FT inhibition and clinical responses. Most importantly, two FTIs that

have so far advanced to Phase III clinical trials are lonafarnib6 and tipifarnib4,5,7, and,

unfortunately, these drugs were unable to improve the outcome for advanced pancreatic

cancer4, advanced colon cancer5, advanced NSCLC6 or AML7, whether alone7,5 or in

combination with carboplatin and paclitaxel6 or with gemcitabine4.

What accounts for this discrepancy between laboratory findings and clinical data? First, in

humans, KRAS, and not HRAS, is most frequently mutated1. Second, unlike HRAS, which

is exclusively farnesylated, KRAS (and possibly NRAS) can escape FTI-mediated inhibition

as it can be alternatively prenylated by GGT1 and thus is fully functional12–15 (BOX 1).

Third, the lack of antitumour activity may be due to the fact that most of the clinical trials

enrolled patients with advanced and/or metastatic disease. It is also important to note that

even though it was known preclinically that KRAS function is resistant to FTIs, Phase III

clinical trials were carried out in patients whose tumours harboured mutant KRAS (that is,

patients with pancreatic cancer). Perhaps this is because preclinical studies had shown that

some cancer cells that harbour mutant KRAS are sensitive to FTIs, possibly owing to the

inhibition of exclusively farnesylated proteins downstream of KRAS. In another clinical

trial, attempts were made to directly inhibit KRAS function by using L-778123, which

inhibits both FT (half-maximal inhibitory concentration (IC50) = 2 nM) and GGT1 (IC50 =

98 nM). Unfortunately, in peripheral blood mononuclear cells from patients treated with this

drug, KRAS prenylation was not inhibited102.

When used in combination with other agents, FTIs have fared better. For example, Phase I

studies based on a combination of tipifarnib with gemcitabine and cisplatin have shown

some promise in advanced solid tumours (33.3% complete response rate or 26% partial

response rate)8,9. Similarly, in Phase II neoadjuvant settings, tipifarnib increases the rate of

pathological complete responses from the historical 10% to 25% when combined with

chemotherapy (doxorubicin and cyclophosphamide) in patients with locally advanced breast

cancer10,11. The fact that some patients respond to FTIs suggests that some human tumours

depend on farnesylated proteins for survival. The identification of these proteins remains a

challenge that must be overcome in order to select patients whose tumours are most likely to

respond to FTIs. To this end, a strategy to predict clinical response to FTIs was recently

developed by Raponi et al. Following the analysis of gene expression profiles from patients

with untreated AML, these authors found that a high ratio of expression of two genes, RAS

guanyl releasing protein 1 (RASGRP1), which encodes a RAS guanine nucleotide exchange

factor (GEF) that activates RAS, and aprataxin (APTX), which encodes a protein involved in

DNA excision repair, predicts a tipifarnib-positive response of patients with AML25,26.

Moreover, in patients with advanced solid cancers, low mRNA levels of FNTB, but not
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FNTA, are associated with improved response to lonafarnib plus taxane and significantly

better survival103. Similar studies are needed for other types of cancer.

Targets crucial for the antitumour activity of FTIs

As the data described above have illustrated, and as can be expected of drugs that affect a

large number of PT substrates, PTIs trigger a plethora of molecular and cellular effects,

whether in cell culture, animal models or in human cancer patients. A key question is, what

are the crucial PT substrates that mediate these effects? The answer to this question may

uncover why FTIs and GGTIs are only effective in a subset of cells and tumours.

RAS proteins as crucial targets for FTIs

FTIs were originally developed to inhibit RAS function. However, the ability of FTIs to

inhibit tumour growth is not correlated with mutations in RAS, whether in cells104,105,

animals105 or human patients106 (discussed above). KRAS, the most frequently mutated

human oncoprotein, becomes geranylgeranylated and is fully functional in tumour cells

treated with FTIs12–15. However, FTIs are effective at inhibiting the growth of mutant

KRAS-harbouring tumours in nude mice107 and transgenic mouse models53, suggesting that

the inhibition of KRAS farnesylation is not required for FTI antitumour activity, and that, in

these models, tumours are addicted to farnesylated proteins other than KRAS. Similar

considerations apply to NRAS, because it can also escape FTI-mediated inhibition. HRAS,

conversely, is not alternatively geranylgeranylated in cells treated with FTIs. Therefore, the

inhibition of HRAS farnesylation can still contribute to FTI antitumour activity in tumours

that are addicted to mutant or wild-type HRAS for survival. Thus, it may be worthwhile to

design clinical trials that involve FTIs for patients with HRAS-mutant bladder cancers, a

tumour that has clearly been understudied so far (TABLES 2,3).

