
PCAP: A Whole-Genome Assembly Program
Xiaoqiu Huang,1,4 Jianmin Wang,1 Srinivas Aluru,2 Shiaw-Pyng Yang,3 and
LaDeana Hillier3
1Department of Computer Science and 2Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa
50011-1040, USA; 3Genome Sequencing Center, Washington University Medical School, St. Louis, Missouri 63108, USA

We describe a whole-genome assembly program named PCAP for processing tens of millions of reads. The PCAP
program has several features to address efficiency and accuracy issues in assembly. Multiple processors are used to
perform most time-consuming computations in assembly. A more sensitive method is used to avoid missing overlaps
caused by sequencing errors. Repetitive regions of reads are detected on the basis of many overlaps with other reads,
instead of many shorter word matches with other reads. Contaminated end regions of reads are identified and
removed. Generation of a consensus sequence for a contig is based on an alignment of reads in the contig, in which
both base quality values and coverage information are used to determine every consensus base. The PCAP program
was tested on a mouse whole-genome data set of 30 million reads and a human Chromosome 20 data set of 1.7
million reads. The program is freely available for academic use.

[The following individuals kindly provided reagents, samples, or unpublished information as indicated in the paper:
the Mouse Genome Sequencing Consortium 2002; J. Mullikin. The assembled mouse sequences are available at our
Web site, http://seq.cs.iastate.edu.]

The whole-genome shotgun strategy (WGS) is an efficient
method to produce draft sequences of a mammalian genome,
whereas the clone-based strategy is an accurate method to pro-
duce high-quality sequences of a mammalian genome. The most
challenging problem in WGS is to assemble tens of millions of
reads into long sequences. A few whole-genome assembly pro-
grams have recently been developed: Celera Assembler (Myers et
al. 2000), ARACHNE (Batzoglou et al. 2002), RePS (Wang et al.
2002), JAZZ (Aparicio et al. 2002), and Phusion (Mullikin and
Ning 2003). Those programs are based on the experiences of pre-
vious sequence assembly programs (Staden 1980; Peltola et al.
1984; Huang 1992; Green 1995; Kececioglu and Myers 1995; Sut-
ton et al. 1995; Huang and Madan 1999; Kim and Segre 1999;
Chen and Skiena 2000; Pevzner et al. 2001). The existing pro-
grams have made WGS successful in several genome sequencing
projects. Nevertheless, continued development of new and im-
proved whole-genome assembly programs is required to produce
more accurate sequences with the WGS strategy.

We have developed a parallel contig assembly program
(PCAP) for assembling tens of millions of reads into long se-
quences. The PCAP program has several features to address issues
in whole-genome assembly. The program has an ability to locate
and remove contaminated end regions of reads, which are from
sequencing vectors or other foreign sources. The two-hit idea of
BLAST2 (Altschul et al. 1997) is used in PCAP as an initial screen-
ing requirement for finding pairs of reads with a potential over-
lap. If two reads have two word matches with at most a few base
differences between the matches, the pair of reads is selected for
consideration in overlap computation. Identification of repeti-
tive regions in reads is based on deep coverage by longer approxi-
mate matches, instead of by shorter exact matches. The score of
every overlap is adjusted to reflect the depths of coverage for the
two regions in the overlap. The consensus sequence of a contig is
generated by constructing an alignment of reads in the contig.

The PCAP program was tested on a mouse whole-genome

data set of 30 million reads. The assembly computation was per-
formed on a cluster of Compaq ES40 servers. The test shows that
PCAP is efficient enough to handle a whole-genome data set. The
accuracy of PCAP was evaluated by performing an assembly on a
human Chromosome 20 data set of 1.7 million reads and com-
paring the PCAP assembly with the finished sequences of Chro-
mosome 20. The evaluation indicates that PCAP is acceptably
accurate.

METHODS
The assembly algorithm consists of two major phases. In the first
phase, repetitive regions of reads are identified, and overlaps be-
tween reads are computed. In the second phase, overlaps are
evaluated to identify unique overlaps. Poor end regions of each
read are identified and removed. Reads are assembled into con-
tigs by using unique overlaps. Contigs are corrected and linked
into scaffolds with constraints. A multiple sequence alignment of
reads is constructed, and a consensus sequence is computed for
each contig. Below we describe each phase in detail.

Repeat Identification and Overlap Computation
An efficient method is designed to find and mask repetitive re-
gions of reads during computation of overlaps between reads.
The method allows the computation of overlaps to be performed
in parallel on multiple processors. It also avoids computing over-
laps involving repetitive read regions that have already been
found. Let f0, f1, f2, … be a list of all input reads in given orien-
tation and let rx be the reverse complement of read fx.

The entire data set S of reads is partitioned into m subsets of
similar sizes, which are referred to as S0, S1, …, Sm � 1, respec-
tively. The set S is compared with every subset Sk on a processor
to compute overlaps between reads in S and reads in Sk. An over-
lap between reads fx and fy occurs twice in the comparisons, once
in the comparison of S with the subset containing fy and once in
the comparison of S with the subset containing fx. An additional
requirement is placed to ensure that every overlap is computed at
most once in the comparisons. Specifically, an overlap between
reads fx and fy and an overlap between reads rx and fy are com-
puted in the comparison of the set S with a subset Sk if x < y, fx is

4Corresponding author.
E-MAIL xqhuang@cs.iastate.edu; FAX (515) 294-0258.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.1390403.