RHEB as a crucial target for FTIs

Like HRAS, RAS homologue enriched in brain (RHEB) is exclusively farnesylated75. The

GTPase-activating protein (GAP) for RHEB is the tumour suppressor tuberous sclerosis

complex TSC1–TSC2 (REFS 108–110). AKT phosphorylates and inactivates TSC1–TSC2,

causing activation of RHEB111–113. RHEB stimulates the protein kinase mTOR, which

results in activating phosphorylation of the mTOR substrates S6 kinase (S6K) and

eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1)114,115, which is

consistent with RHEB being essential for cell growth and cell cycle progression in D.

melanogaster116. RHEB may activate mTOR either by directly binding to it117 or by

binding to the mTOR antagonist FKBP38 (also known as FKBP8)118. Most importantly, the

ability of RHEB to stimulate mTOR depends on its farnesylation75,114. Therefore, cancer

cells that are addicted to RHEB may be sensitive to FTIs. For example, this could include

tumours that overexpress RHEB or that harbour persistently activated pathways that lead to

constitutive RHEB activation (including, PTEN deficiency, PI3K and AKT mutations, AKT

overexpression or TSC1–TSC2 deficiency). Consistent with this idea, RHEB is frequently

upregulated in transformed cells and human cancer cells75,119, and, in several NSCLC cell

lines, the ability of FTIs to inhibit proliferation or induce apoptosis depends on RHEB

expression levels, which in turn are correlated to the degree of S6K phosphorylation by
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mTOR77. Similarly, RHEB is overexpressed in some lymphomas, which have increased

mTOR activity and enhanced sensitivity to FTIs120. The fact that an exclusively

geranylgeranylated mutant of RHEB (RHEB-GG) renders PTEN-deficient lymphoma cells

resistant to FTIs further supports the idea that the inhibition of RHEB farnesylation

contributes to the antitumour activity of FTIs120. Similar results were obtained when RHEB-

GG was shown to rescue the ability of FTIs to synergize with paclitaxel75 and cisplatin77.

As mTOR is an inhibitor of autophagy121, and RHEB activates mTOR, it may not be

surprising that FTIs can induce autophagy, possibly by blocking RHEB function122. The

induction of autophagy may be particularly important in cancer cells that are resistant to

apoptosis. Collectively, these findings suggest that the inhibition of RHEB farnesylation

contributes to the antitumour activity of FTIs, which should perhaps be evaluated in clinical

trials for patients with tumours that express high levels of RHEB, as well as for patients with

tuberous sclerosis, which is a syndrome caused by the loss of TSC1 or TSC2 function.

Inhibition of RHOB farnesylation is unlikely to contribute to the antitumour activity of FTIs

Under physiological conditions, RHOB is found both geranylgeranylated (RHOB-GG),

which accounts for 70% of all RHOB, and farnesylated (RHOB-F), which accounts for the

remaining 30%, in cells. It has been suggested that the inhibition of RHOB farnesylation

accumulates RHOB-GG and contributes to FTI-induced apoptosis123,124. Consistent with

this, in murine fibroblasts, RHOB-GG but not RHOB-F, suppresses RAS-induced

transformation125. However, the fact that a large proportion of RHOB is already in the

geranylgeranylated form in the absence of FTI treatment argues against a major contribution

of inhibition of RHOB farnesylation to FTI antitumour activity. More importantly, in human

cancer cells of epithelial origin, both RHOB-F and RHOB-GG have tumour suppressive

activity, further arguing against the inhibition of RHOB farnesylation playing a part in FTI

antitumour activity126. Consistent with RHOB functioning as a tumour suppressor, RHOB is

downregulated in several human cancers127–129. Although RHOB was shown to be

farnesylated in vitro by FT, and the treatment of cultured cells with the FTI L-739749

increases the levels of RHOB-GG130, the laboratory of Goldstein and Brown has shown

using purified components that RHOB is farnesylated by GGT1 but not by FT131. This, of

course, would disqualify RHOB as a target.

However, FTI treatment activates the RHOB promoter and accumulates large amounts of the

RHOB protein132. Furthermore, mutant HRAS-transformed RHOB−/− cells are less sensitive

to FTI-induced apoptosis and FTI inhibition of anchorage-dependent but not anchorage-

independent tumour growth. Taken together, these results suggest that increased RHOB

protein levels, not inhibition of RHOB farnesylation, may contribute to some of the effects

of FTIs133.

Other possible targets

PTIs are bound to have effects not only on oncogenic RAS family members, but also on

other prenylated proteins some of which are not yet known. Some candidate targets for

prenylation include tumour suppressors, ARHI (also known as NOEY2 and DIRAS3)134,

RAS-related and oestrogen-regulated growth inhibitor (RERG)135, deleted in breast cancer 2

(DBC2; also known as RHOBTB2)136, RAS-related inhibitor of cell growth (RIG)137, RAS-
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related protein on chromosome 22 (RRP22; also known as RASL10A)138 and maybe others.

The non-discriminatory action of PTIs may abrogate crucially important tumour suppressor

functions and may at least partially compromise their effects on oncogenic pathways.

Therefore, it needs to be established whether the proteins mentioned above are exclusively

farnesylated or geranylgeranylated, and whether their prenylation is crucial to their growth

inhibitory function. For proteins that pass these tests it is recommended that their functional

status is assessed in future clinical trials.

The inhibition of the farnesylation of several other proteins could contribute to the

antitumour activity of FTIs. These include CENPE, CENPF, the PRL phosphatases PRL1

(also known as PTP4A1), PRL2 (also known as PTP4A2) and PRL3 (also known as

PTP4A3), lamins A and B, HDJ2, RND3, peroxisomal biogenesis factor 19 (PEX19),

RHOD, RHO6, RHO7 (also known as RHON), TC10 (also known as RHOQ) and

prostacyclin receptor (PTGIR). Although some of these may be associated with known

effects of FTIs such as the possible role that CENPE and CENPF and PRLs may have in

FTI-induced mitotic arrest, the contributions of others require further investigations.

Alternative approaches

RCE1 and ICMT inhibitors

Interestingly, prenylation seems to be constitutive, but prenylated proteins can undergo up to

three additional PTMs, the last two of which are reversible (BOX 1). First, the last three C-

terminal amino acids, aaX, are proteolytically removed by RAS-converting enzyme 1

(RCE1)139. Second, the carboxyl group in the now C-terminal prenylated cysteine is

methylated by isoprenylcysteine carboxyl methyltransferase (ICMT)140. Third, many

prenylated proteins become palmitoylated on upstream cysteines by membrane-bound

palmitoyl transferases141. The carboxymethylation, which neutralizes the carboxyl negative

charge, coupled with the palmitoylation, further stabilizes membrane association and

anchoring.

RCE1 and ICMT, which function downstream of PTs, have also attracted attention as

potential targets for cancer therapy. Conditional lack of Rce1 expression in skin carcinoma

cells that express activated HRAS has much less severe effects on cell proliferation than the

effect of lonafarnib142. By contrast, conditional deletion of Icmt efficiently blocks

transformation by either human KRAS-G12V or human BRAF-V599E oncogenic

mutants140. Considering these results, ICMT inhibitors are more likely to be successful than

RCE1 inhibitors. Indeed, pharmacological inhibition of ICMT inhibits the growth of HepG2

tumour xenografts in nude mice143. As postprenylation inhibitors will affect both

farnesylated and geranylgeranylated proteins, these drugs may be more toxic than FTIs or

GGTIs.

Prenylated proteins that are phosphorylated

Several small GTPases are subject to reversible phosphorylation. For example, protein

kinase C (PKC)- or PKA-mediated phosphorylation of CDC42, KRAS, RAP1A and RHOA

induces their removal from the cell membrane144–147. The question is whether this

relocation translates into a loss or change of function. With regard to KRAS, this has
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recently been investigated. Interestingly, PKC-mediated phosphorylation of Ser181 in

KRAS promotes its relocation to mitochondrial membranes where it associates with BCL-

XL (also known as BCL2L1) and promotes apoptosis. Overexpression of KRAS-S181E is

sufficient to induce apoptosis, an effect that is rescued by co-transfection with BCL-2 (REF.