Methods

2164 Genome Research 13:2164–2170 ©2003 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/03 $5.00; www.genome.org
www.genome.org

in S, and fy is in Sk. Pairs of reads fx and fy that satisfy the condi-
tion are called potential read pairs.

The set S should be partitioned in such a way that the com-
parisons of the set S with the subsets are balanced in load. If the
numbers of potential read pairs considered in every comparison
are equal or very close, then it is likely that the comparisons are
balanced in load. It follows from the definition of potential read
pairs that the numbers of potential read pairs considered in every
comparison are very close if the indices of reads in every subset
have the same distribution pattern. The following partition of
the set S into subsets meets the requirement. For 0 � k < m, sub-
set Sk consists of reads fy with k = y mod m, where y mod m is the
remainder when y is divided by m (Qian 1999).

Because of the huge size of the set S, S is stored only on a
hard disk accessible by all processors. Every subset and its data
structures are stored in the main memory of a processor. To com-
pare S with the subset, the reads in S are considered one at a time,
with the current read in S read into the main memory and com-
pared with the subset. The set S is compared with every subset in
parallel.

The computation involving the set S and the subset consists
of three major steps. First, repetitive regions of reads in the subset
are identified by comparing the subset with itself. Second, addi-
tional repetitive regions of reads in the subset are identified by
comparing the set S with the subset. The repetitive regions of
reads in the subset are reported in a file. Third, overlaps between
reads in S and unique read regions in the subset are computed.
The overlaps are reported in a file. Note that the order in which
repetitive regions of reads in the subset are found depends on
how the subset is constructed. Repetitive regions that are highly
represented in the subset are first found in the comparison
within the subset. On the other hand, repetitive regions that are
not highly represented in the subset are later found in the com-
parison between the set S and the subset. Below we describe each
step in detail.

A region of a read is repetitive if it is highly similar to regions
of many reads. Repetitive regions of reads in the subset are iden-
tified by computing coverage arrays of reads in the subset. The
coverage array of a read is an integer array of the same length, in
which the value at a position of the array is the number of over-
laps between the read and other reads that cover the position. A
region of a read is repetitive if the values at every position of the
corresponding region of the coverage array are greater than a
repeat coverage cutoff.

Identification of repetitive regions of reads depends on com-
putation of overlaps involving the reads. However, it may not be
computationally feasible to compute all overlaps because there
are a huge number of overlaps between repetitive regions. Our
strategy is to alternate computation of overlaps and identifica-
tion of repetitive regions. Initially, some overlaps are computed.
Then repetitive regions are identified based on the overlaps. The
repetitive regions are processed so that no overlap involving any
of the repetitive regions is computed again. The two-step proce-
dure is performed many times until all repetitive regions are
identified.

Specifically, the coverage arrays of the reads in the subset are
computed as follows. Initially, for each read in the subset, its
coverage array is set to zero at every position. A look-up table is
constructed for all regions of the reads in the subset, and the
table is used to compute quickly overlaps involving regions in
the table. Then for each read fy in the subset, overlaps between
the read fy and other reads in the subset and overlaps between the
read ry and other reads in the subset are computed using the
look-up table. Whenever an overlap involving fy is computed, the
coverage array of fy is incremented by 1 at every position covered
by the overlap. An overlap involving ry is transformed into an

overlap involving fy, which is used to update the coverage array
of fy. After all overlaps between reads in the subset are computed,
repetitive regions of reads in the subset are identified using the
coverage array of every read in the subset. Then the look-up table
is replaced by a new look-up table, which is constructed for the
unique regions of reads in the subset. Because the repetitive re-
gions are not in the look-up table, no overlap completely covered
by any of the repetitive regions can be computed using the look-
up table.

Next, each read fx from the set S is compared in both orien-
tations with the subset. Overlaps between the read fx and reads in
the subset are computed using the look-up table. For every over-
lap between the read fx and a read fy in the subset, the coverage
array of the read fy is updated over the corresponding region. The
look-up table is replaced by a new look-up table after every ns
reads from S are compared, where ns is the number of reads in the
subset. After all reads from S are compared with the subset, the
repetitive regions of reads in the subset are reported in a file. A
final look-up table is constructed for the unique regions of reads
in the subset.

Finally, each read fx from the set S is compared in both
orientations with the subset. Overlaps between the read fx and
reads in the subset are computed using the final look-up table.
The overlaps are reported in a file.

Below we describe how to compute quickly overlaps be-
tween a read g and reads in the subset with a BLAST-like method.
The sequences of all reads fy in the subset are concatenated to-
gether with a special character inserted at every read boundary
(Huang and Madan 1999). The resulting sequence is called the
combined sequence. A look-up table with a word length w is
constructed for the combined sequence, where for any word of
length w, the table gives an ordered list of positions of each
unique occurrence of the word in the combined sequence
(Huang 2002). An occurrence of a word in a read fy is unique if
the coverage array of fy is less than or equal to the repeat coverage
cutoff at every position covered by the occurrence. Let wd(i) de-
note a word of length w starting at position i of the read g. The
look-up table can be used to locate quickly the occurrences of
wd(i) in the combined sequence. Each occurrence corresponds to
an exact match of length w between the read g and a read in the
subset. Two close word matches between the read g and a read in
the subset are required to extend a word match into a segment
pair (Altschul et al. 1997).