145). This raises the intriguing possibility that PKC agonists such as bryostatin 1145 may be

more efficient for killing and/or less toxic to KRAS-dependent tumours than PTIs.

Phosphorylation of RAB6, RHOE and RALA activates their function148–151. Most

interestingly, aurora kinase A enhances, and protein phosphatase 2A (PP2A) inhibits, the

transforming activity of RALA150,151. Provided that activating phosphorylation can occur

independently of prenylation, these findings may indicate that GGTI-mediated inhibition of

RALA may not be sufficient to completely block its transforming ability. However, these

findings also suggest that GGTIs that inhibit RALA might synergize with aurora kinase A

inhibitors or with PP2A agonists. Phosphorylation of CDC42, RHOB and RHEB inhibits

their function152–154, cautioning against combinations of PTIs and protein kinase inhibitors

to target CDC42- or RHEB-dependent tumours.

Synthetic lethality

As is well documented, many human cancers depend on oncogenic KRAS for survival, and

this dependency confers a vulnerability that is unique to these cancer cells. Indeed, recent

unbiased RNA interference-based screens155–159 and other approaches160 identified six

genes the knockdown of which kills only human tumours that depend on mutant KRAS.

Such a synthetically lethal strategy would be of benefit if some of the identified targets are

more druggable than KRAS (see Supplementary information S6 (figure)). Of the six studies

cited above, the one identifying the lethal interaction between oncogenic KRAS and CDK4

is particularly interesting160. It has been previously reported that RAS-mediated

transformation requires the expression of functional RB in mouse fibroblasts161. This is

consistent with the fact that activated RAS induces cyclin D1 (REF. 162), which activates

CDK4 and other kinases and ultimately leads to inhibitory phosphorylation of RB, thus

permitting the G1/S transition163. These considerations might explain why human tumours

very rarely display loss-of-function mutations in RB together with activating RAS

mutations164. Furthermore, they provide a rationale for investigating whether PTIs and CDK

inhibitors act in a synergistic fashion, both in animals and in clinical trials.

Considering the enormous number of proteins affected by the RAS signalling network, we

predict that further synthetic lethal interactions will be identified. For example, small

interfering RNA (siRNA) screens silencing protein kinases or protein phosphatases may

reveal molecular targets the inhibition of which sensitizes cancer cells to PTIs. Conversely,

siRNA screens silencing the prenylome may reveal crucial prenylated proteins the inhibition

of which sensitizes cancer cells to drugs that target other signal transduction pathways; for

example, PI3K–AKT, RAF–MEK–MAPK and CDKs.

Future directions and challenges

Despite the conceptual advances that have been made over the past decade, in our opinion,

the major challenge in this field is the following question: which PT substrates are crucial

for the proliferation or survival of different cancer types? Or, in other words, does the
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antitumour activity of PTIs in a given tumour depend on the inhibition of certain prenylated

proteins? At present, the exact size of the prenylome is unknown165. Although more than

100 proteins have been experimentally confirmed to undergo prenylation166, a recent search

of the UniProt database (release 20 April 2010; see Further information) returned 587

human genes that encode proteins bearing a C-terminal CXXX motif. Although not all of

these proteins will qualify as PT substrates, this suggests that many prenylated proteins have

not yet been identified.

Current standard methods to characterize protein prenylation are, for the most part, designed

to follow individual proteins167 and are thus not practical to address the above questions.

Therefore, this field should develop and streamline techniques that are capable of analysing

prenylation on a global scale, in a manner that is reasonably rapid, feasible and convenient

for many laboratories. As a step towards characterizing the entire prenylome, Maurer-Stroh

et al.165 have recently developed a sequence-based software suite that is designed to predict

whether proteins hitherto unknown to be prenylated are likely to be modified by FT, GGT1

and/or GGT2. Combining this with approaches that uncover actual prenylation patterns in

various cancer cells, as well as changes in prenylation patterns in response to PTIs, will

eventually reveal which prenylated proteins the inhibition of which is responsible for the

antitumour effects of PTIs and which patients are most likely to respond to treatment with

these inhibitors. Several techniques pursuing this goal have recently been described168–173.

For example, labelling cells with modified tractable prenyl donors in lieu of the natural

farnesyl diphosphate (FPP) or geranylgeranyl diphosphate (GGPP) is a step in that direction.

This can involve the labelling of cells with azido-farnesyl, followed by the affinity

purification of farnesylated proteins with a biotinylated phosphine capture reagent168.

Similarly, labelling cells with azido-GG analogues, followed by the selective labelling of the

resulting azido-GG proteins with a modified rhodamine, can be used to detect

geranylgeranylated proteins by fluorescent imaging172.

It is our belief that proteome-wide or prenylome-wide approaches, such as those discussed

above, are urgently needed to identify the subsets of prenylated proteins that are affected by

FTIs and/or GGTIs, which in turn should help to link the physiological effects of various

PTIs to their molecular targets, and thus will help to design improved clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

Farnesylation One of two types of prenylation. This involves the transfer of a

farnesyl moiety to the cysteine of the C-terminal CaaX box of the

target protein. Catalysed by farnesyltransferase
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Geranylgeranylation This prenylation is catalysed by geranylgeranyltransferase 1

(GGT1) or GGT2. GGT1 transfers a geranylgeranyl moiety to the

cysteine of the C-terminal CaaX box, and GGT2 acts on the

cysteines of C-terminal CXC or CC motifs

Prenylation Also known as isoprenylation. An irreversible post-translational

modification of proteins consisting of the covalent attachment of

an isoprenyl lipid to a cysteine within four residues of the C

terminus

Myristoylated A universal and irreversible co-translational modification of

proteins involving the covalent attachment of a myristoyl group

to an N-terminal amino acid of a nascent polypeptide. It is

important for membrane targeting of the modified protein

CaaX motif This refers to the last four C-terminal amino acids that serve as a

recognition motif for farnesyltransferase or

geranylgeranyltransferase 1. C (cysteine) is the amino acid being

modified, a is an aliphatic residue and X is any residue

Intimal hyperplasia The thickening of the innermost layer of a blood vessel as a

complication of a reconstruction procedure or endarterectomy. It

is the universal response of a vessel to injury and is an important

reason for late bypass graft failure, particularly in vein and

synthetic vascular grafts

Neointima A new or thickened layer of arterial intima (innermost layer of an

artery or a vein) formed especially on a prosthesis or in

atherosclerosis by migration and proliferation of cells from the

media

Palmitoylated A post-translational modification, consisting of the covalent

attachment of fatty acids to cysteine residues of membrane

proteins, thought to further enhance membrane anchoring of

previously prenylated proteins. In contrast to prenylation and

myristoylation, it is reversible

Prenylome The subset of proteins in a cell or organism that is modified by

prenylation
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At a glance

• Post-translational modifications with the lipids farnesyl or geranylgeranyl

(together referred to as prenyl) are catalysed by farnesyltransferase (FT) or

geranylgeranyltransferase 1 (GGT1) and are required for the cellular

localization, function and cancer-causing activities of some proteins. Among the

hundreds of proteins that are estimated to be prenylated most are either

exclusively farnesylated (for example, HRAS and RAS homologue enriched in

brain (RHEB)) or geranylgeranylated (for example, RHOA, RHOC, RALA and

RALB); some are both farnesylated and geranylgeranylated (RHOB), and others

are naturally farnesylated but become geranylgeranylated when FT is inhibited

(for example, KRAS and NRAS).

• These and other important observations prompted the design and development

of inhibitors of FT (FTIs) and GGT1 (GGTIs) as potential anticancer drugs.

Several FTIs have been tested clinically but only one GGTI has recently entered

clinical trials.

• Further validation of FT and GGT1 as anticancer drug targets was recently

provided by genetic mouse models: conditional loss of FT and/or GGT1

hampers mutant KRAS-induced tumorigenesis and extends the lifespan of mice.

• FTI treatment results in the reversal of several hallmarks of cancer, including

mitotic arrest at prometaphase, induction of apoptosis, inhibition of anchorage-

dependent and anchorage-independent growth, invasion, angiogenesis and

tumour growth, as well as induction of tumour regression in animal models.

These effects seem to be mediated by interference with aberrant signal

transduction pathways such as RAF–MEK–ERK, PI3K–AKT, and other

oncogenic and survival pathways.

• GGTI treatment also results in the reversal of the cancer hallmarks mentioned

above except that they block cells in the G1 phase of the cell cycle, and this

seems to be owing to their ability to induce the accumulation of the cyclin-

dependent kinase (CDK) inhibitors p21 and p27 and to inhibit CDKs and induce

hypophosphorylation of RB. GGTI treatment also decreases the levels of

phospho-AKT and survivin, and this seems to mediate their ability to induce

apoptosis.