Consider two words wd(i) and wd(j) in the read g, where the
words are separated by d bases with d > 0, that is, j � i = w + d. An
occurrence of wd(i) and an occurrence of wd(j) in reads in the
subset are close if the two occurrences are in the same read, the
occurrence of wd(i) is before the occurrence of wd(j), and the
two occurrences are separated by 0 to 2d bases. The definition
of close word occurrences is intended to deal with one sequenc-
ing error involving at most d consecutive bases. A separation of
2d bases between the occurrences of wd(i) and wd(j) may be
caused by a sequencing error, where d bases are either deleted
between the words wd(i) and wd(j), or inserted between their
occurrences. In other words, the sequencing error either reduces
the number of bases between wd(i) and wd(j) from 2d to d, or
increases the number of bases between the occurrences of wd(i)
and wd(j) from d to 2d. Similarly, a separation of 0 bases between
the occurrences of wd(i) and wd(j) may be caused by a sequencing
error, where d bases are either inserted between the words wd(i)
and wd(j), or deleted between their occurrences. A small value
of 4 is selected for the parameter d because a sequencing error
usually involves 1 to 2 bases and very rarely involves more than
4 bases.

For every pair of positions i and j of the read g with
j � i = w + d, the look-up table is used to locate pairs of close

PCAP: A Whole-Genome Assembly Program

Genome Research 2165
www.genome.org

occurrences of words wd(i) and wd(j). For each pair of close oc-
currences, the word match corresponding to the occurrence of
wd(i) is extended into a high-scoring segment pair. Segment pairs
of scores greater than a cutoff from the same read are combined
into a high-scoring chain by dynamic programming (Huang
2002). The segment pair score cutoff is set to 40, the score of a
segment pair of 20 exact base matches with each exact base
match given a score of 2. If the score of a high-scoring chain of
segment pairs from a read fy is greater than a cutoff value of 80,
the chain is taken as an overlap between the read g and read fy.
The values for the parameters in the chain computation and the
following alignment computation are selected based on evalua-
tion of assembly results on BAC data sets. For computation of
repetitive regions, a chain of segment pairs between two reads
serves as an overlap between the reads. For computation of re-
ported overlaps, a chain of segment pairs between two reads is
refined into a high-scoring alignment, which is computed by
performing the Smith-Waterman computation in a matrix band
covering all segment pairs of the chain.

The matrix band is determined as follows. A diagonal of the
matrix is named by a number k such that the diagonal consists of
all entries (i, j) with j � i = k. A segment pair beginning with
position i of one read and position j of the other read is said to
occur on diagonal j � i. A band of diagonals from numbers low to
upp with low � upp consists of diagonals low, low + 1, low + 2, …,
upp. A band of diagonals in the matrix covers a chain of segment
pairs if each segment pair in the chain occurs on a diagonal
inside the band. For a high-scoring chain of segment pairs, a
minimum band of diagonals from low to upp is determined,
where low is the smallest number of diagonals on which the
segment pairs occur and upp is the largest number of diagonals
on which the segment pairs occur. The minimum band is ex-
panded in both directions by 15 diagonals, and the resulting
band is used for the Smith-Waterman computation. The exact
score and start–end positions of the overlap are computed by a
banded Smith-Waterman algorithm (Chao et al. 1992), in which
the scoring system consists of a match score of 2, a mismatch
score of �5, a gap open score of �6, and a gap extension score
of �2.

Construction of Contigs and Scaffolds
The second phase consists of the following major steps. First, the
depths of coverage of the reads at every position are computed
using the files of overlaps and files of repetitive regions. Each
overlap is evaluated based on the depths of coverage of the two
regions in the overlap. Second, the clipping positions of each
read are determined based on unique overlaps. Poor ends of every
read are removed at the clipping positions of the read. Chimeric
reads are identified and removed. Finally, reads are assembled
into contigs using unique overlaps. Contigs are corrected and
linked into scaffolds with constraints. A consensus sequence is con-
structed for each contig. Below we describe each step in detail.

The coverage arrays of the reads in given orientation are
computed using the files of repetitive regions and files of over-
laps. Each coverage array is initialized to zero at every posi-
tion. For each repetitive region of a read f, the coverage array
of f is increased by the repeat coverage cutoff at every posi-
tion in the region. For each overlap involving reads gx and gy, if
gx = rx, then the region of rx in the overlap is transformed into a
region of fx; the coverage array of fx is increased by 1 at every
position in the region of fx; and the same procedure is performed
for read gy.

The score of each overlap is adjusted to reflect the depths of
coverage of the regions in the overlap. This is done by multiply-
ing the overlap score by the smaller of the average coverage
scores of the two regions in the overlap. Let repcocut denote the

repeat coverage cutoff. The parameter repcocut should be set to
the maximum depth of coverage in unique regions. A default
value of 60 is used for repcocut. The coverage score array, denoted
by csax, of a read fx is computed from the coverage array cax as
follows. For a position i of fx,

csax�i� = log2
repcocut
cax�i�

if 0 < cax�i� � repcocut,

csax�i� = 0 otherwise.