• Although in preclinical models FTIs are highly effective as antitumour agents,

in clinical trials limited efficacy was observed. This is primarily due to poor

patient selection. This in turn is due to our lack of understanding of the

mechanism of action of FTIs. In the future, a major effort must be dedicated to

identifying the prenylated proteins the inhibition of which is responsible for the

antitumour effects of PTIs. This will be of great value not only for enhancing

our understanding of the mechanism of action of FTIs and GGTIs, but also for

selecting patients whose tumours are addicted to specific prenylated proteins

and who are more likely to respond to these agents. Recent advances in
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techniques to characterize the human prenylome are likely to accelerate

achieving these crucial goals in the prenylation field.
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Box 1

Biochemistry of protein prenylation

Prenylation is a universal lipid post-translational modification (PTM) of cysteine residues

near the carboxyl terminus that facilitates membrane association174,175. Using farnesyl

diphosphate (FPP) or geranylgeranyl diphosphate (GGPP) as the lipid donor, this

enzymatically catalysed PTM transfers either a C15 farnesyl (F) or a C20 geranylgeranyl

(GG) group to the sulphydryl group of the cysteine residue, thus forming covalent

thioether bonds. In eukaryotic cells, prenylation is catalysed by

three ’housekeeping‘ enzymes, farnesyltransferase (FT), gernaylgeranyltransferase 1

(GGT1) and GGT2. We focus on FT and GGT1. FT and GGT1 are cytosolic

heterodimeric proteins that share a common α-subunit176, but that have homologous but

distinct β-subunits177. The crystal structure of FT shows a crescent-shaped helical hairpin

domain and an α–α barrel domain178. Both FT and GGT1 are metalloenzymes that

require zinc for catalysing the covalent binding of the prenyl group carbon to the CaaX

cysteine thiol179.

Enzyme kinetics and other biochemical studies indicated that FPP first binds to FT,

which is followed by the binding of the protein substrate, with prenylation of the

substrate occurring much faster than the release of the farnesylated protein product.

Proteins modified by FT or GGT1 seem to share a conserved C-terminal CaaX

recognition motif (in which C is cysteine, a is an aliphatic amino acid and X is variable).

The nature of the C-terminal residue X specifies whether a protein is a substrate for FT or

for GGT1: whereas FT prefers X to be methionine, serine, glutamine or cysteine, GGT1

prefers X to be leucine or isoleucine180. However, these rules are not absolute: for

example, a CaaX protein with a C-terminal phenylalanine can be farnesylated or

geranylgeranylated181. And although GGT1 clearly prefers X to be leucine182, some

CaaL motifs can also be farnesylated by FT183. Furthermore, at least one protein, RHOB

(CaaX box sequence: CKVL), is naturally both farnesylated and geranylgeranylated35.

Proteins with a C-terminal CaaX box can undergo up to three additional PTMs (see part a
of the figure). Some proteins such as KRAS-4B (CaaX box sequence: CVIM) and NRAS

(CaaX box sequence: CVVM) are naturally only farnesylated, but can be

geranylgeranylated and remain fully functional in the presence of an FTI (see part b of

the figure). To block KRAS function would thus require the inhibition of both FT and

GGT1 (REFS 12–15). It is not known how many other farnesylated proteins can be

cross-prenylated by GGT1, but the presence of a C-terminal methionine seems to be

important for the ability of proteins to undergo cross-prenylation.
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APT, acylprotein thioesterase; ICMT, isoprenylcysteine methyltransferase; PAT, protein

acyltransferase; PPT1, palmitoylthioesterase 1; RCE1, RAS-converting enzyme 1.
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Box 2

The use of PTIs in other diseases

An unexpected benefit of farnesyltransferase (FT) inhibitors (FTIs) may be their potential

to treat diseases other than cancer. Hutchinson–Gilford progeria syndrome (HGPS) is a

genetic disease that is associated with premature ageing and death, normally from heart

failure, at about 13 years of age. HGPS is linked to a mutation in LMNA that prevents

prelamin A (a substrate for FT) from proper maturation into lamin A. Normal processing

of prelamin A involves, among other steps, the removal of a carboxy-terminal peptide

containing farnesylcysteine. Children with HGPS are unable to perform this step, which

results in a mutant form of lamin A, termed progerin184, which is persistently

farnesylated and non-functional185. In fibroblasts derived from patients with HGPS and

mice, as well as HeLa cells, FTIs can prevent the aberrant nuclear morphology of cells

that express progerin186–188. In mouse models of HGPS, FTIs greatly improve the

phenotype of HGPS with respect to lifespan, body weight and bone integrity189.