The log ratio function, which is commonly used in discrimina-
tory models, is used to turn depths of coverage into additive
coverage scores. For example, if cax(i) = repcocut/8 for a position i,
then csax(i) = 3. The average coverage score of a region of fx is the
sum of coverage scores of each position in the region divided by
the length of the region. If an overlap involves a region with
depths of coverage greater than repcocut at every position, then
the average coverage score of the region is 0 and the adjusted
score of the overlap is 0. On the other hand, if both regions of
an overlap have low depths of coverage, then the adjusted score
of the overlap is much higher. Only overlaps with an adjusted
score greater than an overlap score cutoff are considered in the
subsequent steps. We found through experimental tests that
using the value 5000 for the overlap score cutoff achieves a good
tradeoff between missing true overlaps and admitting false
overlaps.

Poor ends of each read f are located and removed by com-
puting the 5� and 3� clipping positions of f. The computation is
based on the quality values of f and overlaps involving f. The
quality values of f are used to determine 5� and 3� ranges for
potential 5� and 3� clipping positions of f, whereas overlaps are
used to select the 5� and 3� clipping positions of f in the 5� and 3�

ranges. Let qstart(f) and qend(f) be the start and end positions of
a high-quality region of f with respect to a quality value cutoff.
Let rsize be the maximum number of high-quality bases allowed
in any range. Then the 5� range of f is defined as a 5�-end region
of f from base 1 to base min{qstart(f) + rsize, len(f)}, where len(f) is
the length of f. The parameter rsize should be set to a length that
is longer than most of the 5� contaminated end regions. A default
value of 300 was found to meet the requirement in our test and
is used for rsize. Let cdep be the maximum number of overlaps
that can be used to select a clipping position. Let mdep5(f) be the
maximum depth of coverage by overlaps in the 5� range of f. If no
position in the 5� range of f is covered by any overlap, that is,
mdep5(f) = 0, then the 5� clipping position of f is qstart(f). Other-
wise, the 5� clipping position of f is defined as a smallest position
in the 5� range of f such that the position is covered by min{cdep,
mdep5(f)} overlaps. The parameter cdep is related to the average
depth of coverage for the input data set, and a default value of 3
is used for the parameter cdep. Figure 1 illustrates three cases in
computation of the 5� clipping position of a read f. The overlaps
in Figure 1 are drawn such that the order of the start positions of
the overlaps in the read f is somewhat consistent with the order
of the other reads involved in the overlaps. The 3� range and
clipping position of f are similarly defined.

Consider computing the positions qstart(f) and qend(f) of a
high-quality region of read f with respect to a quality value cut-
off. A high-quality region of f is defined as a region with the
maximum quality score, where the quality score of a base posi-
tion is the quality value of the position minus the quality value
cutoff, and the quality score of a region is the sum of quality
scores of each position in the region. A high-quality region of f is
found by the maximum-consecutive-subsequence algorithm
(Bentley 1986). The quality value cutoff is set to 12 because bases
of quality values greater than 12 are often useful for generation of
consensus sequences.

Huang et al.

2166 Genome Research
www.genome.org

Chimeric reads are identified based on an existing method
(Huang 1996). A chimeric read consists of two pieces from dif-
ferent parts of the genome. A pair of similar regions between two
reads ends (starts) with an overhang if the regions of the reads
after (before) the similar regions are sufficiently long and differ-
ent. A pair of similar regions between a chimeric read and a real
read often ends or starts with an overhang. A read f is identified
as a chimeric read if it has an internal position pos satisfying the
following requirements. A region of the read f immediately be-
fore the position pos is similar to a number of other reads. All the
similarities end around pos, and a majority of them end with an
overhang. A region of the read f immediately after pos is similar
to a number of other reads. All the similarities start around pos,
and a majority of them start with an overhang. Chimeric reads
are not used in construction of contigs.

An initial construction of contigs and scaffolds is performed
on a processor with a large amount of main memory. The unique
overlaps are read into the main memory. Reads are assembled
into contigs by processing the overlaps in a decreasing order of
their adjusted scores. Then contigs are corrected and connected
into scaffolds with forward–reverse constraints (Huang and
Madan 1999). The length of each gap between two contigs in a
scaffold is estimated using the distances of the constraints that
link the two contigs. The scaffolds are arranged in a decreasing
order of sizes, which are referred to as scaffold 0, scaffold 1, scaf-
fold 2, and so on. Next, the scaffolds are partitioned into m
groups, where for 0 � k < m, group k consists of scaffolds q with
k = q mod m. This partition ensures that the groups are balanced
in scaffold sizes. Finally, each group of scaffolds is reported in a
separate file.

The memory requirement of an implementation of the pro-
cedure described above consists of two parts. The first part is
equal to 36 bytes times the number of overlaps saved in the main
memory, where each overlap takes 36 bytes of memory. The sec-
ond part is close to 340 bytes times the total number of reads in

the entire data set, where the value 340 is obtained by calculating
the total number of bytes per read required by all data structures
except the overlap data structure.

From now on, the m groups of scaffolds are processed in
parallel. Each group of scaffolds is read from its file to the main
memory of a processor. For each scaffold, a set of repetitive reads
that are linked by constraints to unique reads in the scaffold is
identified. For each gap in the scaffold, a subset of repetitive reads
that may fall into the gap are selected from the set for the scaf-
fold. The selection is based on the orientations of unique reads in
contigs, the lengths of contigs, and the estimated lengths of gaps
in the scaffold. For example, consider a constraint involving
reads fx and ry with a maximum distance of d. First, assume that
fx is a unique read in a contig C and that ry is a repetitive read.
Then the read ry may fall into a gap G downstream of the contig
C if the sum of lengths of the contigs and gaps exclusively be-
tween the contig C and the gap G is less than d. The distance from
the start position of the read fx in the contig C to the end of C is
included in the sum. Next, consider the case in which fx is a
repetitive read and ry is a unique read in a contig C. The read fx
may fall into a gap G upstream of the contig C if the sum of
lengths of the contigs and gaps exclusively between the gap G
and the contig C is less than d. The distance from the start of the
contig C to the end position of the read ry in C is included in the
sum.

An attempt is made to close the gap with the subset R of
repetitive reads as follows. A 3�-end region of the contig before
the gap, where the end region is longer than any overlap, is
located. Let U5 denote the set of unique reads that end in the
region. Similarly, let U3 denote the set of unique reads that start
in a proper 5�-end region of the contig after the gap. Then over-
laps are computed for reads in the union of R, U5, and U3. If the
gap can be closed with the overlaps, then the contigs before and
after the gap are joined into a new contig. Otherwise, no change
is made to the contigs before and after the gap.

After all gaps in the group of scaffolds are considered for
closure, multiple alignments of reads and consensus sequences
are constructed for the contigs in the group with a method used
in the CAP3 program (Huang and Madan 1999). Files of contig
alignments and consensus sequences are reported in both CAP3
and ace formats.

RESULTS
We first describe results produced by PCAP on a large whole-
genome data set. A mouse whole-genome shotgun data set of 33
million reads was downloaded from NCBI in December 2001. A
high-quality region of every read was determined with respect to
a quality value cutoff of 9, and the low-quality end regions before
and after the high-quality region were trimmed. The resulting
read was retained if its length was at least 150 bp. The computa-
tion of a high-quality region of the read is described in Methods
in the context of computing the clipping positions of the read.
The selection of 9 for the quality value cutoff was based on the
observation that bases of quality values smaller than 9 are useless
for assembly. A data set of 30 million reads was produced by the
trimming step. The entire set of reads was stored in 68 pairs of
base and quality files in compressed form, which took a total of
19 Gb of disk space. A total of 12.9 million forward–reverse con-
straints involving 25.8 million reads were identified. Although
no distance information was provided for some constraints, most
of the constraints were from short subclones of 1–6 kb. Thus, a
distance range of 500–6000 bp was used when subclone lengths
were not available.

The platform for the assembly computation consisted of
21 Compaq ES40 servers, each with four processors. One server

Figure 1 Three cases in computation of the 5� clipping position of a
read f. A vertical line shows the start position of an overlap between two
reads. The thick line indicates the 5� clipping range of f. The dot marks the
start position of a high-quality region of f. The arrow points to the 5�
clipping position of f. Assume that cdep, the maximum number of over-
laps that can be used for computing any clipping position, is set to 3. (A)
The maximum depth of coverage by overlaps in the 5� range of f, de-
noted by mdep5(f), is 0. (B) We have mdep5(f) = 2 < 3 = cdep. (C) We
have mdep5(f) = 4 > 3 = cdep.

PCAP: A Whole-Genome Assembly Program

Genome Research 2167
www.genome.org

had 16 Gb of main memory, and each of the 20 other servers
had 4 Gb of main memory. There was a common file system
accessible by each server. There was a 32-Gb disk quota on
the common file system. Each server had a local scratch disk of
17 Gb.

The assembly computation on the mouse data set was per-
formed by many jobs, each running on one processor. Only jobs
of the same type could run in parallel. There were no communi-
cations between jobs of the same type. Jobs of different types
communicated through input and output files.

All jobs except the one for construction of contigs and scaf-
folds took <4 Gb of main memory. The contig construction job
required 16 Gb of main memory. By saving input and output files
in compressed form, all the jobs were completed within the 32-
Gb disk quota on the common file system, 19 Gb of which were
used to keep the original base and quality files.

The overlap computation was performed by 80 jobs of the
same type. Each job took as input the whole set of reads, selected
a subset of reads, compared the subset with the whole set, and
produced as output a file of repetitive regions for the subset and
a file of overlaps between the subset and the whole set. The word
length w was set to 12. Each job took 7 d on a processor, spend-
ing a majority of the time on automatic identification of re-
petitive regions of reads. The number of overlap jobs was deter-
mined such that each job required <4 Gb of main memory. The
memory requirement of each overlap job was 14 times the size
of the subset. The overlap jobs produced a total of 273 million
overlaps.

The computation of average coverage scores for overlap re-
gions was performed by 20 jobs of the same type. The whole set
of reads was partitioned into 20 groups of similar sizes. Each job
took as input the 80 files of repetitive regions and 80 files of
overlaps, computed the depths of coverage for reads in its group,
computed the average coverage scores for overlap regions of
reads in its group, and generated as output a file of average cov-
erage scores for overlap regions. The number of jobs was deter-
mined based on the memory requirement to save the depths
of coverage for reads in each group. Each job took 10 h on a
processor.