Furthermore, the crucial target for FTI treatment was confirmed to be progerin190. These

results suggest that FTIs may be beneficial for children with HGPS, and lonafarnib is

currently being tested in clinical trials.

A common problem in the treatment of cardiovascular diseases is the hyperproliferation

of smooth muscle cells, as seen in restenosis (intimal hyperplasia) of coronary arteries

following balloon angioplasty or bypass surgery. Local administration of FTIs or

geranylgeranyl transferase inhibitors (GGTIs) can prevent restenosis by blocking

neointima formation191. GGTIs may also assist in the therapy of cardiovascular diseases

by increasing nitric oxide synthase expression192.

Parasitic diseases such as malaria, Chagas disease, African sleeping sickness,

Toxoplasmosis and Leishmaniasis cause millions of deaths in tropical and subtropical

regions, and the therapeutic potential of FTIs for these diseases has also been

explored193. FTIs specifically designed to inhibit parasitic FT and not mammalian FT are

significantly more toxic to parasitic protozoa194,195. Recently, a GGT1 from

Trypanosoma cruzi, the parasite responsible for Chagas disease, was cloned196, and

GGTIs may also be effective against these diseases.

FTIs also show strong antiviral activity in mice infected with the hepatitis δ virus197.

Other diseases that may also be amenable to therapy with prenyltransferase (PT)

inhibitors (PTIs) are multiple sclerosis198 and metabolic bone disorders199, as well as a

wide variety of undesirable fibrotic reactions200.
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Figure 1. RAS signalling pathways in mammalian cells
Active (farnesylated, membrane-bound and GTP-bound) RAS modulates a number of

signalling pathways. Oncogenic RAS mutations tend to lock RAS in its GTP-bound state,

resulting in constitutive RAS signalling. The major RAS effector pathways are shown. The

two best-studied pathways that are activated by RAS are the RAF–MEK–MAPK signalling

cascade and the PI3K–AKT pathway. The RAF–MEK–MAPK pathway ultimately activates

the ETS family of transcription factors, which induce multiple genes that promote cell cycle

progression and cell migration. Likewise, AKT phosphorylates multiple cellular proteins,

leading to the inhibition of several tumour suppressors (such as p27, p53, tuberous sclerosis

1 (TSC1), TSC2 and BCL-2 antagonist of cell death (BAD)) or leading to the activation of

several oncogene products. RAS also activates other small GTPases such as RALA and

RALB, which have recently been shown to mediate RAS transformation in human

pancreatic tumours, for example. Farnesyltransferase inhibitors (FTIs) were originally

developed to block the function of RAS. However, as numerous studies in vitro and in vivo

have shown, their antitumour activity is not correlated to the mutation status of KRAS

isoforms. This suggests that the antitumour activity of FTIs relies on blocking the activity of

other prenylated proteins. However, the inhibition of RAS protein function may still be

important, particularly for tumours with mutant HRAS and tumours addicted to wild-type

RAS. CDC42, cell division cycle 42; DAG, diacylglycerol; FOX, forkhead transcription

factor; GAP, GTPase-activating protein; GEF, guanine nucleotide exchange factor; IKK,

IκB kinase; IP3, inositol-1,4,5-trisphosphate; mTORC, mTOR complex; NF-κB, nuclear

factor-κB; PDK1, phosphoinositide-dependent kinase 1; PKC, protein kinase C; PLA,

phospholipase A; PLCε, phospholipase Cε; PLD, phospholipase D; RALGDS, RAL

guanine nucleotide dissociation stimulator; RHEB, RAS homologue enriched in brain;

RIN1, RAS and RAB interactor 1; TIAM1, T cell lymphoma invasion and metastasis 1.
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Timeline.
Protein prenylation and human cancer

FT, farnesyltransferase; FTI, FT inhibitor; GGT1, geranylgeranyl transferase 1; RCE1,

RAS-converting enzyme 1.
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