The construction of contigs and scaffolds was performed by
one job. The job took as input the 80 files of overlaps and 20 files
of average coverage scores for overlap regions, computed the ad-
justed score of every overlap, and saved the overlaps with ad-
justed scores greater than a cutoff in the main memory. Then the
job assembled reads into contigs by processing the overlaps in a
decreasing order of adjusted scores, took as input the file of con-
straints, and linked contigs into scaffolds with constraints. Fi-
nally, the job produced as output 80 files of scaffolds. The job
took 10 h and 16 Gb of main memory on a processor. The cutoff
was selected such that there was enough main memory to save
the overlaps with adjusted scores greater than the cutoff and to
carry out the computation. The cutoff was 8000. The number of
overlaps that could be processed within the memory limit of 16
Gb was 135 million, nearly half of the input overlaps. Because of
the lack of main memory, ∼ 12 million overlaps of adjusted scores
between 5000 and 8000 were not considered for construction of
contigs. The cutoff value 5000 would have been used if there
were an additional 0.5 Gb of main memory to save the 12 million
overlaps, where each overlap took 36 bytes of memory. About
half an hour more time would have been required to process the
12 million overlaps.

Closure of gaps and generation of consensus sequences were
performed by 80 jobs of the same type. Each job took as input a
group of scaffolds and the whole set of reads, selected a subset of
reads that are in the group of scaffolds, and saved the base se-
quences and quality sequences of the subset in the main

memory. Then the job attempted to close, with repetitive reads,
gaps between contigs linked by constraints, constructed a mul-
tiple alignment of reads for each contig in the group, and gen-
erated a consensus sequence for each contig in the group. Finally,
the job reported files of multiple alignments and consensus se-
quences for the group in two formats. The job took 30 h on a
processor. A total of 114,215 gaps were closed by the 80 jobs. The
entire assembly computation took ∼ 36 d on the Compaq cluster
with at most 20 processors in use at any time.

A summary of contigs and scaffolds produced by PCAP on
the mouse data set is shown in Table 1. Of the 30 million reads,
24 million reads appeared in the assembly. There are three rea-
sons that the 6 million reads did not appear in the assembly.
First, if a read did not have any overlap of an adjusted score
greater than the cutoff and the read was not linked by any con-
straint to another read in the assembly, then the read could not
appear in the assembly. Reads from highly repetitive regions of
the genome had overlaps of low adjusted scores. Second, reads
that had no overlaps with other reads could not appear in the
assembly. Third, chimeric reads were not used in the assembly.
The assembly results are available on the Web at http://seq.cs.
iastate.edu.

It is difficult to evaluate the quality of the PCAP mouse
assembly because the mouse genome is not finished. To assess
the accuracy of PCAP, we tested PCAP on a data set for human
Chromosome 20, which is finished. The data set was made avail-
able by ftp from Sanger Center for evaluation of assembly pro-
grams in 2001. However, the data set is no longer available at the
previous ftp address. The data set contains 1.68 million reads
with an average of 12-fold coverage. The reads are free of low-
quality bases at ends. The data set was created by combining all
reads from clone-based shotgun sequencing projects. A set of
seven finished genomic sequences with a total of 59.4 Mb for
human Chromosome 20 was obtained from NCBI at ftp://
ftp.ncbi.nih.gov/genomes/H_sapiens/CHR_20. We made an arti-
ficial set of 370,321 constraints for the data set based on com-
parison of the reads with the finished genomic sequences. About
half of the constraints are of short distances smaller than 5 kb, a
quarter are of medium distances between 8 and 20 kb, and a
quarter are of long distances between 80 and 130 kb. The data set
along with the set of constraints were provided to PCAP as a
whole-chromosome shotgun data set. No clone-based informa-
tion was used by PCAP for assembly.

The assembly computation took 1 d on a computer with
eight processors. At most 2 Gb of main memory was used by each
of the eight processors. A summary of contigs and scaffolds pro-
duced by PCAP on the human Chromosome 20 data set is shown
in Table 2. Of the 1.68 million reads, 1.45 million reads appeared
in the assembly. Most of the reads that did not appear in the
assembly are from highly repetitive regions of human Chromo-
some 20.

To evaluate the quality of the PCAP assembly, the PCAP
contig sequences were compared with the seven finished ge-

Table 1. Summary Statistics for Mouse Contigs and Scaffolds

Type Numbera
N50 lengthb

(bp)
Maximum

length (bp)

Total
length
(Mb)

Contigs 274,201 13,696 197,544 2189.7
Scaffolds 96,789 55,527 536,751 2240.4

aNumber of contigs (or scaffolds) of length at least 1500 bp.
bN50 length is the maximum length L such that 50% of all nucleo-
tides are in contigs (or scaffolds) of size at least L.

Huang et al.

2168 Genome Research
www.genome.org

nomic sequences by Cross_Match (Green 1995). Matches of score
at least 3000 between PCAP contig sequences and finished se-
quences were computed, where the cutoff value 3000 is the score
of a perfect match of 3000 bp. The large cutoff value had to be
used to keep the number of matches manageable. Unique
matches between PCAP contig sequences and finished genomic
sequences were selected from the high-scoring matches. Each
unique match consists of a pair of corresponding regions be-
tween a PCAP contig sequence and a finished sequence. About
80% or 47.7 Mb of the finished genomic sequences were covered
by PCAP contig regions from the unique matches. The numbers
of misjoins were computed for the PCAP contigs and scaffolds
with unique matches to finished sequences. A misjoin in a PCAP
contig was detected when two adjacent regions of the contig
were found to correspond to nonadjacent regions of a finished
sequence or regions of different finished sequences. A mislink in
a PCAP scaffold was detected when the order or orientation of
two adjacent contigs in the scaffold was found to be inconsistent
with that of their counterparts in finished sequences. The num-
ber of misjoins made by PCAP in the contigs is 96, and the num-
ber of mislinks made by PCAP in the scaffolds is 306. The total
length of the PCAP contigs with unique matches to finished se-
quences is 47.95 Mb. Thus, the misjoin rate for the contigs is one
misjoin every 500 kb, and the mislink rate for the scaffolds is one
mislink every 157 kb.

The accuracy of the PCAP assembly at the base level was
evaluated by using the base quality values of the PCAP contig
sequences. The quality value of a PCAP consensus base is a
weighted sum of input base quality values (Huang and Madan
1999). The PCAP contig sequences of at least 1500 bp were in-
cluded in the evaluation. Because a contig sequence often has
low coverage and low base quality values in end regions, the
bases in the 300-bp ends of the contig sequence were not con-
sidered. We found that 99.8% of the bases in the PCAP contig
sequences are of quality values at least 30. We chose to do the
evaluation based on quality values because the percent identity
information was not generated for the matches between PCAP
contig sequences and finished sequences.

DISCUSSION
We have developed a whole-genome assembly program named
PCAP for processing tens of millions of reads. The PCAP program
uses multiple processors to perform overlap and consensus com-
putations, most time-consuming parts in assembly. The program
has a number of features to address assembly issues. Two shorter
word matches, instead of a longer word match, are used as a seed
for finding an overlap. This feature allows the program to miss
fewer overlaps because of sequencing errors. Repetitive regions of
reads are defined as regions covered by many overlaps with other
reads, instead of many shorter exact matches with other reads.
The definition leads to more accurate identification of repetitive
regions. Contaminated end regions of reads are identified and
removed. Generation of a consensus sequence for a contig is
based on an alignment of reads in the contig, where both base

quality values and coverage information are used to determine
every consensus base. The efficiency of PCAP was tested on a
mouse whole-genome data set of 30 million reads, and the accu-
racy of PCAP was evaluated on a human Chromosome 20 data
set.

The N50 contig and scaffold lengths for the PCAP mouse
assembly are much smaller than those for the ARACHNE mouse
assembly (Mouse Genome Sequencing Consortium 2002) for
three reasons. First, the PCAP mouse assembly was produced by
an early version of PCAP, in which constraints were not used to
correct misjoins in contigs. Contigs with misjoins resulted in
short scaffolds. Note that the PCAP human Chromosome 20 as-
sembly was produced by the present version of PCAP, in which
constraints are used to find and correct misjoins in contigs
(Huang and Madan 1999). In the ARACHNE mouse assembly,
several effective techniques were used to find and correct errors
in scaffolds (Jaffe et al. 2003). Second, BAC end reads and other
constraints of distance >7 kb were not provided to PCAP for the
mouse assembly. Those long constraints were necessary for con-
struction of long scaffolds (Jaffe et al. 2003). Third, the PCAP
mouse assembly started with a raw data set of 33 million reads,
instead of a raw data set of 41 million reads. Because of the 16-Gb
memory limitation, PCAP was not able to consider 12 million
overlaps in construction of contigs.

As powerful computers become available to ordinary labs in
the future, powerful assembly programs will be required to pro-
cess millions of genomic and EST reads in ordinary labs. Se-
quence assembly programs with different features will better
serve the various needs of users. This has been the case with
existing assembly programs. For example, Phrap (Green 1995) is
suitable for assembly of genomic reads with quality values,
whereas CAP3 (Huang and Madan 1999) is suitable for assembly
of EST reads without quality values (Liang et al. 2000).

Availability
The PCAP program is freely available for academic use at
xqhuang@cs.iastate.edu. The PCAP program can be used with the
CONSED program. Additional information on PCAP is available
at http://seq.cs.iastate.edu.

ACKNOWLEDGMENTS
We thank Ray Hookway and Eamonn O’Toole of Compaq Com-
puter Corp. for giving us access to the Compaq computer cluster;
Nat Goodman of Compaq Computer Corp. for lending us an
ES40 Compaq server; Asif Chinwalla and Rick Wilson for encour-
agement; Haining Lin for programming assistance; the Mouse
Genome Sequencing Consortium for the mouse data set; David
Jaffe for information on the mouse paired reads; James Mullikin
for the human Chromosome 20 data set; Oliver Eulenstein, Paul
Havlak, and Suraj Kothari for discussions; and the reviewers for
helpful suggestions. X.H. and J.W. are supported by NIH grants
R01 HG01502 and R01 HG01676. S.A. is supported by NSF grant
ACI-0203782. S.-P.Y. and L.H. are supported by NIH grants U54
HG02042 and U01 HG02155.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.

REFERENCES
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller,

W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new
generation of protein database search programs. Nucleic Acids Res.
25: 3389–3402.

Aparicio, S., Chapman, J., Stupka, E., Putnam, N., Chia, J.M., Dehal, P.,
Christoffels, A., Rash, S., Hoon, S., Smit, A.F., et al. 2002.
Whole-genome shotgun assembly and analysis of the genome of
Fugu rubripes. Science 297: 1301–1310.

Table 2. Summary Statistics for Chromosome 20 Contigs
and Scaffolds

Type Numbera
N50 length

(bp)
Maximum

length (bp)

Total
length
(Mb)

Contigs 3486 41,343 325,806 52.4
Scaffolds 1505 2,002,049 5,693,424 52.6

aNumber of contigs (or scaffolds) of length at least 1500 bp.

PCAP: A Whole-Genome Assembly Program

Genome Research 2169
www.genome.org

Batzoglou, S., Jaffe, D., Stanley, K., Butler, J., Gnerre, S., Mauceli, E.,
Berger, B., Mesirov, J.P., and Lander, E.S. 2002. ARACHNE: A
whole-genome shotgun assembler. Genome Res. 12: 177–189.

Bentley, J. 1986. Programming pearls. Addison-Wesley, Reading, MA.
Chao, K.-M., Pearson, W.R., and Miller, W. 1992. Aligning two

sequences within a specified diagonal band. Comput. Applic. Biosci.
8: 481–487.

Chen, T. and Skiena, S.S. 2000. A case study in genome-level fragment
assembly. Bioinformatics 16: 494–500.

Green, P. 1995. Phrap and Cross_Match at http://www.phrap.org.
Huang, X. 1992. A contig assembly program based on sensitive

detection of fragment overlaps. Genomics 14: 18–25.
———. 1996. An improved sequence assembly program. Genomics

33: 21–31.
———. 2002. Bio-sequence comparison and applications. In Current

topics in computational molecular biology (eds. T. Jiang et al.), pp.
45–69. The MIT Press, Cambridge, MA.

Huang, X. and Madan, A. 1999. CAP3: A DNA sequence assembly
program. Genome Res. 9: 868–877.

Jaffe, D.B., Butler, J., Gnerre, S., Mauceli, E., Lindblad-Toh, K., Mesirov,
J.P., Zody, M.C., and Lander, E.S. 2003. Whole-genome sequence
assembly for mammalian genomes: ARACHNE 2. Genome Res.
13: 91–96.

Kececioglu, J.D. and Myers, E.W. 1995. Combinatorial algorithms for
DNA sequence assembly. Algorithmica 13: 7–51.

Kim, S. and Segre, A.M. 1999. AMASS: A structured pattern matching
approach to shotgun sequence assembly. J. Comp. Biol. 6: 163–186.

Liang, F., Holt, I., Pertea, G., Karamycheva, S., Salzberg, S., and
Quackenbush, J. 2000. An optimized protocol for analysis of EST
sequences. Nucleic Acids Res. 28: 3657–3665.

Mouse Genome Sequencing Consortium. 2002. Initial sequencing and
comparative analysis of the mouse genome. Nature 420: 520–562.

Mullikin, J.C. and Ning, Z. 2003. The Phusion assembler. Genome Res.
13: 81–90.

Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P.,
Flanigan, M.J., Kravitz, S.A., Mobarry, C.M., Reinert, K.H.,
Remington, K.A., et al. 2000. A whole-genome assembly of
Drosophila. Science 287: 2196–2204.

Peltola, H., Soderlund, H., and Ukkonen, E. 1984. SEQAID: A DNA
sequence assembling program based on a mathematical model.
Nucleic Acids Res. 12: 307–321.

Pevzner, P.A., Tang, H., and Waterman, M.S. 2001. An Eulerian path
approach to DNA fragment assembly. Proc. Natl. Acad. Sci.
98: 9748–9753.

Qian, J. 1999. “Parallel DNA sequence assembly.” M.S. thesis, Michigan
Technological University, Houghton, MI.

Staden, R. 1980. A new computer method for the storage and
manipulation of DNA gel reading data. Nucleic Acids Res.
8: 3673–3694.

Sutton, G.G., White, O., Adams, M.D., and Kerlavage, A.R. 1995. TIGR
Assembler: A new tool for assembling large shotgun sequencing
projects. Genome Sci. Tech. 1: 9–19.

Wang, J., Wong, G.K., Ni, P., Han, Y., Huang, X., Zhang, J., Ye, C.,
Zhang, Y., Hu, J., Zhang, K., et al. 2002. RePS: A sequence assembler
that masks exact repeats identified from the shotgun data. Genome
Res. 12: 824–831.

WEB SITE REFERENCES
ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/CHR_20; human

Chromosome 20 sequences.
http://seq.cs.iastate.edu; PCAP mouse assembly and PCAP program.
http://www.ncbi.nlm.nih.gov/Traces; mouse raw data set.

Received October 23, 2002; accepted in revised form July 7, 2003.

Huang et al.

2170 Genome Research
www.genome.org

